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Isotropic and Anisotropic Turbulence in Clebsch Variables
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Abstract — Three-dimensional turbulence of incompressible tluid s described by using Clebsch
canonical variables. This reveals the families of new local integrals of motion so that there are
additional cascade spectra besides the energy cascade. A weakly anisotropic spectrum of developed
turbulence is shown to be as universal as isotropic Kolmogorov spectrum. The correlation functions
of three-dimensional incompressibie turbulence approach their isotropic values in the inertial interval
so that the share taken by the anisotropic parts of velocity correlators decrease with the wavenumber
as K777, which satisfactorily fits the experimental data. The complementarity of the turbulence
description in Clebsch and velocity varnables is demonstrated.

1. INTRODUCTION

The peculiarity of incompressible fluid turbulence is the existence of different motion
invariants. Energy conservation gives the Kolmogorov spectrum with constant energy flux
[1-5] and the respective symmetry of the equation makes it possible to establish some
exact (Kolmogorov) relation for the triple velocity correlation function (flux constancy —see
Section 4 below). In addition, helicity conservation [6] allows one to find the spectrum of
gyrotropic turbulence {7] (Section 4),

Here we discuss additional integrals of motion and respective cascade spectra: action
cascade of isotropic turbulence and momentum cascade in weakly anisotropic turbulence.
The main subject of this paper is turbulence approach to isotropy that is the behaviour of
nonisotropic perturbations of the Kolmogorov spectrum. This has been the subject of much
theoretical and experimental work. Besides the phenomenological [8] and numerical
approaches [9]. the only analvtical result is that by Leslie [10] for the particular case of
mean flow with constant shear. Meanwhile. the approach of three-dimensional turbulence
to isotropy is governed by a law as universal as Kolmogorov spectrum itself. This law
satisfactorily fits the experimental data summarized in {11]. An exact relation similar to the
Kolmogorov one can be proved for an anisotropic part of the correlation function (Section
2.3). Previous analytical approaches developed in terms of velocity variables could not
reach this solution. since the respective integral of motion that governs approach to
isotropy cannot be expressed via the double velocity correlator. This integral has a simple
form and physical meaning in the Clebsch variables. Going over to the canonical Clebsch
variables (Section 2.1) makes the problem of hvdrodvnamic turbulence similar to a large
variety of cases of wave turbulence, where the problem of approach to (or departure from)
isotropy was satisfactorily solved during the last two decades [12, 13]. The key notion in
solving this problem is the conservation of momentum. An anisotropic perturbation carries

*On leave from lnstitute of Automation and Electrometry. Academy of Sciences of Russia. 630090, Novo-
sibirsk. Russia.

RN



IRS6 G FALKOVICH and V. S L'VOV

some wave momentum conservation of which governs the behaviour of the perturbation.
Incompressible fluid flow has no momentum except that of the mean flow. Unlike waves,
eddies cannot transport momentum with respect to the fluid. However, if we represent
velocity through the Clebsch variables and introduce normal canonical amplitudes, then the
auxiliary wave field does have a momentum. and the theory can be constructed by analogy
with the general theorv of wave turbulence [13] by using the method of conformal
transformations (Section 2.3).

We write down the equation that expresses the time derivative of the simultaneous
double correlation functions via the simultaneous fourth-order correlation function in the
Clebsch variables. That allows us to avoid the problem of infrared divergencies of integrals
in the perturbation theory caused by the sweeping interaction, which contributes only in
the «-dependence ot different-time propagators. The first angular harmonic of the
simultaneous fourth-order correlation tunction (that is the momentum flux in the Clebsch
variables) could be thus tound as an exact steady solution of the equation linearized with
respect to small anisotropy (Section 2.3). Behaviour of the first angular harmonics of other
correlation functions and of the Green's function can be found by using the knowledge of
the fourth correlator and by analysing diagrammatic perturbation series which is possible at
any order due to the weakness of the anisotropy (Sections 2.4, 2.5). To find the behaviour
of subsequent angular harmonics. a linear approach is insufficient, though the smallness of
the anisotropic parts of the correlators makes it possible to develop a regular calculation
procedure (Section 2.5). The solution thus obtained can be then expressed in the velocity
variables (Section 2.6). It is worth emphasizing that we cannot rigorously prove that the set
of correlation functions thus found is an cxact solution of the Euler equation (this is
possible only for the first angular harmonic of the fourth correlation function). Neither can
one prove the same for the isotropic Kolmogorov spectrum. Qur aim here is to develop the
theory of anisotropic turbulence to the same extent as that of isotropic turbulence: finding
an exact relation for the flux and analysing convergency of the perturbation expansion
(locahty check).

