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An analysis is made of the nonlinear behavior of a pair of spin waves under parametric excitation conditions.

It is shown that the amplitude and phase of such a pair are randomly modulated in the transverse direction,
The average level of turbulence, the characteristic scale of modulation (which is much longer than the wave-
length), and the characteristic frequency of motion are determined, Deep transverse modulations of the pair
are unstable in the case of formation of collapsible filaments in which the amplitude is very high and is lim-
ited by nonlinear damping, Under these conditions the energy is dissipated very rapidly. The situation is then
similar to the formation of foci in the self-focusing of light in dielectrics and it provides anadditional mech~
anism which limits the amplitude of the parametrically excited spin waves. It is shown that practically every . W
amplitude maximum is involved in the collapse process if the pumping amplitude h exceeds a certain critical
value he. The properties of such turbulence are analyzed and the possibilities of its experimental observation

are considered,

In parametric excitation of spin waves in ferro‘magne’cs1
the spin-wave amplitude is frequently such that the behav-
ior of the system as a whole is governed by the interac-
tion between spin waves. The physical phenomena which
then arise are of great variety and this is why the paramet-
ric excitation of spin waves has attracted so much atten-
tion. The variety of these phenomena is responsible for
the difficulties encountered in studies of such excitation.
Several workers®™ have considered a situation in which
the parametric instability threshold is ‘minimal for pairs
of waves with vectors +k which occupy a line or fill a sur-
face in the k space. The sum of the phases in a pair is a
dynamic variable and the separate phases of the waves are
quite random. This reduces the interaction Hamiltonian
to the form diagonal in respect of pairs of waves, i.e., the
problem simplifies considerably.? The effect associated
with the correlation of the 1nd1v1dua1 phases can be allowed
for using the perturbation theory.’

The present paper is concerned with the situation in
which the excitation threshold is minimal for a single pair
+kg, for example, in the case of perpendicular pumping of
spin waves in cubic ferromagnets in the presence of a sec-
ond-order instability (wk = wp) or in the case of parallel
pumping of uniaxial ferromagnets with the "easy plane"
anisotropy. The principal feature of the problem is the
narrowness of the wave packets excited in the k space.
This means that we cannot use a statistical description,
as in ref. 3, but we can simplify the exact interaction
Hamiltonian using the narrowness of the packets. This

can be done by formulating the problem in terms of enve- ~

lope waves, as is done in Sec. 1. The initial stage of the
development of a parametric instability produces a mono-
chromatic standing wave +k;, which is one of the steady-
state solutions of Eq. (4) for the envelope waves. This
state is practically always unstable in the presence of
wave interactions of the type
2w = oy . Fop ., oo =og oy .

In several important case the instability increment
is positive only for the directions which are almost per-
pendicular to® kg and it can be shown’ that the phases and
amplitudes of the envelope waves are equal even in the
nonlinear stage., We shall use this to simplify the problem
further in See. 2 and to obtain two-dimensional equations

550 Sov. Phys, Solid State, Vol. 15, No. 3, September 1973

(6) for the amplitude A and the phase @ of the envelope of| |
a pair. | ?

The’simplest variant of the nonlinear behavior of
such a system, which is its transition to a steady state
other than a plane standing wave A = const and $ = const,
is considered in ref. 7. States of this kind, called "do-
mains" in ref. 7, are periodic waves of the modulation of
the amplitude and phase of a pair A(r — Vt) and &(r — Vi),
which are either at rest or move at a constant velocity V.
There is every reason to assume’ that these domains are
unstable and have an increment which is usually larger
than that of a plane wave. Therefore, the nonlinear be-
havior of the system is essentially unstable. The average
characteristics of a turbulent state of this kind are dis-
cussed in Sec. 2. It is found that the state can be rep-
resented by a stochastic modulation of the amplitude and
phase of a pair of spin waves £k and such modulation oc-
curs mainly at right angles to k;. The depth of modula-
tion is of the order of unity and its characteristic length
is much greater than the wavelength. The modulation pat-
tern changes appreciably in a time interval of the order
of the reciprocal of the parametric instability increment.

