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A study i s  made of the instability of standing spin waves in a ferromagnet with damp- 
ing and with a pump h - exp (iwpt) involving four-wave processes having the conser- 
vation laws 

The pair instability threshold hi is  nearly always small, (hi-hc)/h, - l0 -~-10-~ ,  where 
h, is the threshold for the appearance of pairs. The maximum instability increment 
ym(%) lies in the region u << k; for large u = k the pairs are stable only with the 
unique choice k = ko. A brief discussion is given of the nonlinear stage in the develop- 
ment of the instability. 

At present there is great interest in the tur- 
bulence of nonlinear waves in states far from ther- 
modynamic equilibrium. Some examples are weak 
turbulence in a plasma [1 1, amplification of acoustic 
noise under conditions of acoustic instability in 
piezoelectric semiconductors [2], and self-focus- 
ing of a laser beam in a nonlinear dielectric [3]. 
Turbulence in the parametric excitation of spin 
waves i s  this kind of problem. 

Parametric excitation of spin waves in ferro- 
magnetic materials was predicted and observed in 
the work of Anderson and Suhl [4], Suhl [5], and 
Schloman [6] and has been widely studied theore- 
tically, experimentally, and practically [7]. 

The detailed behavior of spin waves past the 
threshold for parametric excitation has been con- 
sidered by Zakharov, Starobinets and the author 
181. The main approximation used there was in 
simplifying the interaction Hamiltonian Hi of the 
spin waves in a way reminiscent of the BCS ap- 
proximation in the theory of superconductivity . 
In particular, instead of the exact Hamiltonian 

1 
H ,  -2. 2 TI, ,  ,,a;a_a,all (kl  + k, - k, - k,) (1) 

we have used the reduced Hamiltonian 

1 B, = 2 [T,~akaia.a& + - 2 Skrr~&?karro-r 
kk' 

I 

which includes only the part of Hi which i s  dia- 
gonal in the pairs of spin waves with wave vec- 
tors k and -k. Here the canonical variables ak are 
the complex amplitudes of 'traveling spin waves re- 
lated by a transformation of the Holstein-Prima- 
koff type [9, 101 to the magnetization M(k) of the 
ferromagnet while Tkkt = T&I.&I, and S ~ I  = 

Tk,-k.frt-kt. The approximation in which we use 

the diagonal Hamiltonian (2) also takes no account 
of thermal noise and will be called the "S model." 
One of the main results obtained in [8] i s  that in 
ferromagnets which do not have axial symmetry 
(for example with anisotropies of the "easy planen 
type) when the threshold is exceeded by less than 
2 to 4 dB monochromatic standing spin waves & k,, 
of amplitude N will be excited, whose wave vectors 
are given by Eqs. (17) and (3). Such states, co- 



herent over the whole crystal, can be observed for 
example in experiments on light scattering and oth- 
er  experiments. In [I1 ] Zakharov and the author 
showed that thermal noise does not destroy the 
coherence if the standing wave i s  stable within the 
framework of the exact Hamiltonian (1). 

A preliminary study of the stability of arbi- 
trary statiomry states can be carried out already 
in the "S model." In this model we should dis- 
tinguish "external stability, i .e . , stability with 
regard to creation of oiher pairs, from "internal 
stability with regard to changes of the amplitude 
and phase of the excited waves. The need for ex- 
ternal stability can always be satisfied; in the "S 
model" it uniquely determines a surface in k space 
where the excited spin waves can be in a stationary 
state; for one pair this is 

where w k  is the spectrum of waves, u p  is  the pump 
frequency, N = 21a0I2 = 21ad2, a. = aka, a;= a_%. 
Internal pair stability does not always occur and 
for this we require 

We will further restrict this not very rigid 
condition. When the exchange interaction i s  pre- 
dominant, T = -S, and T = S [9, 101 for ferromag- 
nets with one-ion anisotropy and a pair has inter- 
nal stability. 