Clebsch variables reveal also an additional isotropic cascade of three-dimensional
turbulence £(Ak) = k' We discuss this spectrum and its structural stability from different
viewpoints in Section 3. In addition to obtaining a new universal spectrum in turbulence
theory, this paper aims at demonstrating the complementarity of turbulence descriptions in
the velocity and Clebsch variables. It is shown in Sections 3, 4 that some of the solutions
can be obtained after a reduction of the perturbation series in both representations, while
some can be obtained only in one ot them. The reason is that reduction of the series in
terms of the Eulerian velocity may break symmetries which are preserved by a similar
reduction in terms of Clebsch variables and vice versa.

2. WEAKLY ANISOTROPIC STEADY SPECTRUM

2.1, Clebsch canonical variables

In the present paper we consider spectra of turbulence that are certainly nonequilibrium
and have fluxes of different quantities. It is a standard approach (that can be substantiated
by showing that there are no ultraviolet divergences for values in question) to consider the
spectra in the incrtial interval of scales 1in the framework of Euler rather than Navier—
Stokes equation. using viscous as a sink that is necessary for the whole picture with the
fluxes to exist. This means that we are talking only about such solutions of the Euler
equatton, that arc limits of the respective solutions of the Navier—Stokes equation at v— 0,
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Then the Euler equation for incompressible fluid [11. 14] is

EALCILNIR SN (1)
ot
Here v(x. r) is the (Eulerian) velocity field.

By virtue of Kelvin’s theorem. the velocity circulation around a fluid path is conserved.
This allows us to represent the vorticity lines as an intersection of the level surfaces of two
scalar functions A(x. 7) and pu(x. t) [15-17]: rotv = [VA, Vul. This is possible if the vorticity
lines are not knotted. that is the helicity integral

H = V(v ‘rotv)dr (2)

is identically equal to zero [6]. Under such an assumption, one may represent equation (1)
in a canonical Hamiltonian form [17-21]

SMx. 1) _ o¥ Sux. 1) o

. : - (3)
3t ou(x. 1) dt OAMx, 1)

The Hamiltonian H represents the kinetic energy expressed via the Clebsch canonical
variables A(x. ¢) and u(x. 1),

#o=1 -d‘w’,\"iv(x. - v =AVu— Vo (4)

The potential ¢(x. 1) is determined from the incompressibility condition.

The general theory of turbulence in the Hamiltonian systems is developed in terms of
normal canonical variables that reveal all the conservation laws governing turbulence
cascade [13].

Following [22. 27. 28] let us go over from the pair of the real variables A(x, t) and u(x, )
to the complex ones a(x. 1) and a*(x. ). V2a(x,1) = Ax.1) + (X, ). In these normal
variables equations (3. 4). after transition to k-representation, have the form

Sa(k. 1) 0¥

oA O (5)
ct aa*(k. r)
W o= }J.T(kl. koo koo Ko)atatasa,dik, & kod kad ks, (6)
Tki. ko ki ky) = (wi- vy, ~ g wn)ok, + ks — ky — ky), @)
I (k| — k;
v, = ypk. k)= -»\jt(k, + k] - (k, — kl)(————zj s (8)
202r) 0 k; — kj

it k; #Kk,. otherwise y, =0 in the reference system where mean flow is absent. In (6)
a;,= a(k,. r). Fluid velocity in the k-representation is expressed as follows:

v(k. 1) = J'Wafa:o(k + Kk, — k)d*k,d k. (9)

