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An analysis is made of the nonlinear behavior of a pair of spin waves under parameaic excitation conditions 
It is shown that the  amplitude and phase of such a pair are randomly modulated in  the transverse direction. 
The average level of turbulence, the characteristic scale of modulation (which is much longer than the wave- 
lengrh), and the characteristic frequency of motion are determined. Deep transverse modulations of the pair 
are unstable i n  the case of formation of collapsible filaments i n  which the amplitude is very high and is l im-  
ited by nonlinear damping. Under these'conditions the energy is dissipated very rapidly. The situation is then 
similar to the  formation of foci i n  the  self-focusing of light in dielectrics and i t  provides anadditionalmech- 
anism which limits the amplitude of the parametrically excited spin waves It is shown that practically every 
amplitude maximum is involved i n  the  collapse process if the pumping amplitude h exceeds a certain critical 
value hc. The properties of such turbulence are analyzed and the possibilities of its experimental observation 
are considered. 

In parametric excitation of spin waves in ferromagnetsi 
the spin-wave amplitude is  frequently such that the behav- 
io r  of the system a s  a whole is governed by the interac- 
tion between spin waves. The physical phenomena which 
then ar ise  a r e  of great  variety and this is  why the paramet- 
r i c  excitation of spin waves has attracted so much atten- 
tion. The variety of these phenomena i s  responsible for 
the difficulties encountered in studies of such excitation. 
Several  worker^^-^ have considered a situation in which 
the parametric instability threshold isminimal for pairs 
of waves with vectors *k which occupy a line o r  fill a sur-  
face in the k space. The sum of the phases in a pair i s  a 
dynamic variable and the separate phases of the waves a r e  
quite random. This reduces the interaction Hamiltonian 
to  the form diagonal in respect of pairs of waves, i.e., the 
problem simplifies c o n s i d e r a b ~ ~ . ~  The effect associated 
with the correlation of the individual phases can be allowed 
for using the perturbation theory.5 

(6) for the amplitude A and the phase @ of the envelope of 
a pair. 

4: The simplest variant of the nonlinear behavior of 
such a system, which is its transition to a steady state 
other than a plane standing wave A = const and @ = const, 
is considered in ref. 7. States of this kind, called "do- 
mains" in ref. 7, a r e  periodic waves of the modulation of 
the amplitude and phase of a pair  A(r - Vt) and @(r  - Vt), 
which a r e  either at res t  o r  move a t  a constant velocity V. 
There i s  every reason to assume7 that these domains are  
unstable and have an increment which is usually larger 
than that of a plane wave. Therefore, the nonlinear be- 
havior of the system i s  essentially unstable. The average 
characteristics of a turbulent state of this kind a re  dis- 
cussed in Sec. 2. It i s  found that the state can be rep- 
resented by a stochastic modulation of the amplitude and 
phase of a pair of spin waves *ko and such modulation oc- 
curs mainly at right angles to ko. The depth of modula- 

The present paper is concerned with the situation in tion i s  of the order of unity and i t s  characteristic length 
which the excitation threshold is minimal for a single pair i s  much greater than the wavelength. The modulation pat- 
iko ,  for example, in the case of perpendicular pumping of tern  changes appreciably in a time interval of the order 
spin waves in cubic ferromagnets in the presence of a sec- of the reciprocal of the parametric. instability increment. 
ond-order instability (wk ' wp) o r  in the case of parallel 
pumping of uniaxial ferromagnets with the "easy planen 
anisotropy. The principal feature of the problem i s  the 
narrowness of the wave packets excited in the k space. 
This means that we cannot use a statistical description, 
a s  in ref. 3, but we can simplify the exact interaction 
Hamiltonian using the narrowness of the packets. This 
can be done by formulating the problem in terms of enve- 
lope waves, as  is  done in Sec. 1. The initial stage of the 
development of a parametric instability produces a mono- 
chromatic standing wave +ko, which is one of the steady- 
state solutions of Eq. (4) for the envelope waves. This 
state is practically always unstable in the presence of 
wave interactions of the type 

