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Summaly 
The instabilities which precede the transition to chaotic flow 
in long Couette apparatus are investigated. The experimental 
data from three space points are analysed in terms of qualita- 
tive theory of differential equations. Within the experimental 
resolution the attractors were found which can be represented 
as a direct product of l1fastW one-dimensional torus correspon- 
ding to azimuthal waves and llslowll two-dimensional toms cor- 
responding to small interaction between the adjacent waves. 
Phase trajectories on the observed slow tori had rational val- 
ues (13/31 and 3/7) of rotation number. The existence of these 
attractors has been predicted by simulation within the frame 
of phenomenological model for weakly interacting azimuthal 
waves. 

In this report we present some results of study of laminar- 
turbulent transition in circular Couette flow with the outer 
cylinder at rest. 

Experiment 

Our experimental cell has radius ratio 1.57 (diameter of the 
inner cylinder Di=35 nun) and height-to-gap ratio 28. The Rey- 
nolds number (Re=Vl*Di*(Do-Di)/4V where V? is an angular speed 
of inner cylinder, V is the viscosity of fluid, Do is the di- 
ameter of outer cylinder) was kept constant to within 0.015% 
during a few hours required for the flow to turn to steady 
state and for data acquisition. We have measured local hydro- 
dynamic friction on the surface of outer cylinder by means of 
ion-current technique and then recorded files of experimental 
data in computer for later analysis. 

With the increase in Reynolds number, the flow develops through 
the following dynamical regimes. 
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bifurcation from a fixed point to a limit cycle (or a one- 
dimensional torus TI). 

4. At R -1.02 the limit cycle looses its stability. According 3 - 
to Arnold's classification [3]  the result of this bifurcation 
aepends on where the eigenvalues L of ~oincar; map linearisa- 
tion intersect the unit circle at R=R3.1t may be simple split- 

ting of limit cycle when L = 1, or Feigenbaum's cascade of 
doublings when L = -1, or origin of two-dimensional torus if 

L is a complex conjugated pair. In our case two-periodic mo- 
tion originates resulting in slow (3'2 = 0.009 Hz) modulation 

of traveling waves. The consideration of quasi-periodic caae 
nieets with additional difficulties connected with the possible 

origin of resonant trajectories on torus. Although the measure 

of resonant cases in parametrical space tends to zero at in- 
finitely small supercriticality, at a finite supercriticality 
the resonances and associated heteroclinic processes can play 

a decisive role [4] . Turning to our experimental situation, 
it should be noted that a question about resonant properties 

of this torus looses its meaning due to a great ratio of fun- 
damental frequencies: Pl/F2=200. To simplify the study of the 
next bifurcations we have obtained the 

envelopes of main frequency of signals 
from the three probes. This procedure 
corresponds to the averaging of Poin- 
car; maps along the fast limit cycle 
and gives new, vslowv variables. Such 

a transformation reduces our two-di- 

mensional torus to a cycle with the Fig.2. Limit cycle 
frequency F2=0.009 Hz (Fig. 2). At in vsloww variables 

R -1.027 this cycle looses its sta- 4 - 
bility. During the time interval of the order of 1000s each 
signal taken separately seems to be chaotic. But the projec- 
tion of phase trajectory on the plane in the space of measuring 
variables plotted during more than 10 000 s develops singulari- 

ties which are typical of torus projection onto a plane (Fig. 
3a). In particular, rotating this plane in three-dimensional 
space we may choose proper coordinates in which this attractor 

has a hole. 



1. As it was shown before [I] , at Re=75 the Taylor vortices 
fill the gap from the end of annulus. Since the apparatus has 
fixed end plates, this process is not a bifurcation in the 

strict sense [2 ] . The primary flow contains 14 pairs of vor- 
tices. In order to investigate time-dependent regimes a column 
of 100 electro-chemical probes was used but orily signals from 

the three probes placed near the outward jets of neighbouring 
pairs of vortices were analysed, 

2. ~t Re1=1030 the first bifurcation occurs developing the 
traveling azimuthal waves which produce the fast oscillations 
(F1=1.6 Hz) of hydrodynamic variables in laboratory frame of 

reference. The waves arise in all Taylor vortices simultane- 

ously and their magnitude Grows gradually in accordance with 
the Landau law. 

