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A study is made of the instability of standing spin waves in a ferromagnet with damp-
ing and with a pump h ~ exp (iwpt) involving four-wave processes having the conser-

vation laws

204 = Oipin + Opr,

op +o_p =0,

O gegxe

The pair instability threshold b, is nearly always small, (h,—he)/he ~ 10741075 where
he is the threshold for the appearance of pairs. The maximum instability increment

Y ) lies in the region ® «< k; for large % = k the pairs are stable only with the
unique choice k = k;. A brief discussion is given of the nonlinear stage in the develop-

ment of the instability.

At present there is great interest in the tur-
bulence of nonlinear waves in states far from ther-
modynamic equilibrium. Some examples are weak
turbulence in a plasma (1], amplification of acoustic
noise under conditions of acoustic instability in
piezoelectric semiconductors [2], and self-focus-
ing of a laser beam in a nonlinear dielectric [3].
Turbulence in the parametric excitation of spin
waves is this kind of problem,

Parametric excitation of spin waves in ferro-
magnetic materials was predicted and observed in
- the work of Anderson and Suhl [4], Suhl [5], and
. Schloman [6]and has been widely studied theore-

tically, experimentally, and practically [7].

The detailed behavior of spin waves past the
threshold for parametric excitation has been con-
sidered by Zakharov, Starobinets and the author
[8]. The main approximation used there was in
simplifying the interaction Hamiltonian Hj of the
spin waves in a way reminiscent of the BCS ap-
proximation in the theory of superconductivity.

In particular, instead of the exact Hamiltonian
H, :% 2 T, u @l (ky 4k, —ky, — k) 1)

12, 34

we have used the reduced Hamiltonian -
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which includes only the part of Hi which is dia-
gonal in the pairs of spin waves with wave vec-
tors k and —k. Here the canonical variables ay are
the complex amplitudes of traveling spin waves re—
lated by a transformation of the Holstein-Prima-
koff type [9, 10] to the magnetization M(k) of the
ferromagnet while Tyyr = Tk k', and Sgkr =
Tk,-k;k' k'- The approximation in which we use
the diagonal Hamiltonian (2) also takes no account
of thermal noise and will be called the "S model."
One of the main results obtained in [8]is that in
ferromagnets which do not have axial symmetry
{for example with anisotropies of the "easy plane"
type) when the threshold is exceeded by less than

2 to 4 dB monochromatic standing spin waves = k;

- of amplitude N will be excited, whose wave vectors

are given by Egs. (17) and (3). Such states, co-
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herent over the whole crystal, can be observed for
example in experiments on light scattering and oth-
er experiments, In [11] Zakharov and the author
showed that thermal noise does not destroy the
coherence if the standing wave is stable within the
framework of the exact Hamiltonian (1).

A preliminary study of the stability of arbi-
trary stationary states can be carried out already
in the "S model." In this model we should dis-
tinguish "exfernal® stability, i.e., stability with
regard to creation of other pairs, from "internal
stability with regard to changes of the amplitude
and phase of the excited waves. The need for ex-

- ternal stability can always be satisfied; in the "S
model” it uniquely determines a surface in k space
where the excited spin waves can be in a stationary
state; for one pair this is

9p , TV
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where wy is the spectrum of waves, wp is the pump
frequency, N = 2]ag|? = 2|agl?, a, = Ay, G5 =d i .
Internal pair stability does not always occur and
for this we require

§(28 4 T)>0. 4

We will further restrict this not very rigid
condition. When the exchange interaction is pre-
dominant, T = -8, and T = S [9, 10] for ferromag-
nets with one-ion anisotropy and a pair has inter-
nal stability.

Here we study the stability of standing spin
waves in a ferromagnet with da.mpihg and a pump
within the framework of the complete Hamiltonian
(1) i.e., the stability with regard to decay pro-
cesses with conservation laws!