It should be pointed out that the ‘Hamiltonian of turbulence’ (6) includes only the
four-particle interaction Hamiltonian % = %,. It has no two-particle term of the type
¥, ~ waa* describing the noninteracting field. Therefore. the dimensionless interaction
factor ¥,/%, is equal to infinity (or to Re with viscosity considered). It reflects the fact that
turbulence is a many-point problem involving exceedingly strong interaction.
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2.2, Conservation laws and phenomenology of spectra

The Euler equation (1) conserves kinetic energy (4). momentum P = Jpv(x, 1)d*x (which
is zero in the reference system moving with the mean flow). and helicity (2). Single-valued
Clebsch variables describe only flows without helicity. Turbulence with nonzero helicity will
be discussed below in Section 4. The Hamiltonian # [that is the kinetic energy (4)] is
evidently an integral of motion of the canonical equations (3). It is very important for our
discussion that the very possibility of writing the Euler equation in the Hamiltonian form
(5-7) gives us immediately two additional integrals of motion in addition to the energy .

The first additional conserved value is the total ‘number’ of quasi-particles j]a(k, NPdik.
Indeed, the Hamiltonian (6) contains two “operators of creation” a*a* and two “operators
of annihilation” « a of quasiparticles. So it describes scattering processes 2 — 2 that preserve
number of quasiparticles at any act of interaction. For homogeneous turbulence, one can
introduce the double correlation function n(k. 1)o(k — k') = (a(k, t)a*(k', t)) so that the
number of waves per unit volume

\ =ik nd*k (10)

is an integral of motion. as can be casily seen from (5, 6). Dimension of N is
energy X time and we will call 1t the action.

The second integral of motion follows trom the spatial homogeneity of the problem
under consideration:

m - [knik. nd A (11)

It is the total momentum of the quasiparticles with “occupation numbers’ n(k, ¢).
Conservation of IT tormally follows trom the presence of the o-function in (7) provided by
spatial homogeneity of the problem. Note that the very possibility of the ensemble of
Clebsch quasiparticles having a nonzero momentum is due to the possibility that
n(k) # n(—kj. These quasiparticles are thus similar to usual waves which could have
nonzero momentum with respect to a medium that is in rest. What is important is that the
velocity field does not possess this property: because of the identity o(k) = 0*(—k), the
double correlator of the velocity ficld is always even. Obviously. this identity follows from
the fact that anv flow ot an incompressible tluid s completely defined by the single real
quantity v{x. ). This means the absence of waves propagating in an incompressible fluid
since any wave is described by two real variables (or one complex variable).

We do not know vet what the conservation ot action and of momentum mean in terms of
velocities. Neither can we express these integruls through the velocity field. Probably they
are related to the Kelvin theorem which i~ implied in the Clebsch variables. Nevertheless,
we are going to use these nonunderstood svmmetries to obtain new solutions that can be
expressed in terms of velocities.

Note that the Clebsch variables arc cquinvalent to velocity variables. but it is not
one-to-one correspondence: the gauge freedom allows for different Clebsch fields cor-
responding to a single velocity tield. The mtegrals of motion in question surely can be
formulated in velocity variables; our point s that such an integral cannot be expressed via
the double velocity correlator. Studying that gauge treedom is a complicated task which we
were not going to undertake in this paper. Our aim in this paper is to derive some new
result using a proper gauge. namely such that the respective steady solution is scale-
invariant and could be interpreted as carrving constant flux of some integral. The value of
that integral is not gauge-invariant. and it thus has no direct physical meaning but helps to
find a new solution. Moreover. in another gauge this solution is not scale-invariant. Still,
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the distribution in terms of velocities is the same for the whole family of Clebsch fields, so
that it can be obtained by using the most convenient gauge.