3. The second instability at R2 = Re2/Re7 = 1.014 leads to bi- 
furcation of Reynolds-number dependence of wave amplitudes. 
Figure 1 presents the results of some experimental runs in 
neighbourhood of R2. 
This effect may be associated 

with existence of two stable 

space structures of different 
reflection symmetry about mid- 
plane. At R<R2 the amplitude 
distribution is symmetrical rel- 

ative to midplane but at R>R2 
the distribution has a strong 
antisymmetrical component. .. I I I 1  

R 1 1040 R2 1060 
Further analysis of three-dimen- 
sional experimental information Fig.7, Bifurcation of wave 

is based on the statement that mplitude dependence vs" Re 

any set of physically measured 
quantities gives a projection of hydrodynamical phase space 
onto the space of our measuring variables. This projection for 

experimental case is generic and therefore saves all proper- 

ties of trajectories of real hydrodynamical flow. In terms of 

phase variables the first bifurcation corresponds to the Hopf 



(a) (b) (C 1 
Fig.3. Projection (a), Poincar; section (b) and angle map (c) 

for torus with rotation number 13/31 

~oincar; section of this attractor is shown in Fig. 3b that 

gives an evidence that the motion in slow variables occupies 
a surface of 2-torus. Consequently, with account of fast mo- 

tion, the flow under study has an attractor on 3-torus. If we 
construct the period-one angle map 8(n+l )=f (8(n) ) (Fig. 3c), 
it becomes clear that the mapping of torus meridian into it- 

self is a single-valued invertible function. Any integer power 
of this function exhibits the same character but there is a 
surprising feature that all experimental points occupy a di- 
agonal of square if this power is equal to 31. It means that 
the phase trajectory is locked after 31 circuits of the slow 
2-toms and repeats all its intricate bends. Consequently, tl$e 
observed torus is a resonant one. At that time the meridian 

of torus is circuited 13 times yielding the rotation number 

13/31. 

Upon further increases of Re, the attractor in slow variables 
persists its toroidal form but the rotation number is varied 
passing into the region of stronger resonances. At R~1.030 

we have observed the resonance 3/7 (Pig. 4a) that differs from 
the previous value only by 2.5%. In figures 4b and 4c the daQa 
or Poincar; section, angle map and its seventh power are pres- 

ented for this case. The finite thickness of trajectory rope 

is caused mainly by the transitional effect. The section of 

the rope has a form of line with a small curvature and its rel- 
ative transverse size varies from 3 to 10 for different sec- 



fions along the rope. If R exceeds 1.035, the resonant torus 
is destroyed. 

Fig.4. Toms with rotation number 3/7 

Comparison with Theorz 

In our previous paper [ I ]  the model of weakly interacted azi- 
muthal waves was proposed to describe the complicated rear- 
rangements of circular Couette flow during the transition to 
turbulence. In this model the pulsational component of velo- 

city field has the form: 

and the complex llslowtl amplitudes An are governed by the fol- 
lowing system of ordinary differential equations: 

Here N is the number of vortex pairs, Q=T/q, B=b/a, G=g/a are 
some phenomenological coefficients. Only G has significant det- 
pendence on supercriticity Re - Rel but the others can be 
treated as constants in actual range of Re numbers. Under a 

proper choice of these coefficients (B=1.25, Q=10) the equa- 
tion (2) gives a correct qualitative description of the observ- 

ed sequence of bifurcations, Moreover, the bifurcation of am- 
plitude distribution smetrsr of azimuthal waves was founded 



firstly in computer simulation at G = 0.02 and only more at- 

tentive experiments shoved a reality of this phenomenon. The 
existence of two-dimensional torus (which appears at G=0.025) 
also was predicted at first by model simulation. We also have 

verified the main model supposition that wavy modes in Taylor 
vortices are grouped into pairs with weak interaction between 

themselves and have founded that wavy motion in vortex pair is 
really strongly correlated when R <  1.05. At larger R the high- 
er nonlinear terms must be taken into account in the model, 
These are only the arguments for the proposed model (2) but 

not a direct demonstration of its validity. The more reliable 
verification of this model is to restore its coefficients from 

experimental data by statistical method. This is the purpose 
of our future work. 
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