204, = Oy + Qs (5)
Ok, = O, == Ok pn - O . (6)

For large n the waves (k) + %) and (k; — %) as
a rule cannot simultaneously fall into the region
of k space where the damping is compensated by
the pump and the threshold for the modulation in-
stability (5) turns out to be high, In this case there
is only the process (6) in which the waves interact
in pairs *k, which corresponds to the approxima-.
tion of a diagonal Hamiltonian (2). Analysis of the
expression for the increment (26) shows that the
contribution of process (5) to the interaction of the
waves is small if

T T ()

where hV is the pump amplitude (12), v is the wave
damping (13), and hV =y corresponds to the thresh-
old for parametric excitation of the initial pair.
This inequality limits the minimum distance be-
tween pairs under dynamical conditions in which
they can still be described by the "S model." It is
substantially more rigorous than the correspond-
ing inequality (4) of [8]found from obvious consid-
erations,

When % is less than (7) both processes (5) and
(6) occur and we should treat pairs +ky with re-
gard to creation of four coupled spin waves + (k; +

- 1) and = (k) — ®) which correspond to the disper-

sion relations obtained and studied in Sec. 3. It
turns out that the behavior of the increment depends
substantially on the signs of the coefficients S, T,
and (2S + T) in the Hamiltonian, In particular with
% = 0 we find for the increment vyef

(+1, ) —1=—28@S+T)N and 1,,=0.  (8)

The first branch corresponds to "intrinsic”
instability in the "S model™ and the second to a
state of neutral equilibrium with regard to changes
in the phase difference (@, — ¢g) of a pair. The
origin of the second mode involves the dynamic
nature of the stationary state —there is no random-
ization of the phase differences and neutral equi-
librium occurs due to spatial uniformity since the
difference (¢, — @) determines the spatial posi-
tions of the nodes and antinodes of the standing
waves, For small ® these modes remain stable if

T>0, 25+ T)>0. ©)

It is interesting that T > 0 is the condition for
no self-focusing of a monochromatic wave in a con-
servative medium. The conditions (9) also suffice
for "intrinsic" stability. However for stability for
all » we also must satisfy the rigid réquirement

B <375

Estimating (y/w) ~ 1072-10-3 we find WV —
v}/ v ~10-%-107% for the instability threshold, If
the pair is to remain stable when threshold is ex-
ceeded by severaldecibels (hW—+vy ~1v) it is neces-
sary that [T] ~ (0.1-0.01)S.

(10)

Unstability of pairs of monochromatic waves in a conservative
medium was briefly discussed by Zakharov [12] and instability -
of pairs in a medium with damping and pumping slightly over
threshold when the limitation-of the amplitude arises from non-
linear damping has been discussed by Zakharov Starobinets,

and the author [10].
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Thus monochromatic standing spin waves are
practically always unstable with parallel pumping.
At the end of the paper we briefly discuss in what
sense we can retain the results obtained in the "Sn
aodel " ‘ '

1. BASIC EQUATIONS

As in previous work [8-11, 13, 14] we will de~
scribe the ferromagnet within the framework of a
classical Hamiltonian formalism, The Hamil-
tonian function is

H=You0+H,+H, a1)
k .

where H is the Hamiltonian for interaction with an

alternating magnetic field h(t) = h exp (iw t) (the

pump)

7 5 E[hV a'a’k-}- C.Ce ], (12)

where H; is the exact Hamiltonian for the interac-
tion of the waves (1). The equation of motion is

. Oa 3H
k
ot T =5 ek’

(13)
where v is a phenomenological spin wave damping
parameter [9].

2. STATIONARY STATE OF A PAIR
We write Eq. (13) for a pair:

[7"; F 1= 1000+ Tool [ 25| a5 ) |20 = thV 05 (14)

Here wy = wi,, Vo = etc., while the damping
Yk in what follows will %e assumed independent of
k for sunphcﬂ:y

We introduce the amphtude N and the phase /]
of a pair

ay= V% eilotte), gj== V{VZ_ ¢ (wt+e0). b = 9o+ 7. (15)

In the stationary state w = w / 2 so that we
find from (14)
1
i 4 RVe¢ +a+1v(sm+ To)=0, 3=0,— 70,

»
(16)

Similar relations have been found by Petra-
kovskii [15] using the Landau-Lifshits equation,
It was postulated there that beyond the threshold
for parallel pumping there exists only one pair
with a certain (unknown!) detuning and the depen-
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dence of N and y on 6 was investigated based on
(16).

It has been shown [8, 14] that for "internal®
stability of a pair it is necessary and sufficient
that

25+ NTp=0.