As was mentioned in Section 1, knowledge of the integrals of motion allows one to
suggest phenomenologically the expressions for the respective correlation functions. Energy
is the Hamiltonian in the Clebsch variables. so its density is expressed via the fourth-order
correlator Ji,3,. The energy flux can thus be expressed by the usual means [28] via the
simultaneous six-order correlator Ji»345. and by requiring the flux to be constant one can
get the scaling exponent of J which is v, = =19. So J® = Pk~" with P being the energy
flux. We designate J'"'(1k,..... k,) = A“J"(k,.....k,). Assuming simple scaling y, =
An + B, we obtain y, = (11n —9)/3. The double correlator is thus ng(k) o« P3k-133
which was first obtained in [27]. The fourth correlator J' o Pk~ gives the energy
density E(k) > P**k "7 that can be easily recognized as the Kolmogorov 41 spectrum.

One may argue that this way of obtaining the spectrum is not better than the analogous
speculations in terms of velocities. However. further analysis of the anisotropic part of the
spectrum is possible only in Clebsch variables. where the momentum integral is present
explicitly.

[f the pumping is nonisotropic then it generates momentum of the quasiparticles. Viscous
damping should absorb both integrals. energy and momentum. If the interaction of eddies
is local in k-space (see below). then there are two fluxes in the inertial interval of scales.
According to the revised universality concept [4]. the spectrum should be determined by
the whole set of the fluxes of integrals of motion that flow at the same direction. We thus
assume the spectrum in the inertial interval to have a universal form defined by two values
of the fluxes. Note that in the anisotropic case the energy flux is not necessary parallel to
k. so that it should be described by some tensor. For the scales of the order of the scale of
anisotropic pumping. the angular dependence might be rather complicated. But since our
additional integral of motion is a vector R. then it is natural to believe that deep in the
inertial interval the universal spectrum is axially symmetric around the direction of R. Of
course, this is true also for an axially symmetric pumping. From the dimensional analysis,
the two-flux spectrum can thus be written as

n(k, P.R) = AP "k BIf(E). (12)

function f(&) for all £ is beyond our current abilities (hitherto, the two-flux spectrum was
explicitly found only for acoustic turbulence [30]). We can. nevertheless, find the form of
the stationary spectrum in a weakly anisotropic limit when §= 1. Expanding the function
f(&) at £=1. we get a correction to the pair correlator in the form of the first angular
harmonic

where the dimensionless ratio of the fluxes is £ = (R k) Tiuk?ny/Pk”. Defining the

w2 x kVcosH,. (13)

This formuia was first proposed by Kuznetsov and L'vov {31] using an analogy with wave
turbulence. In the same way one can write the corrections to the arbitrary simultaneous
correlator: o0J// = 3. For example. the fourth-order correlation function is written as
follows

O vy % ki oSBT vy + ks Tcos Ly + ks T cos B50F 0y + kG P cos 0,0% 5 (14)

where [ has the same scaling properties as /™' and is symmetric with respect to the last
three arguments.

In the next subscction, this can be shown to be an exact steady solution of the linearized
equation for the correlation functions.
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2.3, Exact stationary solution for the first angular harmonic
Multiplving (5) by ¢*(k. 1) and averaging. we obtain the equation

iﬂ’(k{)’ - Sl(k [). St(k () = Im ”.T/\lzg.]km}d}kld:{kzd:ﬁk‘; (15)

-~

o1
that governs the time evolution of the pair correlator. Substituting J = Jg + 6J, one can
show that (15) is zero for J¢ [27]). To show that the r.h.s. of (15) is zero for &J too, we
divide this integral into four identical parts. and then make in three of them the
transformations that consist of the conformal dilatations invented independently by
Kraichnan [32] and Zakharov [33] and rotations in k-space suggested by Kats and
Kontorovich [12]. For the first term this transformation G, looks as follows (here initial
integration variables are temporarily denoted by q;. g- and q; so that k + q; = q> + q3)

Gl3 q. = (A;fkl- 4 = (\;3k?~ q: = le:- (16)