An interesting and important phenomenon, which is
the collapse of the envelopes of a standing spin wave, oc-
curs against the background of such turbulence. It is found
that deep modulations do not 4 perse, but contract rapidly
in such a way that the amplitude at the center increases
strongly and is limited by the nonlinear damping to a level
considerably higher than the average level of turbulence.
The results of a_ computer study of this phenomenon are
presented in Secs. 3 and 4.) The conditions for the col-
lapse are determined, the dependence of the probability
of collapse on the pumping amplitude is obtained, and the
dissipation of energy in the collapse process is computed.
The possibility of experimental observation of strong tur-
bulence and collapse of spin waves is considered.

1. EQUATION FOR SLOWLY
VARYING AMPLITUDES

If we use the canonical equation of motion (I.5) and
the Hamiltonian (I.l)z) and assume that narrow wave pack-
ets

@ = [4 (k — ko) + B (k + k)]
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2
are excited in the k space, we find ~ inthe usual manner
the equation for the envelopes A(r) and B(r) of the Fourier

components A(¥) and B(¥):

8 _

[i(;—t+vy>+%ﬁ]A =—i1A +aVB*

o — 224714 p+25180] 4,
@)
[i (%—VV)-}-%I:JB:—:’*{B-{-}LVA*

“p
+[wko—7+T|BIZ+2SiA 12]3, J

where
) 92w 02
V=3k L= 2 kg 9z 075" T = Tk 5= Tigy k0 1,
«B . .

[these are the coefficients of the wave interaction Hamil-
tonian (L.1)].

The systém (1) has the trivial solution A(r) 2 B(r) =
A, where
A4 (r)=IA i, B(r)==|B|e 7,

@)

S— 5 1 . )
2SA3=VRVE =% sin (41+d) =57 hi=ta=7 >

and this solution corresponds to the excitation of a stand-
ing spin wave +ky. It is shown in I that the solution (2) is
practically always unstable in the case of growth of the
modulation of the amplitudes and phases of the envelope
waves: ~

34 (r, ) oc 'exp {ixr 4 v (x) 1),
3B (r, t) o exp (ixr v () 8),

The nature of the developmerit of an instability depends
strongly on the parameters of the Hamiltonian (I.1). With
the exception of the case T > 0 and S > 0, which we shall
not discuss further, the instability increment is maximal
on the surface » L kg: :

1 . 1
— g L2 (La2 4T 43),

v (2)]2 =12 = { —8S (28 + T) 4§ 3

—% L2 (La? 4 (48 + T) A}),

and it decreases rapidly away from this surface. Conse-
quently, important properties of the nonlinear stage of the
development of an instability can be determined using two-
dimensional equations,inwhich A and B depend only on the
coordinates x and y, which are orthogonal to V.. The first
and second rows in Eq. (3) correspond to perturbations of
the type 8A(r, t) =+6B(r, t). If T > 0 and S <0, we see that
the perturbation 6A = —6B has a margin of stability and,
as shown in ref. 7, in this case we have A(r, t) = B{(r, t)
even in the nonlinear stage of motion. For simplicity we
shall consider the case w" > 0 because in this case a .
change in scale can be used to transform Eq. (3) to

i<%—|—~(>A—hVA*+%AA=[(2S+T)IA|2—TA§]A. (4)
Here, we define w(kg) by the external instability condition®
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@ (kp) — wp/2 + TAF=0.

In this way we select the most stable standing wave
for which, as shown in ref. 6, the positive-increment re-
gion in the k space is limited (% < k).

As pointed out at the beginning of this paper, the sys-
tem (4) has many steady-state periodic solutions of the
A(r — Vi) type, but they are unstable.” The initial non-
linear stage of the development of this instability is also
considered in ref. 7 with special attention to the case in
which the increment is anomalously small. This case is

“of interest because the nonlinear interaction begins to play

an important role at very low amplitudes. It is found that

this does not restrict the growth of the initial perturbation
but simply slows it down greatly. The amplitude thenrises
as vi. In this way a packet of waves with ® ~ %y, ¥y < Kk,

and A% ~ % is formed in the kspace. This stateis strong-
ly turbulent and we shall consider it in the next section.