Here the amplitude N and the phase ¢ in the
stationary state are

MO

N =
| Sool

, RV sinp=1. an

In the following section we study the stability
of an arbitrary stationary state with

IvToo

450 =N (B—S,,), (18)

within the framework of the exact Hamiltonian,
where B is an arbitrary function of N and ¥ and
we show in particular that of all the stationary

states (18) the most stable one is that for which
B = Soo.

3. DISPERSION RELATIONS

Using the exact Hamiltonian (1), (11), (12), and
Eq. (13) we write the linearized equations of mo-
tion for the perturbation waves

i i
b, = @y 4 OXD (—~2— mpt) b= a_k“ _, ©Xp (Tmpt>’

z (19)
by=a_,, exp (-—% mpt), b, = al'(n_‘exp (% mpt) ,
2, P, FN, 26 ||y
5 e, 16, PN ||
{ =0, (20)
F*Nv E‘Gzr Q2y P2 bﬁ
1 ol * * * »
—2~ G E s’ FNy Pzr 92 b2
where
Y N
=0, +il5+1), I=12

~ 1
8;=0;— 5o, +N(T;+7Tp);
P,=hV,;+ 85,5 £=N exp(i);
F=Tpn G= Tm,oo-

We seek a solution of Eq, (20) in the form
b ~ exp (-yeft), where Yef is the instability incre-
ment, The condition of zero determinant for the
system leads to a biquadratic equation for ¢y +
'Yef) whose solution is
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2(1+ 1)t = (@ 4+ + | P,

FP P+ S N(GE—4IFP

+ [(@F — 8 — | Py 4| Py )
—|GE (8, —&,) + 2N (FP, — F*P)|*

+|2FN (&, 4 &) — (G'EP,+ GEPY[*. (21)

Before studying this complex expression we
mention that for large % it reduces to the simple
condition

(7 Yer) =~ G| P, s

which follows directly from the "S model," Actual-
ly for large % it is not possible to choose the di-
rection of % such that w; and w, are simultaneously
small. Here the region of maximum increment
corresponds to % such that either &, or &, is small.
Assuming that w, > &, ~ vy, and expanding the ra-
dical in (21) we at once see that Eq. (22) for Yef is

. valid,

Consequently the instability of interest to us
lies in the region of small n, For simplicity we
replace the coefficients T, Byb in (21) by their
limits as M — 0 and use the expansion

(22)

B = k¥ 5 L £ N (T + §) +3,
where

dw
ok’

020

v = xuxp —_dku(?kﬁ .

e = 2

P
Vkoiz =V (1 + % sz) , W2 — .‘1]_

92V
ok, o0kg *
[ o

Then taking (15) and (18) into account we put
(21) in the form
1P — P =—(av) — W2
— (DR — S LE@B+ TN
— NB S+ T) & (xv [
4+ 2Lx2(2B + T) N + 4N2B (B + T)]

+ N2[SLx* -1 NB (2 + T)P}™. (23)

It should be expected that the instability will
develop mainly for wave vectors % near the sur-

face
v 45 L= 0. (24)

This means that » is almost perpendicular tovand the
quantity which is most sensitive to changes in the

L'VOV

direction of % in (23) will be the scalar product wv,
Therefore we will seek the maximum increment

by varying (23) only in ®v., As a result we findthat
the maximum increment vy, occurs at the surface

4(xv)=[Lxt + (2B 4 T) NP — T2N?

4N2[SLx24 B (28 + T) N]2
T I F 2B+ T)Njz-T2N2°

(25)

which for large Ln? > SN differs little from (24)
and is ' _
1+ 1) — 12 =—1We - (B— S N?

B2T2N% 4 25T (S — B) NS (Lx2— 2BN)
+ [IxE4 (2B + T) N2— T2N2

We see that of the multitude of stationary solu-
_ tions (18) only the one with B = S has a ‘region of
instability localized in k space, In what follows we
will study only this state, which satisfies the con-
dition of "external" instability (3) in the "S model."
For this state

T2852N4 . .
A+ 1) — P =—1 W+ [T+ 28 + T)Nj2—T2N2 *

(26)

The second term in (26) is absent in the "S
model."” Comparing it with the first term for large
* we find the estimate (7) of the validity of the "S
model." The behavior of the increment with Lmn2~
v depends on the relationships of the signs of S,
T, and (2S + T).