The operation G, is determined by the condition Gk, =k. and it transforms the
quadrangle k + k, = k- + k; from 7,-: into a similar quadrangle k +q, = q- + q;. The
transformation thus relabels k, and k dnd dilates all arguments of T and 6J with a factor
) =k/k,. Similar transformatmns q, = G- k.. q,= (kaw, q; = G k. (G'}kv =k), q, =
G k-, q- = G k.qz = C;k,. (G:k; = k) should be done in the second and third terms. The
scattering amplitude (7) is a homogeneous function with the index —1, i.e. T(Ak|, Ak;;
Ak;. Aky) = A T(k,.k-: k;.ky). The correction to the fourth correlator (14) is also a
homogeneous function with its index being —35/3 — 1’3 = —12. The transformation Jaco-
bian gives A7 so in all the transtormed terms acquire factors A; ' Therefore, after the
transformations. the equation (15) has the following form

Sk rp_dm Ak d kd kTt e+ T+ L)
3t 4k -
X (kcos, + ki, costh — k-costh — kycos 8;) (17)

that i1s equal to zero by virtue of the o-function in 7 ,-:. Note that transformations like (16)
interchange the zero and infinity of the integration domain in the k-space. Therefore, they
are possible for convergent integrals onlv. In Section 2.5 below we will show that integral
(15) converges with the correlator (14). The perturbation (14) is thus a steady solution of
the linearized problem. Let us emphasize that this has been shown independently of the
torm of the function / -y,

What is accessible to experimental mecasurements is velocity (and its correlation
functions) but not the correlation functions in the Clebsch variables. To obtain the law of
turbulence approach to isotropy in terms of the velocity correlators. one should know the
behaviour of even angular harmonics. This follows from the identity o(k) = v*(—k).
Expressing. for instance. the double velocity correlation function

FOXK — q) = (o(K)eH(q)) = | 4o S wok + k, — ky)d kP had kd ks, (18)

one can see that the tirst angular harmonic of o/ gives no contribution. We thus ought to
find the next. second. harmonic of our umversal solution. This cannot be done in the
framework of the linearized approach since by multiplying, for instance, two first
harmonics in the product of two second-order correlators one obtains the second harmonic
in the fourth correlator.

Diagrammatic perturbation approach should be implemented both to show that (13) can
be a solution as well as (14). and in order to find the behaviour of the second angular
harmonics.
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2.4.  Perturbation theory

The natural scheme to develop perturbation approach for a nonequilibrium system with a
strong interaction is the diagrammatic technique of the type first suggested by Wyld [36] for
hydrodynamic turbulence. This technique was later generalized by Martin, Siggia and Rose
[37] who demonstrated that it may be used for investigating the nonlinear dynamics of any
condensed matter system. Then Zakharov and L'vov [27] extended the Wyld technique to
the statistical description of hydrodynamics in the Clebsch variables. In fact, this technique
is also a classical limit of the Keldysh technique [38) which is applicable to any physical
system described by interacting Fermi and Bose fields. The detailed description of the
technique can be found in [39].

The natural objects in the Wyld diagrammatic technique are the dressed propagators,
which are the Green's function G(k, w) and correlator n(k, w). The Green’s function is
defined as the average response of the Clebsch field a(x. f) to a vanishingly small external
‘force” f(x,t) which should be added to the r.h.s. of the equation of motion (5). In
w-representation

Gk, w)olk — k)o(w — w') = <M—> (19)
Of(k', w')
As a consequence of the causality principle. the function G(k, w) has to be analytic in the
upper half of w-plane. The correlator n(k. w) is the second correlation function of the
Clebsch field a(k. r). In w-representation

n(k, w)dk — K)o w — ') = (alk, wak', ©')). (20)

Using the Wyld technique one may derive the system of equations for the dressed
propagators [36, 27]. known as the Dyson-Wvld equations:

Gk o) = —— b 1)
o — Z(k, w)

n(k, w) = |G(k. w)*[Py(k, w) + Dk, w)]. (22)