2. AVERAGE CHARACTERISTICS OF
STRONG TURBULENCE

We shall estimate first the width of the excited re-
gion in the k space for an arbitrary pumping level. 1 is
shown in refs. 3 and 4 that in the case when Vi is maxi-
mal at the point kg, 2 packet of parametrically excited
waves relaxes to a standing monochromatic wave with
k = ky if the individual phases of the waves can be re-
garded as random. The phases are random if two waves
in a packet become different in phase by an amount of the
order of unity in a time shorter than the characteristic
nonlinear interaction time. This occurs in a packet with
(Ak)? > ud = SA%/wl';. Therefore, a packet with Ak > %,
reduces in width to ~ %y and its average amplitude relaxes
to ~A;. However, at Ak < ) such a packet is unstable
and is characterized by the increment (3) in the presence
of perturbation with ® ~ %y and, consequently, it expands
to Ak ~ Ry~ (SA%/w")i/ %, We must stress that throughout
the turbulent motion region, the instability increment (3)
is positive in a narrow range %,V £ SA} near the plane
MLV, i.e., the turbulence we are discussing is almost
two-dimensional:

%y \2 SA?Z
(_) ~ St

*y

The average turbulence level A? cannot differ greatly
from A? defined by Eq. (2). In fact, as mentioned in Sec. 1,
it is shown in I that a monochromatic plane wave is stable
under the action of perturbations of relatively short wave-
lengths ® ~k if the wave amplitude is A;. Such an insta-
bility is also exhibited by a pair modulated with ® < k,
because if A% differs considerably from A%, short-wave-
length modulations.are excited and this-is in conflict with
the foregoing conclusion about the narrowness ofthe packet.

Thus, the development of a plane-wave instability
gives rise to a strong quasi-two-dimensional turbulence
of the modulation waves A(r, t) with an average level

_ (V2 — 72)‘/2

A2~ 3:TSI——,

a depth of modulation ofthe order of unity, a characteristic
frequency hV — v, and a characteristic scale in the coor-
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dinate space r, ~ ngl ~ koi(w /SAHY/2, In the wave ap-
proach we can say that a dynanuc domain structure with

a coherence length of the order of the domain size, i.e.,
Ao'i(w"/S)i/z, is generated and this length varies consider-
ably in space in a time (hV - Y)’i.

3. COLLAPSE OF LARGE-AMPLITUDE WAVES

In those parts of a domain structure where the ampli-
tude A during turbulent motion is anomalously large, A >
Ay, we can ignore the damping andthe pumping inthe equa-
tions of motion because the system cannot exchange a sig-
nificant amount of energy withthe thermostat and the pump-
ing source in the characteristic time of the problem,
which is (SA?%)-1,

In the ¥ =0, h =0 approximation the system of equa-
tions (1) describes the transient behavior of a pair of
waves in a conservative medium.. The behavior of a sin-
gle almost monochromatic wave in a nonlinear conserva-
tive medium has been investigated very intensively by ex~.

perimental, theoretical, and computer approaches in view ’

of the importance of this behavior in nonlinear optics,’
plasma physics, and fluid dynamics.!® The phenomenon of
self-focusing of light has been established!! and it has’
then been shown that a self-focused light beam is unstable!?
and in some cases this instability results in a collapse of
the beam in a finite time.!3:

We shall now show that similar phenomena oceur

also in the case of a pair of waves which we aré consider-

ing. Direct calculations demonstrate that the system (1},
subject to the condition ¥ =h =0, has the followmg inte-
grals of motion:

The total energy of the systefn is
H=u, (Ny+ Ng)+PV41;
the‘ "number" of waves of 7each kind is given by
NA=S |42dr, Np=— S | B |2 dr;
the,’ total momentum of the system is
P=—;— S (A*VA —B'VB —c. c)dr;

and the integral I which occuré in the above equations is

1=221 S (|VA)2 4| VB |2) dr
T A '
+TS([A|4+]B|4)dr+2.5‘S]A[2|B|2dr. (5)

We shall show that the sign of this integral has a
strong influence on the evolution of the system. We shall
do this by considering the second derivative of an essen-
tially positive quantity R, '

