
@ Pergarnon 

I  to\, \ , , I t r f w \  A t r o c ~ u l ~  \ '<>I  5 .  No 10. pp. Ih55-lX6Y. I995 
( opyrlght 0 1995 El ,c \~cr  Sciencr Ltd 

Prlnted In Gre.~t Brltarn 411 rightr rcrervcd 
0961)-0174/q5$V.50 + (X) 

Isotropic and Anisotropic Turbulence in Clebsch Variables 

GREGOR) FALKOVICH" and \. ICTOR 5.  L'VOV* 

Phcqlcs IlepL~rtment bc17mann Irl\t~tl~rt. ot \clence Kehobot 76100. Israel 

AbstractThree-d~mens~onal  t~~rbulence  of ~ncompre \ \~hlc  t l u ~ d  I\  described by using Clebsch 
canonical var~ablr \ .  Thls re\eal\ the fam~lie\ ot new local integrals of motion so that there are 
additional cascade spectra heside\ the energy cascade. A weakly anisotropic spectrum of developed 
turbulence is \hewn to he as universal a\ isotropic Kolmogorov spectrum. The correlation functions 
of three-dimensional incompressiblc turbulencc approach their   so tropic values in the inertial interval 
\o that the share taken hy the anisotropic parts of telocrty correlators decrease with the wavenumber 
as k - -  '. wh~ch sat~sfactorily fits the exper~ment;il data. The complementarity of the turbulence 
de'rcription in Cleh\ch and velocity variable5 I\  demon\tr;rtc.tl. 

1 .  INTRODUCTION 

The peculiarity of incompre5sible fluid turbulencc is the existence of different motion 
invariants. Energy conservation gives the Kolmogorov spectrum with constant energy flux 
[I-51 and the respective symmetry of the equation makes it possible to establish some 
exact (Kolmogorov) relation for the triple velocitj correlation function (flux constancy -see 
Section 3 below). In addition. helicity conservation 161 allows one to find the spectrum of 
gyrotropic turbulence [ 7 ]  (Section 4 ) .  

Here we discuss additional integrals of motion and respective cascade spectra: action 
cascade of isotropic turbulence and momentum cascade in weakly anisotropic turbulence. 
The main subject of this paper is turbulence approach to isotropy that is the behaviour of 
nonisotropic perturbations of the Koln~ogoro\ spectrum. This has been the subject of much 
theoretical and experimental work. Besides the phenomenological [8] and numerical 
approaches [9]. the only analytical result i \  that b! Leslie [lo] for the particular case of 
mean flow with constant shear. Meanwhile. the approach of three-dimensional turbulence 
to  isotropy is governcd hh a la& as universal s.i Kolmogorov spectrum itself. This law 
satisfactorily fits the experimental data summarized in [ I  I ] .  An exact relation similar to the 
Kolmogoro\- one can be pro\,ed for an anisotropic part of the correlation function (Section 
2.3). Previous analytical approaches de\,elopc.d in terms of velocity variables could not 
reach this solution. 4ince the respective integral of motion that governs approach to 
isotrop) cannot be t.xpresat.d \la the douhlc \,elr)cit! correlator. This integral has a simple 
form and physical meaning in the Clebsch \ariatilez. Going over to the canonical Clebsch 
variables (Section 2 . 1 )  makes the problem 01' hydrodynamic turbulence similar to a large 
variety of cases of wave turbulence, where thc problem of approach to (or departure from) 
isotropy was satisfactorily solved during the la41 two decades [12, 131. The key notion in 
solving this prohlern is the conwrvation of momentum. An anisotropic perturbation carries 
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some wake momentum conservation ot \\hich governs the behaviour of the perturbation. 
Incompressible fluid tlau has no momentum except that of the mean flow. Unlike waves, 
eddies cannot transport momentum with respect to the fluid. However, if we represent 
velocity through the Clebsch variables and introduce normal canonical amplitudes, then the 
auxiliary wave field does have a momentum. and the theory can be constructed by analogy 
with the general theor! of wave turbulence [ I ? ]  by using the method of conformal 
transformation\ (Section 1.3 ) . 

We write down the equation that expresses the time derivative of the simultaneous 
double correlation functions via the simultaneous fourth-order correlation function in the 
Clebsch variables. That allows us to a\oid the problem of infrared divergencies of integrals 
in the perturbation theory caused b! the \weeping interaction, which contributes only in 
the clhdependence of different-time propagators. The first angular harmonic of the 
simultaneous fourth-order correlation function (that is the momentum flux in the Clebsch 
kariables) could be thus found as an exact steady solution of the equation linearized with 
rcspect to small anisotropy (Section 2 . z ) .  Behaviour of the first angular harmonics of other 
correlation functions and of the Green's function can be found by using the knowledge of 
the fourth correlntor and by analysing diagrammatic perturbation series which is possible at 
an! order due to the weakness of the anisotropj. (Sections 2.4, 2.5). To find the behaviour 
of subseqiient angular harmonics. a linear approach is insufficient. though the smallness of 
the anisotropic parts of the correlators ~rlakes i t  possible to develop a regular calculation 
procedure (Section ' 7 . 5 ) .  The solution thus obtained can be then expressed in the velocity 
variables (Sectlon 2.6).  I t  is worth emphasizing that we cannot rigorously prove that the set 
of correlation functiorls thus found 15 'in cxact solution of the Euler equation (this is 
possible only for the first angular harmonic of the fourth correlation function). Neither can 
one prove the same for the isotropic Kolmogorov hpectrum. Our aim here is to develop the 
theor!. of anisotropic turbulence to the wme extent as that of isotropic turbulence: finding 
an exact relation tor tht- flux and analysing convergency of the perturbation expansion 
(localit!. check 1 .  

('lebsch var1al~le5 r c~ca l  also an acld~t~onal ~sotr-opic cascade of three-dimensional 
turbulence E ( X )  x X ! .  We discuss thi\ 4pectruni and its structural stability from different 
v~ewpoints in Section -3. In addition to obtaining a new universal spectrum in turbulence 
theory. this paper aims ;-it demonstrating the complementarity of turbulence descriptions in 
the velocity and C'lcbsch variable>. It is houri in Sections 3, 3 that some of the solutions 
can be obtained after a reduction of' the perturbation series in both representations, while 
some can be obtiiined only in one of them. The reason is that reduction of the series in 
tcrrns of the Eulerian vclocit! ma! hreah \yminetries which are preserved by a similar 
reduction in tern14 of C'let~sch variables and  \ice \.ersn. 