Here we study the stability of standing spin 
waves in a ferromagnet with damping and a pump 
within the framework of the complete Hamiltonian 
(I) ,  i.e., the stability with regard to decay pro- 
cesses with conservation laws1 

For large x the waves (ko + x )  and (ko - x )  as 
a rule cannot simultaneously fall into the region 
of k space where the damping is compensated by 
the pump and the threshold for the modulation in- 
stability (5) turns out to be high. In this case there 
is only the process (6) in which the waves interact 
in pairs * k, which corresponds to the approxima-. 
tion of a diagonal Hamiltonian (2). Analysis of the 
expression for the increment '(26) shows that the 
contribution of process (5) to the interaction of the 
waves i s  small if 

where hV is  the pump amplitude (1 2), y is the wave 
damping (13), and hV = y corresponds to the thresh- 
old for parametric excitation of the initial pair. 
This inequality limits the minimum distance be- 
tween pairs under dynamical conditions in which 
they can still be described by the % model." It is 
substantially more rigorous than the correspond- 
ing inequality (4) of [8] found from obvious consid- 
erations. 

4 
When ' ~ c .  is less than (7) both processes (5) and 

(6) occur and we should treat pairs & ko with re-  
gard to creation of four coupled spin waves * (ko + 
x )  and & (kO - X )  which correspond to the disper- 
sion relations obtained and studied in Sec. 3. It 
tur lls out that the behavior of the increment depends 
substantially on the signs of the coefficients S, T, 
and (2s + T) in the Hamiltonian. In particular with 
x = 0 we find for the increment yef 

(T + ~ , ~ ) 2  - ~2 = -2s ( 2 s  + T )  N 9  and re, = 0. (8) 

The first branch corresponds to llintrinsicn 
instability in the "S model and the second to a 
state of neutral equilibrium with regard to changes 
in the phase difference (qo - q ~ )  of a pair. The 
origin of the second mode involves the dynamic 
nature of the stationary state -there i s  no random- 
ization of the phase differences and neutral equi- 
librium occurs due to spatial uniformity since the 
difference (po - q;) determines the spatial posi- 
tions of the nodes and antinodes of the standing 
waves. For small u these modes remain stable if 

It-is interesting that T > 0 i s  the condition for 
no self-focusing of a monochromatic wave in a con- 
servative meaium. The conditions (9) also suffice 
for "intrinsic" stability. However for stability for 
all ' ~c .  we also must satisfy the rigid requirement 

Estimating (y/w) - l0-~-10-~ we find (hV - 
y ) / y  - 10-*-10-~ for the instability threshold. If 
the pair i s  to remain stable when threshold is ex- 
ceeded by several decibels (hV- y -- y ) it is neces- 
sary that I T 1 - (0.1-0.01)s. 

' ~ n s t a b i l i t ~  of pairs of monochromatic waves in a conservative 
medium was briefly discussed by Zakharov [12] and instability 
of pairs in a medium with damping and pumping slightly over 
threshold when the 1imitation.of the amplitude arises from non- 
linear damping has been discussed by Zakharov, Starobinets, 

and t h e  author [lo]. 
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Thus monochromatic standing spin waves are  
practically always unstable with parallel pumping. 
At the end of the paper we briefly discuss in what 
sense we can retain the res-ults obtained in the "S" 
.model. 

1. BASIC EQUATIONS 
As in previous work [8-11, 13, 141 we will de- 

scribe the ferromagnet within the framework of a 
classical Hamiltonian formalism. The Hamil- 
tonian function is 

where H is  the Hamiltonian for  interaction with an P alternating magnetic field h(t) = h exp (iwpt) -'(the 
PUP) 

where Hi i s  the exact Hamiltonian for the interac- 
tion of the waves (1). The equation of motion is 

where y is a phenomenological spin wave damping 
parameter [9 1. 

dence of N and J, on 6 was investigated based on 
(1 6). 

It has been shown [8, 141 that for "internal" 
stability of a pair i t  is necessary and sufficient 
that 

Here the amplitude N and the phase J, in the 
stationary state a r e  

In the following section we study the stability 
of an arbitrary stationary state with 

within the framework of the exact Hamiltonian, 
where B is an arbitrary function of N and $ and 
we show in particular that of all the stationary 
states (18) the most stable one i s  that for which 
B = So,. 