1
R | 1 (1 4B+ |BR) dr>0. ©)
Direct calculatiohs based on Eq. (1), in which the con-
dition (SA%,/m)l/2 <« 1 allows us to ignore the second de-
rivatives with respect to z, demonstrate (see ref. 14) that

&R/dt? = 21 and hence
R (t) =TItz + 2at -+ 8, (7)

where @ and B are the constants of integration. We can
see that if I < 0, the quantity R(t) become negative in a
finite time, but this contradicts Eq. (6). Therefore, it
follows that the solution of the system (1) "collapses™ in
a finite time, i.e., a singularity is observed.

We shall consider this effect in greater detail. We
shall employ the two-dimensional equation (4) ~ where
A(x, y) =B(x, y), as shown in Sec. 2 — and analyze, on the
basis of computer calculations, the evolution of the initial
axially symmetric distribution:

.A(r 0y = A0[1+k(a—r)exp( f.';)], | )

“which simulates a local increase in the amplitude arising
_spontaneously in the course of turbulent motion. Equation

(4) can be integrated numerically using a method described
in ref. 15. The distribution (8) corresponds to an average
turbulence level Ay, defined by

. [++3
A (r, 0)=> A;' whenr— w, S [ (r, 0) = Ag] rdr =0.
) ,

A natural choice for the characteristic length ay, in
which A(r, 0) — A, vanishes, is the quarter of the wave-
length of the enveiope wave, corresponding to the maxi-
mum instability increment of the original pair:

_ Con2S2
@S TRRVE—y)h

Figures 1-3 give the results of a numerical experi-
ment: the evolution of the amplitude lA(0, t)| (Fig. 1)
and of the phase (Fig. 2) at the center of a packet, and the
amplitude distribution |A(r, t)| at certain characteristic
times (Fig. 3). We can see that there is a critical modula-
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Fig., 1. Evolution of the amplitude A(0,t) at the center of a packet for
hv -2y, T=-S >0, Curvesl, 2, and 3 correspond to k= 2, 3, and 3,5,
respectively. For the sake of clarity the vertical scale for curve 3 is increased
by a factor of 20,
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Fig. 2. Evolution of the phase ¥ (0, t) at the center of a packet for hv—27,
T =—8 > 0, Curves 1-3 have the same meaning as in Fig, 1.
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Fig, 3. Distribution Aft, t), for hv —

2y, T=—8> 0, k = 3,5. "Curves 1, 2,
- and 3 correspond to 7t = 0:08, 0,125,.
and 0,2, respectively; a = 0,8YT"/ 7.

T 2 'rfa’ ) o
tion depth ko such that the packet collapses in a finite
time if k > ke and this collapse is accompanied by a. rise
of the amplitude at the center of the packet to infinity.
The critical values of k are listed in Table 1.

We can see that if hV — ¥ < ¥ the critical amplitude
is ke » 1. In order to understand this point we note that
the phase ¥(r, t) near the focus r =0 of a collapsing packet
increases monotonically. This has been shown analytical-
ly in ref. 13 and it is quite clear from Fig, 2 in the range
where Yt >0.2. The rotation of the phase of the packet
relative to the phase of the pumping source suppresses
the energy flux in the vicinity of the focus and, therefore,
the collapse occurs only if SA? is at least of the order of
Y, which exceeds considerably the average turbulence lev-
el A3 «.(hv? — ¥?)!/2 in the range hV —y < y. This result
(ke >» 1 for kV —7¥ < 7Y) depends weakly on the phase of
the initial distribution. For example, if we vdary the phase
of the initial distribution, i.e., if we assume that k'in Eq.
(8) is complex, we find that Ikcl varies from ke =22 to ke=
25 for KV — vy =0.001y.