I.  WEAKLY ANISOIKOPIC STEADY SPECTRUM 

In the present pdper u c  consider \pectrci of turbulence that are certainly nonequilibrium 
and hake tluxes ot d~tterent quantltles I t  I \  'i standard approach (that can be substantiated 
b, shoulng thdt there dre no ultrat~olet ci~vergences tor values In quest~on) to consider the 
Spectra In the ~ne r t~a l  ~ n t e r ~ a l  of si.'ile\ In the framework of Euler rather than Navier- 
Stoke\ equdtlon. u \ i n  v~\cou\ '14 d \Ink that I \  necessary for the whole picture with the 
tluxes to exl\t I h ~ i  nlecins that we , t ~ t .  talking onl! about such solut~ons of the Euler 
equatlon. thdt arc Iim~t\ ot the rt.\pectl\t. \c~lutron\ of the Navier-Stokes equatlon at v+ 0. 



Turbulence ~n C leh\ch \a r~able \  1857 

Then the Euler equation fur incompressible fluid [ l  1 . 141 is 

Here v ( x .  r )  is the (Eulerian) velocity field. 
By virtue of Kelvin's theorem. the velocity circulation around a fluid path is conserved. 

This allows us to represent the vorticity lines as an intersection of the level surfaces of two 
scalar functions A(x. t )  and p(x.  t )  [IS-171: rot v = [ O i .  Vp]. This is possible if the vorticity 
lines are not knotted, that is the helicity integral 

is identically equal to zero (61. Under such an assumption, one may represent equation (1) 
in a canonical Hamiltonian form [17-211 

The Hamiltonian N represents the k ~ n e t ~ c  energy expressed via the Clebsch canonical 
variables h(x. t )  and p(x.  r ) .  

The potential @(x, t )  is determined frorn the incompressibility condition. 
The general theory of turbulence in the Hamiltonian systems is developed in terms of 

normal canonical variables that reveal all the conservation laws governing turbulence 
cascade [ 131. 

Following [22. 27. 281 let us go over from the pair of the real variables A(x, r )  and ,u(x, t )  
to the complex ones a ( x .  r )  and a*(x. r ) .  \,Za(x, r )  = A(x. t )  + i,u(x, t ) .  In these normal 
variables equations (3. 4) .  after transition to k-representation. have the form 

if k ,  f k, .  otherwise ql,, = 0 in the reference system where mean flow is absent. In (6) 
a, = a ( k , .  t ) .  Fluid velocity in the k-representation is expressed as follows: 

It should be pointed out that the 'Hamiltonian of turbulence' (6) includes only the 
four-particle interaction Hamiltonian H = '%,. It has no two-particle term of the type 
X 2  - oaa* describing the noninteracting field. Therefore. the dimensionless interaction 
factor X,/X, is equal to infinity (or to Re with viscosity considered). It reflects the fact that 
turbulence is a many-point problem involving exceedingly strong interaction. 



The Euler equatlon ( 1 ) conserves k inet~c  energy (-1). momentum P = Jpv(x ,  r)d?x (which 
is zero in the reference system moving with the mean tlow), and helicity (2). Single-valued 
Clebsch bariables describe only flow\ without helicity. Turbulence with nonzero helicity will 
be discussed below in Section -1. The Hamiltonian H [that is the kinetic energy (4)] is 
evidently an integral of motion of the canonical equations (3). It is very important for our  
discussion that the very possibility of writing the Euler equation in the Hamiltonian form 
(5-7) gives us immediately two additional integrals of motion in addition to the energy 3Y. 

The first additional conserved value is the total .number3 of quasi-particles l ! a (k .  t))'d3k. 
Indeed, the Hamiltonian ( 6 )  contain5 two -operators of creation' a*a* and two -operators 
of annihilation' tr (I  of quasiparticles. So it  describes scattering processes 2- 2 that preserve 
number of quasiparticles at any act of interaction. For homogeneous turbulence, one  can 
introduce the double correlation function t ~ ( k .  r)O(k - k ' )  = ( a ( k .  t )a*(kl .  t ) )  so  that the 
number of waves per unit volume 

is an integral ot Inotlon. ,I \  can hc c,1411! secn from ( 5 ,  6). Dimension of N is 
energ! x ritne and u c  Lvill call i t  the action. 

The second integral of motion follou\ tl-on1 the spatial homogeneity of the problem 
under consideration 

It 14 the t o t d  molnentum ut the y u , ~ \ ~ p ' i ~ t ~ c l e \  ulth occupation numbers' n(k,  t ) .  
Conse r~a t lon  ot 11 tormc+ll) tollom\ trom the p~t 'sence ot the h-funct~on In (7) provided by 
5pnt1al h o m o g e n e ~ t ~  ot  the problem h o t c  th'tt thc \ e r >  poss~bllity of the en5emble of 
Cleb5ch quas~par t~c le \  h a b ~ n g  a nonzelo momentum 15 due to  the poss~bllity that 
t l(k) f T I ( - k )  These yu,is~pnrt~clt.s 'ile I I ~ L I \  41rti1ld1 to u ~ u a l  waces w h ~ c h  could have 
nonzero momentum u ~ t h  respect to '1 n i e d ~ u n ~  that 1s In le\t What 1s Important IS that the 
\ e loc~ t?  t ~ c l d  does not posse\\ th14 propel t \  I~ec,iuic ot the ~ d e n t l t j  o(k) = li*(-k), the 
double c o r ~ t ' l n t o ~  ot the \ e l o c ~ t \  t ~ e l d  I \  .tlu , I \  ebcn Ob\  ~ou\ ly .  th15 i d e n t ~ t j  follows from 
the tdct that 'in\ t l o m  ot an ~ n c o n ~ p r e \ s ~ b l c  t lu~d  14  completely deflned by the slngle real 
qunntlt? \(x r )  T h ~ s  lneiln\ the absence 4 ) t  L\,I\c 's  p iopngat~ng In an  lncompresslble fluid 
\lnce ,in! u, i \e 14 de \cr~bed bb t u o  real c,ir 1,11~lc\ (01 one complex variable) 