An interesting and important phenomenon, which is 
the collapse of the envelopes of a standing spin wave, oc- 
curs against the background of such turbulence. It i s  found 
that deep modulations do not a ~ p e r s e ,  but contract rapidly 
in such a way that the amplitude at the center increases 
strongly and i s  limited by the nonlinear damping to a level 
considerably higher than the average level of turbulence. 
The results of a computer study of this phenomenon a r e  
presented in Secs. 3 and 4.') The conditions for the col- 
lapse a re  determined, the dependence of the probability 
of collapse on the pumping amplitude i s  obtained, and the 
dissipation of energy in the collapse process i s  computed. 
The possibility of experimental observation of strong tur- 
bulence and collapse of spin waves is considered. 

2 ~ k ,  = wk,+z i- W&-=, 0& + O-ko = Ok,+i + o-k o-,. 1. EQUATION FOR SLOWLY 
VARYING AMPLITUDES 

In several important case the instability increment 
i s  positive only for the directions which a r e  almost per- If we use the canonical equation of motion (1.5) and 
pendicular to6 ko and it can be shown7 that the phases and the Hamiltonian (1.1)~) and assume that narrow wave pack- 
amplitudes of the envelope waves a r e  equal even in the e ts  
nonlinear stage. We shall use this to simplify the problem 
further in Sec. 2 and to obtain two-dimensional equations 
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are excited in the k space, we find - in the  usual manner8 - 
the equation for  the envelopes A(r) and B(r) of the Fourier 

A (n) and B : 

where 

[these a r e  the coefficients of the wave interaction Hamil- 
tonian (I.l)l. 

C - The system (1) has the trivial solution A (r) - B(r) - 
Ao, where 

and this solution corresponds to the excitation of a stand- 
ing spin wave *ko. It i s  shown in I that the solution (2) is  
practically always unstable in the case of growth of the 
modulation of the amplitudes and phases of the envelope 
waves : 

8A ( r ,  t )  a exp (ixr + v ( x )  t ) ,  

aB ( r ,  t )  a exp (ixr + v ( x )  t ) .  

The nature of the development of an instability depends 
strongly on the parameters of the Hamiltonian (1.1). With 
the exception of the case T > 0 and S > 0, which we shall 
not discuss further, the instability increment is maximal 
on the surface x I ko: 

and i t  decreases rapidly away from this surface. Conse- 
quently, important properties of the nonlinear stage of the 
development of an instability can be determined using two- 
dimensional equations, in which A and B depend only on the 
coordinates x and y, which are  orthogonal to V. The first  
and second rows in Eq. (3) correspond to perturbations of 
the type 6A(r, t)  =+6B(r,  t). If T > 0 and S <O, we see that 
the perturbation 6A = - 6B has a margin of stability and, 
a s  shown in ref. 7 ,  in this case we have A (r, t) = B(r, t) 
even in the nonlinear stage of motion. For simplicity we 
shall consider the case w n  > 0 because in this case a 
change in scale can be used to transform Eq. (3) to 

Here, we define w (ko) by the external instability condition3 

In this way we select the most stable standing wave 
for which, a s  shown in ref. 6, the positive-increment re- 
gion in the k space is limited (n << ko). 

As pointed out at the beginning of this paper, the sys- 
tem (4) has many steady-state periodic solutions of the 
A(r - Vt) type, but they a r e  u n s t a b ~ e . ~  The initial non- 
linear stage of the development of this instability is also 
considered in ref. 7 with special attention to the case in  
which the increment is anomalously small. This case is 
of interest because the nonlinear interaction begins to play 
an important role a t  very low amplitudes. It i s  found that 
this does not restrict  the growth of the initial perturbation 
but simply slows it down greatly. The amplitude then r ises  
a s  fi. In this way a packet of waves with n - no, no << ko, 
and An - no is formed in  the k space. This state is strong- 
ly turbulent and we shall consider it in the next section. 