3. DISPERSION RELATIONS 
Using the exact Hamiltonian (I), (1 I) ,  (1 2), and 

Eq. (1 3) we write the linearized equations of mo- 
tion for  the perturbation waves 

In the stationary state w = wp/2 so that we 
find from (14) 

2. STATIONARY STATE OF A PAIR bl = ayx exp (-i Y),  b; = exp 
We write Eq. (13) for a pair: 

b2 = exp (Lt w p t ) ,  6; = ~ L - ~ e x p  (' u ~ ) ,  

[ ~ + ~ - i ~ + ~ , ~ a ~ ~ ~ + ~ ~ , ~ a ~ ~ ~ ] a ~ = i ~ ~ ~ ~ ~ .  (14) 

Similar relations have been found by Petra- 
kovskii [IS] using the Landau-Lifshits equation. 
It was postulated there that beyond the threshold 
for  parallel pumping there exists only one pair 
with a certain (unknown!) detuning and the depen- 

where 

Here w = wko, Vo = Vk etc., while the damping 
yk in what follows will %e assumed independent of 
k for simplicity. 

We introduce the amplitude N and the phase J, 
of a pair 

1 
w . = w . - - - 0  -3 3 2 p + N ( T j o  f T j d ;  

Pi = h V j  + SjoC, 2: = N exp (iq); 
F Ti0 20, G = Ti,, 00. 

b1 

b f 

bz 

b f 

1 i2 1 9  P,, FN,  TG*C' 

i 
Pt ,  Q;, GC, P N  

i 
P N ,  T G X ,  Q P, 

1 
TG*C*, F N ,  PI, Q; 

We seek a solution of Eq. (20) in the form 
b - exp (yep), where yef i s  the instability incre- 
ment. The condition of zero determinant for the 
system leads to a biquadratic equation for (y + 
yef) whose solution i s  

=o, (20) 
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Before studying this complex expression we 
mention that for large u it reduces to the simple 
condition 

which follows directly from the "S model.n Actual- 

direction of x in (23)  will be the scalar product UV. 
Therefore we will seek the maximum increment 
by varying (23)  only in Uv. As a result we find that 
the maximum increment ym occurs at the surface 

which for large L u 2  >> SN differs little from (24) 
and is  

ly for large 'Lc, i t  i s  not ~oss ib le  to choose the di- 
rection of u such that w l  and G 2  are simultaneously We see that of the multitude of stationary solu- 

small. Here the region of maximum increment tions (18)  only the one with B = S has a region of 

corresponds to x such that either or z2 i s  small. instability localized in k space. In what follows we 

Assuming that w 2  ,, G~ - y, and expanding the ra- will study only this state, which satisfies the con- 

dical in (21)  we at once see that Eq. (22)  for y ,f is dition of "external" instability (3) in the "S model." 

valid. For this state 

Consequently the instability of interest to us 
lies in the region of small x .  For simplicity we 
replace the coefficients Tapyb in (21)  by their 
limits as u -- 0 and use the expansion 

where 

Then taking (15)  and (18)  into account we put 
(21)  in the form 

, - N 2 B  ( 2 s  + T )  { ( x ~ ) ~  [(Lx2)2 

+ 2Lx2(2B + T )  N + 4N2B ( B  + T ) ]  

It should be expected that the instability will 
develop mainly for wave vectors x near the sur- 
face 

1 
+ X V  f T L x 2 =  0 .  (2 4)  

This means that x is  almostperpendicular to v and the 
quantity which is  most sensitive to changes in the 

The second term in (26)  i s  absent in the "S 
model." Comparing it with the first term for large 
u we find the estimate (7) of the validity of the "S 
model." The behavior of the increment with L U ~ -  
y depends on the relationships of the signs of S, 
T, and ( 2 s  + T ) .  