N'e d o  not knob bet uh'it the con\er\,+tlcin ot 'ictlon 'ind of momentum mean In term5 of 
\ e l o c ~ t ~ e s  N e ~ t h e r  c,ln u e  exprc\r these ~n teg r ,~ l \  through the veloc~ty fleld Probably they 
a le  reldtecl to the k e l \ ~ n  theorern \ \ h ~ c h  1s 1rnp11t.d In the Clebsch variables Nevertheless, 
we ‘lie golns to u\c thew nonunder4too1.l \\rnrnct11e4 to obtarn new rolut~on\  that can be 
e\pre\ied In term., ot  \ e l o c ~ t ~ t ' \  

Note thdt the Cleb\ch ~ ~ i r ~ ~ i b l e s  ,1rc cclur\,tlent to celocrtj bariables. but ~t 1s not 
one-to-one corre4pondence the g'iuge t~eedon l  ,illow\ for d~fferent  Clebsch f~e lds  cor- 
respond~ng to '4 \~ngle  \ e l o c ~ t \  tleld Thc ~ n t e g ~ ~ ~ l s  o t  ~ n o t ~ o n  In questlon surely can be  
formulated In \ e l o c ~ t \  ~ ~ i r l a h l e s ,  our  polnt 1 4  1h:it \ ~ ~ c t l  ,in Integral cannot be expressed via 
the double \ c l o c ~ t \  ~ o l ~ e l a t o r  Stuci\~ng t l i , i t  c'tuge trecdom 15 a compl~cated task whlch we 
\\ere not going to undert,lhe In t h ~ s  p'iptr Our  .llln In thl\ paper 1s to d e r n e  some new 
rejult ujlng ,i propel gauge. namcl! \uch th,~t the re\pect~ve stead) solutlon is scale- 
~nvarl'int ,tnd C C ) L I ~ C ~  be ~nterpre ted  'I\ c,tlr\Ing ionst'int flux of some Integral. The value of 
that ~ntesr,il 14 not gduge-~n \d r~dn t .  '~nci ~t thui  hCi\ no d~rec t  physical meanlng but helps to  
t~ncl ,I n cu  io lu t~on  I lo rco \e r  In 'inothi,~ cLirige th14 wlutlon IS not 5cale-~nbarlant. Still, 



the distribution in terms of velocities is the \ame for the whole family of Clebsch fields, so 
that it can be obtained by using the most convenient gauge. 

As was mentioned in Section 1. knowledge of the integrals of motion allows one to 
suggest phenomenologically the expressions for the respective correlation functions. Energy 
is the Hamiltonian in the Clebsch variables. so its density is expressed via the fourth-order 
correlator J,,,,. The energy flux can thus be expressed by the usual means [28] via the 
simultaneous six-order correlator Jl,;,i6. and by requiring the flux to be constant one can 
get the scaling exponent of 1"' which is jl, = - 19. So J'" x pk-19 with P being the energy 
flux. We designate J'"'(i,k,. . . .. k,,) = i ' .~ , I '" ' (k  ,. . . .. k,,). Assuming simple scaling y,, = 

An + B, we obtain y,, = ( I  l n  - 9)/3. The double correlator is thus n,(k) = P"%k-13i3 
which was first obtained in [271. The fourth correlator J:' x ~~;~k-"~" ives  the energy 
density E ( k )  r- P''k-= ' that can be easily recognized as the Kolmogorov 41 spectrum. 

One may argue that this way of obtaining the spectrum is not better than the analogous 
speculations in terms of velocities. However, further analysis of the anisotropic part of the 
spectrum is possible only in Clebsch cariables. where the momentum integral is present 
explicitly. 

If the pumping i x  nonisotropic then it generates momentum of the quasiparticles. Viscous 
damping should absorb both integrals. energy and momentum. If the interaction of eddies 
is local in k-space (see below). then there are two fluxes in the inertial interval of scales. 
According to the revised universality concept [ 3 ] .  the spectrum should be determined by 
the whole set of the fluxes of integrals of motion that flow at the same direction. We thus 
assume the spectrum in the inertial interval to have a universal form defined by two values 
of the fluxes. Note that in the anisotropic case the energy flux is not necessary parallel to 
k. so that it should be described by some tensor. For the scales of the order of the scale of 
anisotropic pumping. the angular dependence might be rather complicated. But since our 
additional integral of motion is a vector R .  then it is natural to believe that deep in the 
inertial interval the universal spectrum is axially symmetric around the direction of R .  Of 
course, this is true also for an axially symmetric pumping. From the dimensional analysis, 
the two-flux spectrum can thus be written as 

where the dimensionless ratio o f  thc tluxcs is = (R. k ) ~ ~ ~ , , k % ~ , / ~ k ' .  Defining the 
function f ( E )  for all ;" is beyond our current abilities (hitherto, the two-flux spectrum was 
explicitly found only for acoustic turbulence [ 3 0 ] ) .  We can, nevertheless, find the form of 
the stationary spectrum in a weakly anisotropic limit when 5 S 1. Expanding the function 
f(5)  at 5 1. we get a correction to the pair correlator in the form of the first angular 
harmonic 

This formula was first proposed bq- Kuznct\ov and L'vov [ i l l  using an analogy with wave 
turbulence. In the same way one can \\rite the corrections to the arbitrary simultaneous 
correlator: c>Ji.l % g. For example. the fourth-order correlation function is written as 
follows 

where I has the \,inle \ ~ d l ~ n y  propertie< , I \  I"' 'tnd 1s symmetric w ~ t h  respect to the last 
three argument\ 

In the next subsect~on, t h ~ \  can be \ho\&n tu be an e u c t  \teady solution of the linearized 
equation tor the correl'it~on tunct~on\ 



2 . 3 .  E,Y(Ic~ , s~u~io t~( i r \ ,  \oI~dtlot7 /Or , / i t - ~ r  i ~ t ~ , q ~ d l ( ~ r  /~urt?lotz~c 

Multiplying (5 )  I)! rr"(k. 1 )  and averaging. \ve obtain the equation 

S n ( k .  r )  
~ - -  - -. St ( k .  t ) ,  S t ( k .  1 )  = Im T A , , , J L l , 7 d ' k , d 3 k , d ~  -. 