In these equations ®u(k. w) is the correlator of the external force concentrated in the

energy-contained interval. The mass operators 2(k. w) and ®(k, w) are the self-energy and

intrinsic noise functions respectively. These are given by infinite series of one-particle
irreducible diagrams:

22214‘22‘1"23*"‘. (D:¢2+q)}+(1)4+

In these expressions Z,, is a functional of m vertices T, (m — 1) Green’s functions
G(k,, w;). and m correlators n(k,.w,). ¥, is a functional of m vertices, (m + 1) cor-
relators and m — 1 Green’s functions. Analytical expressions for 2, and for @, have the
form

Sa(k. @) = J'!T(k. Ky koo k)2 [, Ge + 2Gmans )0k + Ky — ks — ka)
x O((U + Wy — Wy — (U})dRk1d3k2d3k3dwld(,()2dw3, (23)
(k. 0) = f Tk. ki Koo K3)2[1n 023 ]0(k + K, — Ky — k3)O(@ + @ — @, — 3)

x d*kd’k.d*kydw,dw-dw;.

Here we used shorthand notations n; and G, which represent n(k;, w;) and G(k;, ;).
Any correlation function can be expressed through the propagators n and G. We are
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interested in solving an inverse problem. using our knowledge of the simultaneous
fourth-order correlator (14) we are going to find anisotropic corrections to n and . Then
we shall find any quantity of interest. for instance. the k-dependencies of higher angular
harmonics.

The lowest-order contribution to the simultaneous fourth-order correlation function can
be represented as follows

P
Joo= 3Id(:J1d(U:d(:)_«,TA1 O~ — 0y — w3)
; (24)
X [n.nn-G + nn,Gsny + n,G¥nang + Gi¥nynon;

gttt gt N2 7 RALAK ' RAS RAPAAR

Here index ¢ means (k. w). j means K .w,. This first nontrivial expression for J'*' appears
by using equations (23) for 2 and &. If we restricted ourselves to this term, this would be
similar to a direct interaction approximation [40] for the Clebsch variables. We are going,
however, to analyse the entire perturbation series for J. A diagram of pth order contains p
vertexes T and the appropriate number of the propagators.

2.5. Angular expansion and higher harmaonics

Assuming weak anisotropy we expand the propagators in Legendre polynomials Pp:

nk. )y = N Ppeos Oy kL) nk. o Gk, w) = P(cos O} kL) Gk, w) (25)
Lo /=0

Here L is the encrgy containing scale and : are the scaling exponents for dimensionless

anisotropic corrections proportional to P, 7, = (1.

Considering the different-time propagators G(k. ) and n(k. ) one necessarily finds
infrared divergencies of integrals even in the direct interaction approximation (23). The
reason for this is the sweeping effect which. however. does not contribute to the results for
the simultaneous correlator if the entire perturbation series is considered. The procedure of
eliminating the sweeping in each order of perturbation theory is rather cumbersome, but is
sometimes necessary [28]. In the isotropic case. the sweeping has been excluded in [29].
Fortunately in the problem of weak anisotropic corrections there is a way to avoid this
difficulty. Let us substitute the expansions (25) into the Dyson-Wyld equations (21, 22).
Thus we can see that z; are indeed the same for both n and G and that n(k, w) and
G/(k, w) should have the same scaling properties as n(k. w) and G(k, w) respectively.
What is the scaling exponent of the trequency @ is a different question: in the Eulerian
approach  scales as k because of the sweeping. whereas in the Lagrangian or quasi-
Lagrangian approach @ > k- due to a dynamic interaction of eddies. However, for our
goal the only important thing is that the scaling exponents of the frequency are the same
for all the terms in the expansions (25)

