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In the Direct Interaction Approximation [1]} equations have been formulated, which completely take into account
the transfer effect and have a precise solution in the form of the Kolmogorov spectrum

An important place in the statistical theory of hy-
drodynamic turbulence comes to the self-consistent
equations, formulated by Kraichnan [1], which take
into account interaction of velocity fluctuations in
first order — the so called Direct Interaction Approxi-
mation (DIA). DIA equations describe reasonably well
the homogeneous turbulence within the energy contain-
ing range of the wavenumber k. However, within the
inertial wavenumber interval this approximation over-
states the role of interaction with long-wave fluctua-
tions [2], which is reduced to a simple transfer of
some vortices by others. Thus the energy spectrum is
I, ~ k=712 [1] in contradiction with experiment. An
approximate scheme of turbulence description in
Lagrangian variables without these difficulties is sug-
gested in subsequent works of Kraichnan [3]. How-
ever, the degree of its precision is unclear [4].

In the present work the equations are formulated
with the help of the Wyld diagram technique [5]
which exactly take into account the kinematic transfer
effect and dynamic interaction in the DIA approxima-
tion. It is shown that these equations have a scale-in-
variant solution with Kolmogorov indices 7, ~ k—11/3
[6].

Let us consider ideal incompressible hydrodynamics
equations for a velocity vy
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where the vertex I' is a homogeneous function of the
first order in k; and satisfies the Jacoby identity, expres-
sing energy conservation [7]:
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In the case of homogeneous isotropic turbulence it fol-

lows from eq. (1) that
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This equation describes the evolution of the energy
spectral density I; . One of the regular methods of its
investigation in the stationary case is the Wyld diagram
technique [4] which allows to express a triple correla-
tor Ixk, k, as a series in powers of /3, and the Green
function G, representing a linear response of the sys-
tem.

The diagram series for I, and G, contain the in-
frared divergencies related to the kinematic transfer ef-
fect of small-scale vortices by large ones. The differ-
ence between their scales allows to extract a “weaker”
dynamic vortex interaction. For this purpose, follow-
ing the work of one of the authors [8], we summarize
the diagram series, taking into account the first order
in the dynamic interaction and transfer effect accurate-
ly. The results of such transformation can be repre-
sented as follows:
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Here (...), means averaging over the turbulent velocity
ensemble u(r, #) at an arbitrary point 7, ¢ with the help
of the Wyld procedure, and ¢ = (k, w).

In such a formulation of the statistical hydrodynam-
ics equations their Galilean invariance becomes evident.
Egs. (4)—(6) represent a better DIA; unlike the
Kraichnan equations [1] they account for the kinemat-
ic transfer effect in all orders. The integrals in eq. (6)
converge and thus the dynamic vortex interaction ap-
pears to be local, that is, only the vortices of the same
scale interact.

Let us find solution of egs. (4)—(6) in a scale-invar-
iant form

G, = (1/kS)g(w/kS), T, = (1KS*P) flwfks).

The first relation is a scaling relation, as follows from
eqs. (4) and (5): 2s + p = 5. One more relation be-
tween the s and p indices can be obtained by solving
the stationary eq. (3). With the help of egs. (4)—(6) it
can be reduced to
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Note that this equation is analogous to the station-
ary kinetic equation for weak turbulence [3]. Its sim-
plest solution due to eq. (2), 1 =(T/m) Im G , corre-
sponds to thermodynamic equlhbrxum To fmd anoth-
er solution, i.e. a scale-invariant one, corresponding to
a constant energy flow, one can perform a conformal
transformation [9] in the second term of eq. (7), a
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generalization of the Zakharov transformation [10]:

k=k"(k/k"y,  ky; =k'(K/K"), ko = k(K/K"),

w=w" kK",  wy = kK", wy = wk/k").

The third term is transformed in the same way by
the change ¢ = ¢. As a result the integrand becomes:
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where x =8 — s — 2p. Due to identity (2) it vanishes
when s + 2p = 8. From this and the scaling relation it

follows that s =2/3 and p = 11/3.
Thus the system of eqgs. (4)—(6) has a scale-invariant
solution with Kolmogorov values for the indices.
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