J 1 ! 
that governs the time c\olutiun of the pail- correlator. Substituting J = JK + OJ, one  can 
show that (15) is zero for J ,  1271. T o  s h o ~  that the r .h.s .  of (15) is zero for bJ too,  we 
divide this integral into four identical parts. and then make in three of them the 
transformations that consist of the conformal dilatations invented independently by 
Kraichnan [32] and Zakharov 1.331 and rotations in k-space suggested by Kats and 
Kontorovich [12]. For the first term thi\ tr;tnsformation el looks as follows (here initial 
integration variable\ are temporarily denoted b! q , .  q 2  and q, so  that k + q ,  = q2  + q,) 

The operation t i ,  i j  determined b! t h ~ .  condition (>,k ,  = k. and it transforms the 
quadrangle k + k ,  - k ,  + kl from T; into :I similar quadrangle k + q ,  = q, + q,. The 
transformation thus relabels k! and k and dilates all arguments of T and iTJ with a factor 

A 7 A 

I. ,  = k i k , .  Similar transformations q ,  - (?>k:. q2  = (;:k,, q, = G z k l .  ( ~ , k ,  = k) .  q ,  = 
e 3 k 2 .  q, = e 3 k , .  q; = e f k ; .  ( c 3 k 3  = k )  ihoulcl be done in the second and third terms. The  
scattering amplitude ( 7 )  is a homogeneoui function with the index - 1 ,  i .e .  T(Ak,, hk2; 
Ak,. Ak,) = 1. T ( k  . k,: k3. k,). The corrt.ction to the fourth correlator (14) is also a 
homogeneous function with its index being ---3.5'3 - l /i = -12. The transformation Jaco- 
bian gives ;I," ,o in all the transformed term\ acquire factors A,'. Therefore, after the 
transformations. the equation ( 1 5 )  has the following form 

that I \  equ,tl to re lo  I>\ ~ ~ r t u e  ot the cktunct~on Iri I , ,  , l u t e  that transformat~ons l ~ k e  (16) 
Interchange the i c r o  nncl ~ n t ~ n ~ t !  of the Intcyrdtlon dom'l~n In the k-space Therefore, they 
are poss~ble for con\ergent ~ n t q r a l i  onl\ I n  'sectlon 2 5 belob we will show that ~ntegra l  
(15) converge5 h ~ t h  the correldtor (13)  I'hc perturhdtlon (13) 1s thus a stead} solution of 
the l ~ n e a r ~ z e d  problem Let us e m p h ~ \ 1 7 e  t l i , ~ t  thr\ ha\ been shown Independently of the 
torm of the funct~on 1 ,  ,, 

What I \  acces\~ble to euper~ment~i l  rn~,i \urement\  1s t e loc~ ty  (and ~ t s  correlatron 
funct~ons)  but not the correlation func t~on i  In the Clehsch Lar~ables. T o  obtain the law of 
turbulence approach to ~sotrop! In term\ ot tht. ~ e l o c ~ t j r  correlators, one  should know the 
behavlour of eLen 'lnguldr harmon~c, 1h1s t o l l o ~ . s  from the Identity o(k)  = u*(-k). 
Expressing. tor rn\t,incc. the double \ e l o c ~ t \  tor re ld t~on tunctron 

one can w e  that the t ~ ~ \ t  angul'ir h a r m o n ~ i  ot 0 1  y v e \  no c o n t r ~ b u t ~ o n  We thus ought to  
f ~ n d  the next. wcond. ha rmon~c  ot our u n ~ \ e ~ \ a l  \o lu t~on T h ~ s  cannot be done In the 
framework of the I ~ n e d r ~ r e d  'ipproach \lnct. b! mul t~p ly~ng ,  for Instance. two first 
harmon~cr  In the product ot tvlo second-ortfer corrcldtor\ one obtalns the second harmonic 
~n the fourth corre1'1tor 

Dlagrammat~c perturt~~tt lon 'ipproach sho~titi I~c' ~mplemented both to show that (13) can 
be a solutlon d\  W C I I  'I\ (13) .  , ~ n d  In older to t ~ n d  the behav~our  of the second angular 
harmonlci 



2.4. Perturbation thr~ory 

The natural scheme to develop perturbation approach for a nonequilibrium system with a 
strong interaction is the diagrammatic technique of the type first suggested by Wyld [36] for 
hydrodynamic turbulence. This technique was later generalized by Martin, Siggia and Rose 
[37] who demonstrated that it may be used for investigating the nonlinear dynamics of any 
condensed matter system. Then Zakharov and L'vov [27] extended the Wyld technique to 
the statistical description of hydrodynamics in the Clebsch variables. In fact, this technique 
is also a classical limit of the Keldysh technique [38] which is applicable to any physical 
system described by interacting Fermi and Bose fields. The detailed description of the 
technique can be found in [39]. 

The natural objects in the Wyld diagrammatic technique are the dressed propagators, 
which are the Green's function G ( k ,  o) and correlator n ( k ,  o).  The Green's function is 
defined as the average response of the Clebsch field a(x,  t )  to a vanishingly small external 
'force' f ( x ,  t )  which should be added to the r.h.s. of the equation of motion ( 5 ) .  In 
curepresentation 

As a consequence of the causality principle. the function G ( k ,  w )  has to be analytic in the 
upper half of to-plane. The correlator n ( k .  ( 1 ) )  is the second correlation function of the 
Clebsch field a(k, t ) .  In curepresentation 

Using the Wyld technique one may derive the system of equations for the dressed 
propagators [36,  271. known as the Dyson-Wyld equations: 

1 G(k. (11) = - --. 
(I) - C ( k .  to) 

n ( k ,  (0) = ( G ( k .  (o)"[@,,(k ,  t r ) )  + @ ( k ,  cu)]. 

In these equations @,,(k. (0) is the correlator of the external force concentrated in the 
energy-contained interval. The mass operators C ( k ,  to) and @ ( k ,  w) are the self-energy and 
intrinsic noise functions respectively. These are given by infinite series of one-particle 
irreducible diagrams: 

In these expressions Z,,, is a functional of rn vertices T ,  ( m  - 1) Green's functions 
G(k, .  (0,). and m correlators n(k , .  to,); a,,, is a functional of m vertices, ( m  + 1) cor- 
relators and m - 1 Green's functions. Analytical expressions for C2 and for a, have the 
form 

Here we used shorthand notations n, and G, which represent n(k,,  w,) and G(k , ,  w,). 
Any correlation function can be expressed through the propagators n and G. We are 



~nterested In 5ol~rng dn In\er\e problerti. u\lng our knowledge of the s~multaneous 
fourth-order correlator (14) we dre gang  to tlnd anlsotrop~c corrections to n and G. Then 
we shall f ~ n d  an! quantlt! ot Intere\t. for Instance. the k-dependencies of h~gher  angular 
harmonics 

The lowest-order contrtbut~on to the \rniultaneous fourth-order correlation function can 
be represented as follows 

Here indes LI mean\ (k .  (1)) .  means k, . , ! ) , .  rhls frrst nontrivial expression for J"' appears 
by using equations (23) for 2: and @. If we restricted ourselves to this term, this would be 
similar to a direct interaction approximation (401 for the Clebsch variables. We are going, 
however. to analyse the entire perturbatron series for J. A diagram of pth order contains p 
vertexes T and the appropriate number of t h e  propagators. 