2. AVERAGE CHARA CTERISTICS OF 
STRONG TURBULENCE 

We shall estimate first  the width of the excited re- 
gion in the k space for an arbitrary pumping level. It is 
shown in refs. 3 and 4 that in the case when Vk is maxi- 
mal a t  the point ko, a packet of parametrically excited 
waves relaxes to a standing monochromatic wave with 
k = ko if the individual phases of the waves can be re-  
garded a s  random. The phases a re  random if two waves 
in a packet become different in phase by an amount of the 
order of unity in  a time shorter than the characteristic 
nonlinear interaction time. This occurs in a packet with 

>> nZ0 = SA;/U[. Therefore, a packet with Ak >> x,, 
reduces in width to - no and its average amplitude relaxes 
to -Ao. However, a t  Ak << no such a packet is unstable 
and i s  characterized by the increment (3) in the presence 
of perturbation with n - no and, consequently, it expands 
to Ak - no - ( s A ~ w " ) ~ ' ~ .  We must s t ress  that throughout 
the turbulent motion region, the instability increment (3) 
is positive in a narrow range 3 ,V < SA; near the plane 
u V, i.e., the turbulence we a r e  discussing i s  almost 
two-dimensional: 

The average turbulence level A~ cannot differ greatly 
from A; defined by Eq. (2). In fact, a s  mentioned in Sec. 1, 
it is shown in I that a monochromatic plane wave i s  stable 
under the action of perturbations of relatively short  wave- 
lengths n - ko if the wave amplitude i s  Ao. Such an  insta- 
bility i s  also exhibited by a pair modulated with x << ko 
because if A; differs considerably from A ~ ,  short-wave- 
length modulations.are excited and this-is  in  conflict with 
the foregoing conclusion about the narrowness of the packet. 

Thus, the development of a plane-wave instability 
gives rise to a strong quasi-two-dimensional turbulence 
of the modulation waves A(r, t) with an average level 

a depthof modulation ofthe order of unity, a characteristic 
frequency hV - y, and a characteristic scale in-the coor- 
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dinate space rL - ~ x ~ j '  - ~ ~ ' ( w ~ / s A ~ ~ ) ' ' ~ .  In the wave ap- 
proach we can say that a dynamic domain structure with 
a coherence length of the order of the domain size, i.e., 
A ~ ' ( ~ " / s ) " ~ ,  is generated and this length varies consider- 
ably in space in a time (hV - Y)-'. 
3. COLLAPSE OF LARGE-AMPLITUDE WAVES 

In those parts of a domain structure where the ampli- 
tude A during turbulent motion is anomalously large, A >> 
Ao, we can ignore the damping and the pumping inthe equa- 
tions of motion because the system cannot exchange a sig- 
nificant amount of energy with the thermostat and the pump- 
ing source in the characteristic time of the problem, 
which i s  @A2)-'. 

In the Y = 0, h = 0 approximation the system of equa- 
tions (1) describes the transient behavior of a pair of 
waves in a conservative medium. The behavior of a sin- 
gle almost monochromatic wave in a nonlinear conserva- 
tive medium has been investigated very intensively by ex- 
perimental, theoretical, and computer approaches in view 
of the importance of this behavior in nonlinear optics,g 
plasma physics, and fluid dynamics.10 The phenomenon of 
self-focusing of light has been established1' and it has 
then been shown that a self-focused light beam is unstable'' 
and in some cases this instability results  in a collapse of 
the beam in  a finite time.13,'4 

We shall now show that similar phenomena occur 
also in the case of a pair of waves wliich we a r e  consider-. 
ing. Direct calculations demonstrate that the system (I), 
subject to the condition Y = h = 0, has the following inte- 
grals of motion: 

The total energy of the system i s  

the "numbern of waves of each kind is given by 

N ~ = I ~ A I ~ ~ ~ ,  N B = l l ~ ] 2 d r ;  

the total momentum of the system is 

and the integral I which occurs in the above equations is 

0" 
I = T  1 (IVA)2+IVB12)dr 

We shall show that the sign of this integral has a 
strong influence on the evolution of the system. We shall 
do this by considering the second derivative of an essen- 
tially positive quantity R, 

Direct calculations based on Eq. (I), in which the con- 
dition ( s A ~ ~ ) ~ / ~  << 1 allows us to ignore the second de- 
rivatives with respect to z, demonstrate (see ref. 14) that 

I 
d 2 ~ / d t 2  = 21 and hence 

R ( t )  = I t 2  + 2at + p, (7) 

where a! and ,@ a re  the constants of integration. We can 
see that if I < 0, the quantity R(t) become negative in a 
finite time, but this contradicts Eq. (6). Therefore, i t  
follows that the solution of the system (1) "collapsesn in 
a finite time, i.e., a singularity is observed. 