4, SELF-FOCUSING AMPLITUDE
LIMITATION ME CHANISM

As pointed out earlier, the depth of modulation of the
amplitude in turbulent motion is of the order of unit'y‘and,
therefore, the probability of formation of regions with
amplitudes exceeding greatly Ayis exponentially small.
This means (Table 1) that for a small excess WV —7Y £7)
hardly any collapsing regions are formed. It is clear
from Fig. 1 that the modulations of amplitude 1 <k <ks -
gradually disperse. If h is increased, the critical depth
of modulation k¢ decreases and there is a characteristic
amplitude he for which ke ~1. We note that the initial
distribution (8) is, to a great extent, quite arbitrary and,
therefore, we shall understand the amplitude he to be that
value of the pumping amplitude above which practically
any region with a characteristic dimension 1/%¢ is cap-
“tured in the course of collapse, It is evident from Fig, 4

TABLE 1. Dependence of Critical Initial Amplitude k¢ on
Excess over Threshold: Kk < kg < kp (for k = ky the packet
still spreads, whereas for k = k, it collapses)

RViy —1 Ry ' =1 & k,
10-3 23 24 1 3 3.1
10-2 10.5 11 2 2.6 2.7
101 5.4 5.5 3 - 0.5
0.4 3.4 3.5
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Fig, 4. Evolution of A(0, t) at the center of a packet for hv—-4y, T =-S.

(hV =4vy) that for a packet which initially has a small value

" ofk <1,the parametric instability mechanism increases

the amplitude in the central region (characteristic incre-

"ment of the order of hV) to values exceeding unity and this

is followed by a rapid collapse. It means that if h > hg,
the nonlinearity not only does not stop the development of
the instability but,.quite the opposite, accelerates the
growth and collapse of a packet,

We shall now consider the phenomena which occur if
h > he. Obviously, in a study of the evolution of a collaps-
ing packet we can ignore the influence of pumping and
damping. Equation {4)thenchangesto a nonlinear parabolic
expression, whose solutions have been studied in great
detail in connection with the self-focusing of light. As
shown in ref. 12, the amplitude at the center of a collaps-
ing packet rises rapidly with time: A(0, t) < (t — to)z/a.
The radius of a collapsing filament decreases, so that a
definite amount of energy is captured:

1.86w"w
I,=w S 14 [hir:—,m.

If the wave amplitude in a collapsing packet reaches
a sufficiently high value, the nonlinear damping becomes
important and this damping rapidly dissipates an energy
~ I¢ in the collapsing region. The effective nonlinear
damping can be estimated from

I 1
wdAZ %t

Tt &=

where T is the time between two consecutive collapse
events in a region of dimension ~ %32. In dimensional
estimatés we obtain T ~ (aV)~! for h > he.

Allowance for the collapse energy-dissipation mech- -
anism shows that the average amplitude of turbulence pul-

~ sations A becomes less than A; and the susceptibility "

does not decrease with increasing amplitude h, but reaches
a plateau which is at the same level as the maximum value
of n",

A promising method for experimental investigation of
strong turbulence of parametrically excited spin waves is
the measurement of the spectral density of the electro-
magnetic emission from a ferromagnet at frequencies
close to the pumping frequency!® wp- If h <hg, the col- -
lapse events are rare and the spectral density of the noise
(h?),, is close to the Gaussianwidth Vw — wy)? ~ vV (P/Ptn) — L.
If h > he considerable contribution to such emission is
made by the collapsing parts of the sample, where the
phase of a pair ¥{r, t) becomes "decoupled" from the
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pumping phase and begins to rotate rapidly in accordance
with ¢ «< (¢t — tc)'i/3 (see ref. 13). The moment of decou-
pling and the first fewturns of the phase can be seen in Fig.
2. The rapid rotation of the phase broadens considerably
the emission spectrum (hz)w, which can be used to study
the collapse events. Using the results given in ref. 13,
we can show that h?), « (@ -'wp)—"/ . The nonlinear
damping, which limits the amplitude in a collapse to A<
Amax, should lead to a cutoff of the noise emission at the
frequency

SA?,_-M o~

| omax — wp].

We are grateful to V. Zakharov, S. Starobinets, and
E. Kuznetsov for discussing this investigation and valuable
comments.

1)We used 2 BESM-6 computer at the Computing Center of the Academy of
Sciences of the USSR.

)The references to the equations in ref, 6 will be identified by I and the
notation, identical with that employed in I, will not be explained,
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