Assum~ng \veal\ anl\otrop\ u e  expand tlic p~opdgdtor~  rn Legendre polynom~als PI: 

Here L is the energ! containing scale ;ind : ;ire the icaling exponents for dimensionless 
anisotropic corrections proportional to Pi. :,, = 0. 

Considering the different-time propagator4 G(k .  (1)) and n(k. o) one necessarily finds 
infrared divergencies of integrals even in the direct interaction approximation (23). The 
reason for this is the sweeping effect which. however. does not contribute to the results for 
the simultaneous correlator if the entire perturbation series is considered. The procedure of 
eliminating the sweeping in each order of perturbation theory is rather cumbersome, but is 
sometimes necessary 1281. In the isotropic case. the sweeping has been excluded in [29]. 
Fortunately in the problem of weak anisotropic corrections there is a way to avoid this 
difficulty. Let us wbstitute the expansions ( 2 5 )  into the Dyson-Wyld equations (21, 22). 
Thus we can see that :I are indeed the 5artiz for both n and G and that n,(k, w) and 
G l ( k .  to) should have the same scaling properties 21s tl(k. to) and G(k,  cu) respectively. 
What is the scaling csponent of the frcquenc) (11 is a different question: in the Eulerian 
approach to scales a i  k  because of the sueeping. whereas in the Lagrangian or quasi- 
Lagrangian approach (!) r- I\ ' due to a dynamic interaction of eddies. However, for our 
goal the only important thing is that the scaling exponents of the frequency are the same 
for all the terms in the expansions (75) 

Let us first coni~der the term\ with i = 1 .  u hich are 7- P,(cos H,)  = cos H k .  Substituting 

into equation (74).  one can see that in the lrnear approximation with respect to n, and GI ,  
the anisotropic corrections to the fourth-order correlation function have the form (14) with 
some analytical expression for if and only if :, = - 113. This is thus the justification of 
the formula (13) previously obtained from dimensional analysis. Note that corrections 
linear in cos H ,  to the fourth correlator have the form (14) because of symmetry. Therefore 
i t  is clear that n i  and G ,  do have this form in each order of perturbation theory (which 
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also can be directly proved by the simple calculation of powers at any order). The only 
difference between consideration of the whole series and the direct interaction approxima- 
tion (24) would be the form of the analytical expression for In Section 2.3 we proved 
that expression (14) is an exact solution of the linearized equation for any form of 11,234, 
providing the convergence of integrals in the equation (17). 

We thus come to the key point of a n  turbulence consideration, namely, to locality 
investigation. This is to be done without any approximations and closures. The direct 
interaction approximation for the fourth-order correlators (24) does provide the con- 
vergency. even when calculated in the Eulerian approach containing sweeping. In order to  
find asymptotic behaviour of the true fourth-order correlators and to prove the con- 
vergency in the whole series one can combine the quasi-Lagrangian approach for Clebsch 
variables [28] with the method of getting the asymptotics of correlators by sorting diagrams 
[34, 351. The main idea that enables one to find the asymptotics of any high-order 
correlator as some wavenumbers go to Lero is as follows: in the framework of Wyld 
diagram technique one can express any function in terms of series containing a pair 
correlator and Green function. If the scaling exponent of the pair correlator is positive 

> 0, then the main contribution stems from the terms containing the pair correlators of 
small wavenumbers (341. In our case. this gives the following asymptotics of the fourth 
correlator with two small wavenumbers h-. K , :  

where the factors K ,  k-, appear due to krrtexes adjacent to the pair correlators. This is the 
first term in the expansion on small K .  K ) .  Note that these asymptotics are not based on 
Gaussian-like coupling. Still. the statistics might be so degenerate that the first term in the 
expansion is cancelled. The locality criterion below will be sufficient (but not necessary) in 
this case. 

The first term in the asymptc?tical expansion of the vertex can be obtained from (7, 8): 
Thkl .kk  x ( K H . ~ )  and T L h , k k l  x (k  . min K .  ri  j )  where h-. K, << k. Substituting this together 
with (27) into (15). one can see that the infrared convergence is determined by the 
following integral (to be specific. h e  put - - -  K ~ ) :  

. l i  l Substituting here ~ I ( K , )  x K ,  and h n ( ~ ; )  x ( K ~ ) K - " '  one gets that the power counting 
for (28) gives zero. so that one may expect a logarithmic divergency. One can easily see, 
however, that this integral vanishes due to angle integration. Taking into account the next 
terms in the expansions, we find that the infrared contribution converges, being propor- 
tional to K. By the same means one can get the ultraviolet asymptotics at k ,  >> k: T k l  
and ~ J ( J )  k ; ' ~ + ~ ' ? - ~  - - k ,'. Ultraviolet contribution 1; k y4"d3 k ,  thus converges as a first 
power as well (such a coincidence for the law of decreasing nonlocal contributions is called 
counterbalanced locality [34]). Exactly the same asymptotics are obtained while analysing 
any diagram in the perturbation expansion. 

The above consideration is not a rigorous proof that the steady anisotropic corrections 
have the form (26). This is rather the basis of concluding that, if the solution analytic in 
parameters kL and Re exists, then it has the form (26). The diagrammatic approach cannot 
catch nonanalytic solutions if they exist. 

If one substitutes (26) into (22) and takes into account terms quadratic with respect to 
the anisotropic corrections, one obtains the exponent for the second angular harmonics: 
z 2  = -2/3. The relative part of the anisotropic perturbation corresponding to the second 
angular harmonic thus decreases with k faster than the first one. Subsequent harmonics can 



be shown to have :! = -1/3 so  they can be neglected in the inertial interval. Substituting 
then the first two terms of the propagator expansion into (26), and restricting ourselves to  
the terms linear with respect to the second harmonics and quadratic with respect to  the  first 
one.  we get the second angular harmonic of the fourth correlator in the following form 

7 :  

O.I,-l,  r k - P2(cos H, )C : l  ,:, + k >  .'P2(cos tj2)U2,134 
7 - + k ;   con 0: ) I  '; i2-l + k i -  'P2(cos 8,)UT,123. (29) 

Here L' is some unknown function of tour arguments that has the same scaling proper- 
ties as J?' and i \  symmetric with respect to the last three arguments as well as above 
function I .  