We shall consider this effect in greater detail. We 
shall employ the two-dimensional equation (4) - where 
A (x, y) = B(x, y), as  shown in Sec. 2 - and analyze, on the 
basis of computer calculations, the evolution of the initial 
axially symmetric distribution: 

which simulates a local increase in the amplitude arising 
spontaneously in the course of turbulent motion. Equation 
(4) can be integrated numerically using a method described 
in ref. 15. The distribution (8) corresponds to an average 
turbulence level Ao, defined by 

m 

A (r, 0) + A c '  whenr-t m, 1 [A (r, 0)-A,] rdr=O. 
0 

A natural choice for the characteristic length ao, in 
which A(r, 0) - A. vanishes, is the quarter of the wave- 
length of the envelope wave, corresponding to the maxi- 
mum instability increment of the original pair: 

Figures 1-3 give the results of a numerical experi- 
ment: the evolution of the amplitude I A  (0, t) 1 (Fig. 1) 
and of the phase (Fig. 2) a t  the center of a packet, and the 
amplitude distribution I A  (r, t) 1 a t  certain characteristic 
times (Fig. 3). We can see that there is a critical modula- 

Fig. 1. Evolution of the amplitude A(0, t) at the center of a packet for 
h v -  2 y ,  T = -S > 0. Curves 1. 2. and 3 correspond to k = 2, 3. and 3.5. 
respectively.  or the sake of clarity thevertical scale for curve 3 is increased 
by a factor of 20. 

Fig. 2 Evolution of the phase $(0, t) at the center of a packet for hV-2 y. 
T = - S > 0. Curves 1 -3  have the same meaning as in Fig. 1. 



F i g  3. Distribution A(r, t), for hV - 
27, T = - S > 0, k = 3.5. Curves 1, 2, 
and 3 correspond to yt = 0.05, 0.125, 
and 0.2, respectively; a = 0 . 8 m .  

tion depth kc such that the packet collapses in a finite 
time if k > kc and this collapse is accompanied by a r ise  
of the amplitude a t  the center of the packet to infinity. 
The critical values of k a re  listed in Table 1. 

We can see that if hV - Y << Y the critical amplitude 
i s  kc >> 1. In order to understand this point we note that 
the phase $(r, t )  near the focus r = 0 of a collapsing packet 
increases monotonically. This has been shown analytical- 
ly in ref. 13 and it  i s  quite clear from Fig.* 2 in the range 
where Y t  > 0.2. The rotation of the phase of the packet 
relative to the phase of the pumping source suppresses 
the energy flux in the vicinity of the focus and, therefore, 
the collapse occurs only if S A ~  is at least of the order  of 
Y, which exceeds considerably the average turbulence lev- 
e l  A: oc,(hv2 - y 2 ) ' I 2  in the range hV - y << y. This result 
(kc >> 1 for kV - Y << Y) depends weakly on the phase of 
the initial distribution. For  example, if we vary the phase 
of the initial distribution, i.e., if we assume that k in Eq. 
(8) i s  complex, we find that lkcl varies from kc = 22 to kc= 
25 for hV - Y = 0.001y. 