Let us first consider the terms with / = 1. which are = P (cos ;) = cos 6. Substituting

alk. w) = nlk. oy + (kL) n(k. w)cosB,,

- L (26)
Gk, @) = Gk, w) + (kL) G(k. w)cos B,

into equation (24). one can see that in the linear approximation with respect to n; and Gy,
the anisotropic corrections to the fourth-order correlation function have the form (14) with
some analytical expression for /, -y, if and only if 7, = —1/3. This is thus the justification of
the formula (13) previously obtained from dimensional analysis. Note that corrections
linear in cos @, to the fourth correlator have the form (14) because of symmetry. Therefore
it is clear that n, and G; do have this form in each order of perturbation theory (which
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also can be directly proved by the simple calculation of powers at any order). The only
difference between consideration of the whole series and the direct interaction approxima-
tion (24) would be the form of the analytical expression for /[, 5. In Section 2.3 we proved
that expression (14) is an exact solution of the linearized equation for any form of [, s,
providing the convergence of integrals in the equation (17).

We thus come to the key point of any turbulence consideration, namely, to locality
investigation. This is to be done without any approximations and closures. The direct
interaction approximation for the fourth-order correlators (24) does provide the con-
vergency, even when calculated in the Eulerian approach containing sweeping. In order to
find asymptotic behaviour of the true fourth-order correlators and to prove the con-
vergency in the whole series one can combine the quasi-Lagrangian approach for Clebsch
variables [28] with the method of getting the asymptotics of correlators by sorting diagrams
[34, 35]. The main idea that enables one to find the asymptotics of any high-order
correlator as some wavenumbers go to zero is as follows: in the framework of Wyld
diagram technique one can express any function in terms of series containing a pair
correlator and Green function. If the scaling exponent of the pair correlator is positive
v, >0, then the main contribution stems from the terms containing the pair correlators of
small wavenumbers [34]. In our case. this gives the following asymptotics of the fourth
correlator with two small wavenumbers k. «:

A N STLICSTIT N 27

where the factors k., k| appear due to vertexes adjacent to the pair correlators. This is the
first term in the expansion on small k. ;. Note that these asymptotics are not based on
Gaussian-like coupling. Still. the statistics might be so degenerate that the first term in the
expansion is cancelled. The locality criterion below will be sufficient (but not necessary) in
this case.

The first term in the asymptotical expansion of the vertex can be obtained from (7, 8):
Tygouk > (k) and Ty, 4, > (k-mink. k;}) where k. x; < k. Substituting this together
with (27) into (15), one can see that the infrared convergence is determined by the
following integral (to be specific. we put x = k)

J(K‘l\‘l)(k‘h‘ yon(xyn(k)d* kd’ k. (28)
Substituting here n(k,) * ;""" and don(x) = (kb)x " one gets that the power counting
for (28) gives zero. so that one may expect a logarithmic divergency. One can easily see,
however, that this integral vanishes due to angle integration. Taking into account the next
terms in the expansions, we find that the infrared contribution converges, being propor-
tional to k. By the same means one can get the ultraviolet asymptotics at k; >> k: T o k,
and OJW x k7 = k%, Ultraviolet contribution ffkf“"gd%l thus converges as a first
power as well (such a coincidence for the law of decreasing nonlocal contributions is called
counterbalanced locality [34]). Exactly the same asymptotics are obtained while analysing
any diagram in the perturbation expansion.

The above consideration is not a rigorous proof that the steady anisotropic corrections
have the form (26). This is rather the basis of concluding that, if the solution analytic in
parameters kL and Re exists, then it has the form (26). The diagrammatic approach cannot
catch nonanalytic solutions if they exist.

If one substitutes (26) into (22) and takes into account terms quadratic with respect to
the anisotropic corrections, one obtains the exponent for the second angular harmonics:
2, = —2/3. The relative part of the anisotropic perturbation corresponding to the second
angular harmonic thus decreases with & faster than the first one. Subsequent harmonics can
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be shown to have 7, = —//3 so thev can be neglected in the inertial interval. Substituting
then the first two terms of the propagator expansion into (26), and restricting ourselves to
the terms linear with respect to the second harmonics and quadratic with respect to the first
one. we get the second angular harmonic of the fourth correlator in the following form

O sy % kP Pcos B Uy + k37 Pa(cos B,) Us 3
+ kT Pcos HOUE oy + ki Py(cos 8,) U¥ as. (29)

Here U is some unknown function of four arguments that has the same scaling proper-
ties as Ji' and is symmetric with respect to the last three arguments as well as above
function /.