Let us emphasize that the second angular harmonic of hJ does not turn the collision 
integral (15) into zero. It is compensated h! the contribution from the pumping region that 
decays in the inertial interval by the same law ( k l - ) - ? ' .  T o  show this, one  should analyse 
convergency (i .e .  contributions from distant regions) for the second angular harmonic 
which can be done h y  the same way as for the first one.  One  can show that the 
contribution into ( 15) from the second harmonics decays as ( k L ) - 2 ' h n d  is compensated by 
the contribution of' the pumping region (411. Note that such a remarkable coincidence 
happens if the exponent of the isotropic \pci.trunl is c ~ a c t l y  equal to 5j3. 

S u b s t ~ t u t ~ n g  the \ecund harmonlc ot  the iourth-order corre la t~on funct~on (29) into the 
expression (18) for the double veloc~tb correlat~on tunc t~on ,  one  obtains the anisotropic 
part of the energ! d e n \ ~ t >  In k-space 

This should be the asymptotic form of the turbulence spectrum in the inertial interval for 
arbitrary anisotropic large-scale pumping. The same formula was obtained by Leslie [lo] 
(see also [42]) in the f r a m e ~ o r k  of the linearized direct interaction approximation for the 
special case of flow uith a constant shear.  The data from observations (summarized in [ l l ] )  
satisfactorily fits ( 3 0 ) .  which is thus the 14tlit~ersal law of' turbulence approach to isotropy. 
Indeed. the anisotropic part decrea\es ~ i t h  h faster than the isotropic spectrum, so  our  
formula is the justification of the isotrop! h~po thes i s  of Taylor [43]. Higher 2n-harmonics 
should decay with k faster (as  k-?" ' ) .  so ( 3 0 )  represents the main anisotropic part in the 
inertial interval. By the way. the presence of the law (-30) in the inertial interval means that 
the turbulent tlow actually has a two-tlus spectrum there [4]. However, the flux of the 
second integral ( that  is jkn,dk u,hich probably has kinematic rather than dynamic 
meaning) is hidden at sufficiently large X 

3. I % \  EHSE: CASCADE O F  31) ISOTROPIC TURBULENCE 

Besides the energ!. the Euler equation in the Hamiltonian form also preserves the action 
N = In,cfk. i . r .  .the total number of wave,'. Conservation of this integral follows from the 
very possibility of introducing Clebsch cariables. which is a consequence of Kelvin's 
theorem. The spectrum which carries the constant flux Q of the wave action was suggested 
by Zakharov and L.'vv\ [27] in the following form: 



This form also follows from dimensional consideration. Considering the equation of motion 
(15) for the isotropic spectrum and making transformation (16) we get the following 
expression : 

The homogeneity index jl, of the fourth-order correlation function is expressed via the 
index y 2  of n ( k )  in the following way: \,, = 2 y 2  -t d: since y ,  = 4 we have y ,  = -11. As 
one can see. the spectrum with a constant action flux is an exact solution as well as the 
Kolmogorov spectrum. Locality of this spectrum has been proven in [44]: an infrared 
contribution decreases as ( k l k , ) '  while an ultraviolet one decreases as k , / k .  Note that the 
kinetic equation written in Clebsch variables 1451 gives logarithmic divergence. which is an 
artefact of an uncontrollable approximation. 

After recalculation into thc energy densit!.. one has 

Note that the spectrum is k  ' independently of the space dimension d. For d = 3, it is 
possible to prove that our case corresponds to the usual four-wave one: energy flows 
towards small scales while the action N goes at the opposite direction. This can be done 
similarly to wave turbulence theory [I31 b! comparing turbulence spectra with equilibrium 
ones [4]. For example. the first-order approximation [4. 451 gives the action flux for power 
solutions nL k - '  as follows: 

Here W ( J .  j . ,)  i \  some positive function. J = ( k , / k ) " ' ,  y ,  = ( k , / k ) ' - "  and s = s / (5  - s ) .  
Therefore, sign Q = -signs(2s - 5 ) .  The flux changes sign for s ,  = 0 and s, = 512 which 
correspond to the equilibrium spectra E ( A )  k' and E 2 ( k )  x k7 that give equipartition of 
the energy and of the wave action respectively. This can be proved in any order of 
perturbation theory. For the case in yuestion. s = 4 and Q < 0. Therefore. if the spectrum 
(31) was stable. i t  would be realised for scales larger than that of the pump while the 
Kolmogorov-41 spectrum ( 1 I ]  extends towards smaller scales up to the viscous range. 

After recalculation of the behaviour of the \.elocity differencies Gbfv(1) = v(r + 1) - v(r), 
the formulas (31, 32) give the following waling: h [ l ( l )  r I" = const in the inertial interval 
[4]. Formally considered for any 1 (ahich presumes a pump with 1 = O),  the spectrum (31) 
thus corresponds to the velocity differences which do not turn into zero while I -+ 0. 
Velocity discontinuities can only be tangential due to incompressibility. Any tangential 
discontinuity is an exact solution of the Eiiler equation (for v i V u .  the nonlinear term is 
zero). And i t  is natural that a random 5et of such discontinuities (giving the spectrum (31) 
might also be a steady solution of the respective statistical equations. Moreover, this 
physical explanation of the solution (31) gILes an insight allowing us to predict (following 
[4)) that this spectrum considered for all 1 is ine\itably unstable as with any tangential 
discontinuity in the framework of the Euler equation. 