4. SELF-FOCUSING AMPLITUDE 
LIMITATION ME CHANISM 

As pointed out earlier,  the depth of modulation of the 
amplitude in turbulent motion i s  of the order of unity and, 
therefore, the probability of formation of. regions with 
amplitudes exceeding greatly A. i s  exponentially small. 
This means (Table 1) that for a small excess (hV - Y < Y) 
hardly any collapsing regions a r e  formed. It i s  clear 
from Fig. 1 that the modulations of amplitude 1 : k <kc 
gradually disperse. If h i s  increased, the critical depth 
of modulation kc decreases and there is a characteristic 
amplitude hc for which kc - 1. We note that the initial 
distribution (8) is, to a great extent, quite arbitrary and, 
therefore, we shall understand the amplitude hc to  be that 
value of the pumping amplitude above which practically 
any region with a characteristic dimension l/xo is cap- 
tured in the course of collapse. It is evident from Fig, 4 

TABLE 1. Dependence of Critical Initial Amplitude kc on 
Excess over Threshold: kl < kc < k, (for k = kl the packet 

F i g  4. Evolution of A(0. t) a t  the center of a packet for hV-By, T = -S. 

still spreads, whereas for k 7 i t  collapses) 

h v , ~  - i ( k, I k? 11 h v ! ~  - 1 1 . ki I k, 

(hV =4y) that for a packet which initially has a smallvalue 
of k < 1, the parametric instability mechanism increases 
the amplitude in the central region (characteristic incre- 
ment of the order of hV) to values exceeding unity and this 
is followed by a rapid collapse. It means that if h > he, 
the nonlinearity not only does not stop the development of 
the instability but, quite the opposite, accelerates the 
growth and collapse of a packet. 

We shall now consider the phenomena which occur if 
h > he. Obviously, in a study of the evolution of a collaps- 
ing packet we can ignore the influence of pumping and 
damping. Equation (4) then changes to a nonlinear parabolic 
expression, whose solutions have been studied in great 
detail in connection with the self-focusing of light. As 
shown in ref. 12,the amplitude a t  the center of a collaps- 
ing packet rises rapidly with time: A(0, t) = (t - 
The radius of a collapsing filament decreases, so that a 
definite amount of energy i s  captured: 

If the wave amplitude in a collapsing packet reaches 
a sufficiently high value, the nonlinear damping becomes 
important and this damping rapidly dissipates an energy - Ic in the collapsing region. The effective nonlinear 
damping can be'estimated from 

1 
2 
3 

24 

I L . 5  
3 .5  

10-3 
10-2 
10-1 
0.4 

where 7 i s  the time between two consecutive collapse 
events in a region of dimension - no2. In dimensional 
estimatks we obtain T - (hv)-' for h > hc. 

23 
10.5 
2.4 
3.4 

Allowance for the collapse energy-dissipation mech- . 
anism shows that the average amplitude of turbulence pul- 
sations A becomes less than A. and the susceptibility xW 
does not decrease with increasing amplitude h, but reaches 
a plateau which is at  the same level a s  the maximum value 
of nw. 

3 
2.6 
- 

A promising method for experimental investigation of 
strong turbulence of parametrically excited spin waves is 
the measurement of the spectral density of the electro- 
magnetic emission from a ferromagnet at frequencies 
close to the pumping frequencyt6 up. If h < he, the col- . 
lapse events a r e  ra re  and the spectral density of the noise 

(h2), i s  close to the ~aussianwidth - ?'I' (P/Pth) - 1. 
If h > hc considerable contribution to s u c i  emission i s  
made by the collapsing parts of the sample, where the 
phase of a pair $G, t )  becomes "decoupled" from the 

3.1 
2.7 
0.5 
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pumping phase and begins to rotate rapidly in accordance 
with $ (t - tC)-'I3 (see ref. 13). The moment of decou- 
plingand the first  few turns of the phase can be seen in Fig-. 
2 .  The rapid rotation of the phase broadens considerably 
the emission spectrum (h2),, which can be used to study 
the collapse events. Using the results given in ref. 13, 
we can show that (h2), a (u - w ~ ) - ~ / ~ .  The nonlinear 
damping, which limits the amplitude in a collapse to A < 
A,,, should lead to a cutoff of the noise emission a t  the 
frequency 

We a r e  grateful to V. Zakharov, 9. Starobinets, and 
E. Kuznetsov for discussing this investigation and valuable 
comments. 
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