We first consider the case T > 0, S > 0. For 
this case Eq. (26)  is  valid with u 3 'LLO and u O / k O  - 
SN/ w .  With u = U ,  

With u < xo the increment begins to decrease 
sharply and with % (.< xo we have x << xo (y + 
ym)2 - y2 = ( U V ) ~ T S N ~  with ~ I v .  The behavior of 

Fig. 1. Instability increment 7, (f = yk + 27 7,) as a function 
of x with S > 0 and T > 0 (y / w  = lo-=). 
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the increment for all u and T > 0, S > 0 i s  shown 
schematic all^ in Fig. 1. 

If this condition is  not satisfied then Eqs. (25) 
and (26) are only valid with % ~c nxl where 

For smaller n the increment is greatest in 
the plane v and is  

1 + T m ) 2  - y2  = - [Lx2 + ( 2 s  + T )  NI2 f (+ T2 - s2)V 
+ I SN [Lx2 + ( 2 s  + T )  N ]  I - - * T ~ W ~ ~ .  (2 8) 

With H. = 0 we find Eq. (8) from this and for 
small the behavior of (28) depends on the sign 
of S(2S + T). With S(2S + T) > 0 

If S(2S + T) < 0, then 

1 
(y  + y,J2 - y2 = - -& ( L X 2 ) 2  

We give the most detailed treatment of the 
case of wintrinsicn pair stability where S(2S +T) > 
0). Then for stability with small V. we need T > 
0 as  we see from (29). It necessarily follows from 
this that S < 0 (the unstable case T > 0, S > 0 oc- 
curs differently); therefore (2s + T) > 0. Here the 
increment is described by Eq. (29) with x > x > 0, 
and ~x~~ = 12s + T IN. If x i  > x > n 2 ,  the incre- 
ment with T > 0, S < 0, and (2s + T) < 0 is des- 
cribed by Eq. (30). From this it follows that with 
IS I N  - y the increment becomes positive already 
with L X ~  = 2 ~ n : .  The schematic behavior of the 
increment is shown in Fig. 2. It achieves its 
greatest value 

Fig. 2. Instability increment y ( f  = y + 2y m) as a function 

of H with S < 0. (2s  + T) > 0. 

with 5 = xi. Assuming that W - k i 2  and L - wko2 
we find the estimate (10) for the instability thresh- 
old. 

As we see, the instability of the monochromatic 
standing waves is practically universal. The in- 
crement i s  usually positive with ( ~ / k ) ~  < (hV - 
y )/w and its behavior depends essentially on the 
relations among the signs of S, T, and (2s + T), as  
schematically shown in Figs. 2 and 3. 

There would be great interest in a qualitative 
study of the nonlinear stage in the development of 
the pair instability of interest. Generally speak- 
ing there a re  different possibilities. For example 
the total amplitude of the excited pairs will grow 
with (SZnk)2 >> (hV)2 - y until it i s  limited by a' 
weaker pechanism, for example nonlinear damp- 
ing. Evidently the excited part of k space will be 
quite wide in order that the phase differences 
within pairs become stochastic, and such a de- 
velopment can still be investigated within the frame- 
work of the WS modelw for S(S + 2T) < 0. With S(S + 
2T) > 0 the total amplitude 2 n, probably remains 

k 

of the order of [(h~) - -y 2P /2]~-1.  The phase dif- 
ferences cannot become completely stochastic 
here since in the V modelw such a state i s  sta- 
ble and should relax, collecting at one point in k 
space; on the other hand within the framework of 
the exact Hamirtonian it is stable and should expand 
in k space. We cannot exclude the possibility that 
the total amplitude will oscillate about some value 
and we can try to compare these oscillations with 
the nonlinear susceptibility x of a ferromagnet. 

Note that an important role in the nonlinear 
stage of development of the instability is  played 
by the finiteness of the crystal size. The situa- 
tion will be completely different in cases where 
there are many allowed points in k space or where 

Fig. 3. Instability increment m(f  = y k  + 2~ y m )  as a function 
of x w i t h S  < O , T  > O , a n d 2 S + T < O .  
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there a re  only a few in the region of positive incre, 
ments . 

In conclusion we thank V. Zakharov and S. 
Starobinets for discussions of the problems treated 
here. 
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