It would be interesting to find this Inbersc cascade experimentally. It is not surprising 
that it has not !et been found since one needs steady turbulence at the scales much larger 
than the pumping scale. Most experimental and natural set-ups violate the second condition 
while grid turbulence violate the first (steadiness). Indeed, an inverse cascade is formed in 
a decelerating way (time increases with a scale). so that such a cascade cannot be formed 
in a decaying turbulence. Most probably. ~t could be first obtained in numerics (if it exists 
at all). 
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Return~ng  to 'i mole r e n l ~ i t ~ c  plcture w ~ t h  .t smal l - \a le  Kolmogorov spectrum (giving 
hrl(1) x I' ' at I - 0 )  'tnd a large-scale spectrum (31). one can lmaglne large sheets with 
d~tferent  nonzero rnedn \ e l o c ~ t ~ e \  and \m,ill eddlek dr~stng at the boundar~es  of the sheets 
due  to the K e l ~ ~ n - H e l m h o l t z  rnstabll~t\ tclci~es glke the Kolmogorok cascade while the 
reg1on5 ~ ~ t h  Idrge-\cdlt' \ e l o c ~ t \  dlftertnie4 helng rdndomly distributed grve for small 
h = 1 I ( I  >> L )  r l ,  = I , i . ( \ ) d t  7 1 '  7 h ' u h ~ c h  correspond\ to the spectrum (32). 

l ' h ~ s  m ~ g h t  he houeker. that e \ e n  thta presence ot the small-scale Kolmogorov-41 
spectrum cannot \,ike the spectrum ( 3 2 )  trom b e ~ n g  unstdble T h ~ s  1s a nonisotrop~c per- 
turbdt~on ~h1c.h cdn p r o ~ l d e  I'irge-scalt ~ n \ t , i h ~ l ~ t \  of the spectrum (32). Indeed,  a steady 
correctton carrllng 'I eonst'int molllenturn flu\. ,iccordrng to dlmens~onal consideration 
looks '1s follou\ 

L1stng the s c ~ n ~ c  tcchn~quc .I\ In 5ectlc)n ; t)ne c,in shou that thls bti(k, R )  1s an exact 
ct'ttlonarq solut~on ot the c o l l ~ s ~ o n  1nteg1,tl. 11nr~1r1zt.d w ~ t h  reipect to a small dekiatlon from 
the spectrum (31) 50 ~t the momcntum ot thc nuxil~nrq nave  field flows towards small k ,  
then the \drIatlon ot the energ) \ P ~ C I ~ L I I T I  4houId gron qu~cklq ds k decreases. 

T h ~ s  tol-niula ~ r n p l ~ c \  thc \ t r u ~ t u r ~ i l  ~ n s t ~ t t , ~ l ~ t \  ot the 140trop1c spectrum (32) w ~ t h  respect to  
the ,ingul,rr modul'it~on ot 'I \1~1~111-\~dle ~ L I I I I ~  c \ e n  \\e:ikly anisotropic pump produces 
a strong]\ dnlsotrvplc l,i~gc-rcdle tu rbu lenc~~  such dn lnstdblllty was f ~ r s t  pred~cted by 
Falkok~ch [3] Thi\ prohdbl> expld~ns both the ,it~\encc of the spectrum (32) and the 
presence o t  \ub\tant~,tl I'irge-\c,~le non~ \o t rop \  111 the e \per~menta l  data 

Vote also thdt t h ~ ~  u\uCil F o u r ~ e r  tr'instorm I c l,~tlng corrclatron tunctlons ot the veloc~ty 

diverges logar~thn~~cal l !  lor- spcctriim (3-7 I 
Whether the spectl.uni ( 1 2 )  m ~ g h t  I>e ~ h \ ~ ~ - \ c . d  at the edge of dissipative interval [45] is, 

in our  opinion. a rather controversial and open yue\tion. 

1. ('O\lPI,E\lE\ I \HI'II O F  I I RBI I,L\( I. 1)b.SCKIPTION IR C1,EHSCH AND VELOCITY 
\ \HI \BI,ES 

The t ~ ' l d ~ t ~ o n , ~ l  .tpproLiih to the c ~ n a l \ t ~ i , t l  t l e \ ~ r ~ p t ~ o n  o t  t ~ ~ r b u l e n c e  [30, 361 15 based on 
the Euler equ,tt~on In the k-represent,ttioll 

( k q .  p ~ r  1 1  q)r ' ( 1  p)d 'qdi l )  + f ( t .  k )  (34) 

with an external ritndom ( ;a i~\ \ ian  force i F l ~ i 1 . c ~  the \.ertcx 

1s expressed tht-  tl,in\\el\c projector I' ( h )  - d l  - h , h, ,  h' 
Statlstlcal d e s c r ~ p t ~ o n  c'tn tit. prok~ded In tht, ( k .  (,)I-representat~on In terms ot the double 

correlation tunct~on F ,, ( k .  il))O(k - q )0(i1, - 1 i = ( r  , ( k .  co)rlJ(q. (0 ' ))  and the Green's 
u n c t ~ n  , ( ( 1 )  O h  - y 1 0  I - 0 ) - Oi ( h  ( 1 1 )  O f  (q .  ( J )  ) )  glclng the response of the 
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velocity to an external force f' (per unit mass). Here the angular brackets denote ensemble 
averaging. 

Probably the mostly powerful tool used hitherto is the Direct Interaction Approximation 
(DIA)  introduced by Kraichnan [40]. The collision integral governing the evolution of the 
double correlator F;,(k. to) has the following form in DIA: 

Further details and the equation for (; can be found in the monograph [lo] completely 
devoted to DIA.  

Being a finite closure of the initially infinite chain of equations, D I A  is an uncontrolled 
approximation. It preserves. nevertheless. \ome basic symmetries (though not the whole set 
as we show in this section) of the Euler equation. The most important one is Jakobi 
identity for the vertex 

that gnes  energ\ conservat~on 1 I,,(k. co)d h = 0 Therefore, the Kolmogorov spectrum 
carrylng d constdnt energ) flux 5hould be 'in exact statlonary solut~on In the framework of 
DIA 1.e ~t should mahe I ( k .  ro) dlsdppe'ir Let us now demonstrate this following [27]. 
Looking tor solut~on\ In the torm F,,(k. ( 1 ) )  = f:,k ' ' f(c111k') and G,,(k, o) = ~, ,k-*g(o/k")  
one can see that th15 1s posclble ~t 21  + i - 5 E ~ e c u t ~ n p  then In the second term of (36) a 
conformal tran5tormcitron srn~rldr to ( 1 (1) 

X - X ' k  A ' .  A ,  - h . A, = k"X/kV (38) 

and accord~ngl\ In the t h l ~ d  term ulth A  ++ k . ut. o b t a ~ n  the collision Integral in the 
factorized torm 

For the Kolmogoro~ ~ n d ~ c e i  t = 3 7 ,ind = 1 1  3. t h ~ \  rntegral turns into zero. We shall 
not duell upon thc problern ot dl\ergenc~e\ slnce the? can be completely swept away by 
pa\srng to Lagrange ~ ~ i r 1 a b l e 4  1361 or uslng the ~mprobed D I A  approxlmat~on [31]. 