We first consider the case T > 0, S > 0. For
this case Eq, (26) is valid with % 5 nj and %y /kq ~
SN/w. With n & %, :

728

G+ 1) —r=pry V° @7)

+8) 0
With ® < %, the increment begins to decrease
sharply and with ® << % we have % <« %y ly +
Ym)? —v?= («v)’TSN2 with ®[lv. The behavior of

70:“
(/n)?

E

Fig. 1. Instability increment Ym (f = 7?11 + 277m) as-a function
of wwithS >0and T >0 (y/w =109,

1576 0° 0w
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the increment for all ® and T > 0, S > 0 is shown
schematically in Fig.1.

If this condition is not sat1sf1ed then Egs, (25)
and (26) are only valid with ® > %, where

La=[VTTF & +|8|— (25 + T)] 0.

" For smaller % the increment is greatest in
the plane ®Lv and is

(1 — 12 = — (L (28 + T) NP+ (5 T2 — s7)ve

4+ | SN [Lx + (28 + T) N]| — W2,

With ® = 0 we find Eq. (8) from this and for
small % the behavior of (28) depends on the sign

of S(2S + T), With S(28+T) > 0
(bt e — L(Lep—LeTN.  (29)
If S(2S + T) < 0, then |
(T+T.,.)2—T2———(L‘)
— S LE(AS+T)N - _2S (28 +T) N2, (30)

. We give the most detailed treatment of the
case of "intrinsic" pair stability where S(2S +T) >
0). Then for stability with small ® we need T >
0 as we see from (29). It necessarily follows from
this that S < 0 (the unstable case T > 0, S > 0 oc-
curs differently); therefore (2S + T) > 0. Here the
increment is described by Eq. (29) with ®, > % > 0,
and Ln? = [28 + TN, If u; > % > x,, the incre-
ment with T > 0, S < 0, and (28 + T) <0 is des-
cribed by Eq. (30). From this it follows that with
Is IN ~ 7 the increment becomes positive already
with Ln? = 2%}, The schematic behavior of the
increment is shown in Fig. 2. It achieves its
greatest value '

5107 0’ 51078 ~—(u/n)?

Fig. 2. Instability increment y  (f = y2 +2yy ;) as a function

of wwithsS <0, (2S5 +T) >0,

(28) -
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G +1r—r=—vwe+ LT F s —1sD

31)

with £ = w,. Assuming that W ~ k;% and L ~ wky?
we find the estimate (10) for the instability thresh~
old.

As we see,the instability of the monochromatic
standing waves is practically universal. The in-

~ crement is usually positive with /k)® < (aV —

v)/w and its behavior depends essentially on the
relations among the signs of S, T, and (2S + T), as
schematically shown in Figs. 2 and 3,

There would be great interest in a qualitative
study of the nonlinear stage in the development of
the pair instability of interest. Generally speak-
ing there are different possibilities. For example
the total amplitude of the excited pairs will grow
with (SZny)% > (V)2 -y ? until it is limited by &
weaker mechanism, for example nonlinear damp-
ing. Evidently the excited part of k space will be
quite wide in order that the phase differences
within pairs become stochastic, and such a de-
velopment can still be investigated within the frame-
work of the "S model" for S(S + 2T) < 0. With S(S+
2T) > 0 the total amplitude ;"k probably remains

of the order of [(hV)2 —y2]l/?]S™!, The phase dif-
ferences cannot become completely stochastic
here since in the 'S model® such a state is sta-
ble and should relax, collecting at one point in k
space; onthe other hand within the framework of
the exact Hamilfonian it is stable and should expand
in k space. We cannot exclude the possibility that
the total amplitude will oscillate about some value
and we can try to compare these oscillations with
the nonlinear susceptibility x " of a ferromagnet.
Note that an important role in the nonlinear
stage of development of the instability is played
by the finiteness of the crystal size. The situa-
tion will be completely different in cases where
there are many allowed points in k space or where

L i
s 107
(x/n)?

5107 N

Fig. 3. Instability increment y  (f = y2, + 2yym) as a function

of wwithS <0, T >0,and 25 +T < 0.
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there are only a few in the region of positive incre-
ments,

In conclusion we thank V, Zakharov and S.
Starobinets for discussions of the problemstreated
here,
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