Another integrdl ot rnotlon that can be expressed In terms of the double velocity 
correlator t i  the helrc~t\ H = I ( v  . rot \ )Or th'it chdrdcterlzes the 'knottedness' of the flow 
[h] (remember that the Clebxh karlablcs thus dehcrlbe only flow5 with zero helicity). For 
hornogeneou5 turbulence. the spectral dens~t! ot t h ~ \  Integral can be expressed in terms 
of the pseudoxalar qudnt~t! ( v  . rut \ ) = ' X 4 ( k  )dk such that the double correlator ac- 
quires the term F ::( h. r )  = rcl,,,(k, k ) A (  k .  I )  The t ~ m e  evolution of A ( k ,  t )  is defined by 
the came colli\lon Integral ( 3 6 )  u ~ t h  the vertev r,,, replaced by R,,/(k. bfk , ,  k2) = 

~c , , , , , , k , , ,~ , , ,~ (k .  k l  k ,  ) Helicltk con\er\ ,ltlon I \  pro\ lded by the ident~ty 

that m,ihe\ 11 po\\~blt* to tlnd an cxact \olutlon ot the l~near~zed  D I A  [7]. Looking for the 



solutlon in the torm oi the kolniogoro\ spectrum u ~ t h  the small pseudoscalar correction 

and maklng the s'ilnc contormal transtormatlon (.3X) u e  get s~milarly to (39) 

x 'O[(, ,l,l) h ) I  ,, ( k ,  j F,, ( r o  k ~f ( ( I ) .  k ~ ] } d ( t ) ( i t ~ ~ d ( ~ ~ d k d k ~ d k ~  (41) 

Here O[GTF; F] - 0 ( ,  I F F + ( ~ T h f  f - ( 1 1  F O F  dnd p = 1413 - 7 .  The statlonary solu- 
tlon correspond5 to -- 14 7 [7]  T h ~ s  \o lu t~on t ie\cr~be\ Kolmogorov turbulence with large 
energy flu\ and ini'ill hclic~t\  flu\ 

A6 ~t can be see11 from (34. 11) these \pt.ctr,~ exhdu5t nll universal power solutlons to be 
obtalned In the t ~ a m e u o r h  ot DIA B\ unl\ersal. *e mean solutlons whose scaling 
exponent doe\ not depend on the precise torm ot the cc)-dependenc~es. Indeed, one  can 
recdlculate the solutions ( q 2 )  u ~ t h  the ,Lctlon flux oht'lined In the preLlous sectlon for the 
double \ e l o c ~ t \  c o r ~ e l ~ t t o r  then iubstrtute them Into ( 7 9 )  and flnd the flrst bracket to  be 
nonzero ('ind to ti,i\e ~i t let in~te \ignl 51111 t h c ~ e  eulst\ a p o s s ~ b ~ h t y  that other factors 
(which hn\e  dlttrrent signs In dltterent rcelons ot k-\pace) can turn the collr\~on ~ntegra l  
Into Lero tor j p e c t r ~  \41th sc'tllng exponent\ \ \ depending on the to-dependenc~es. but 
thl\ wems  unl~hel \  

As  far the ue,ikl\ 'rnrsotlopli i p ~ c t r ~ ~ n i  ( 2 t ) )  1s concerned. ~t came\ the flux of 
momentum ot du\ll~'ir\ \ ~ L I L ~  tleld As well rl\ the 'ICIIOII  thl\ Integral of motion cannot be 
expre5sed n\ d 111ie~ir t~lnct1011 ot the d o ~ i l > l ~  \ e l o c ~ t \  correlator To show that this spectrum 
doe6 not \'lt~st\ t ~ n ~ t e  c lc)s i~~e In ternis ot \< loc i t~e i  one ctin wrlte d o u n  the linearized 
anisotropic D1.X 110 421 , ~ n d  tor the ycLorld ,~ngul'tr harmonic after the conformal 
transformdtion one hil\ (41 )  \ \ ~ t l i  the t114 t  s q ~ ~ ~ i r t '  t~ r r t~h t ' t  being replaced by 

T h ~ s  1s nonzero demonst1 , l t ~ n ~  'ig'1111 t h'lt not c\ t I \  exact colut~on found In Clebsch 
varldbles cnn he oht'41nt.d ,I\ 'I u n ~ \ e r \ , ~ l  \olutlon in the perturbatlon approach in terms of 
\eloclties The s'iniz c o n s ~ d e ~ a t ~ o n  c,in ht  done In an! ( t lnite)  order of per turbat~on theory. 
We  therefore ionclude thdt exact \t'it~un,ir\ solutions corresponding to motlon Integrals 
that are not 11ne~11 tunctlon4 ot the doublt \clocit\ iorrelator cannot be obtained by the 
traditionrtl p e ~ t u r h , ~ t ~ t ) n  d p p ~ o ~ i c h  111 1e11ns ot ~ i ~ o n l r n t s  ut the kelocity fleld. 

Small steady an~sotropic corrections ( I . ? .  30)  found analytically in the present paper solve 
the problem of structural stability of three-d~mensional turbulence spectra with respect to  
the pumping var ia t~on.  Note that by the slirne means the structural instability of the inverse 
energy cascade in two-dimensional turbulence u a s  recently predicted [4]. These solutions 
also provide a bahis k)r solving the generi~l stability problem of turbulence spectra in 
hydrodynamics. including thc temporal behaviour of perturbations. Such a steady correc- 
tion is called a neutrall!~ $table mode in stahilit! theory [13] and it defines the asymptotics 
of arbitrary perturbation either at k -4 ,)r at k -+ 0. By analogy with the stability theory 
of the spectra of uave turbulence 11.31 ant, ma\ \uggest also the following picture of the 



temporal evolution of any anisotropic perturbation arising in the inertial interval at some 
instant of time on top of the Kolmogorov spectrum; the first angular harmonic of the 
perturbation quickly (during a few turnover times) acquires the asymptotical form (30) at 
large wavenumbers. The left edge of the perturbation will move upscale (towards small k) 

7 .  

by the law k 7- f - ' .  
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