Let us emphasize that the second angular harmonic of 6J does not turn the collision
integral (15) into zero. It is compensated by the contribution from the pumping region that
decays in the inertial interval by the same law (kL) **. To show this, one should analyse
convergency (i.e. contributions from distant regions) for the second angular harmonic
which can be done by the same way as for the first one. One can show that the
contribution into (15) from the second harmonics decays as (kL) ** and is compensated by
the contribution of the pumping region [41|. Note that such a remarkable coincidence
happens if the exponent of the isotropic spectrum is exactly equal to 5/3.

2.6, Anisotropic energy spectruim

Substituting the second harmonic of the fourth-order correlation function (29) into the
expression (18) for the double velocity correlation function, one obtains the anisotropic
part of the energy density in k-space:

OFK) i pcondy ). (30)

F(k)
This should be the asvmptotic torm of the turbulence spectrum in the inertial interval for
arbitrary anisotropic large-scale pumping. The same formula was obtained by Leslie [10]
(see also [42]) in the framework of the linearized direct interaction approximation for the
special case of flow with a constant shear. The data from observations (summarized in [11])
satistactorily fits (30). which is thus the universal law of turbulence approach to isotropy.
Indeed. the anisotropic part decreases with & faster than the isotropic spectrum, so our
formula is the justification of the isotropy hypothesis of Taylor [43]. Higher 2n-harmonics
should decay with & faster (as k™" *). so (30) represents the main anisotropic part in the
inertial interval. By the way. the presence of the law (30) in the inertial interval means that
the turbulent flow actually has a two-flux spectrum there [4]. However, the flux of the
second integral (that is |kmdk which probably has kinematic rather than dynamic
meaning) is hidden at sufficiently large A

3. INVERSE CASCADE OF 3D ISOTROPIC TURBULENCE

Besides the energy. the Euler equation in the Hamiltonian form also preserves the action
N = f nidk, 1.e. “the total number of waves’. Conservation of this integral follows from the
very possibility of introducing Clebsch variables, which is a consequence of Kelvin’s
theorem. The spectrum which carries the constant flux Q of the wave action was suggested

by Zakharov and L'vov [27] in the following form:

k. Q) = A0 Tkt (31)
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This form also follows trom dimensional consideration. Considering the equation of motion
(15) for the isotropic spectrum and making transformation (16) we get the following
expression:

- . : -y -y, 1=y,
sntk. 1) - d‘k1d-‘k:df‘k:TmJ“:>~{‘ ’ (k') ) (_k‘) ) (L) }
ot ’ Ky ks ks

The homogeneity index v, of the fourth-order correlation function is expressed via the
index y, of n(k) in the following way: v, = 2v, + d: since y, =4 we have y, = —11. As
one can see. the spectrum with a constant action flux is an exact solution as well as the
Kolmogorov spectrum. Locality of this spectrum has been proven in [44]: an infrared
contribution decreases as (k/k,)”* while an ultraviolet one decreases as k,/k. Note that the
kinetic equation written in Clebsch variables [45] gives logarithmic divergence. which is an
artefact of an uncontrollable approximation.
After recalculation into the energyv density. one has

E(k. QY= C, 0%k . (32)

Note that the spectrum is k& ' independently of the space dimension d. For d =3, it is
possible to prove that our case corresponds to the usual four-wave one: energy flows
towards small scales while the action N gocs at the opposite direction. This can be done
similarly to wave turbulence theory [13] by comparing turbulence spectra with equilibrium
ones [4]. For example. the first-order approximation [4, 45} gives the action flux for power
solutions n;, = k' as follows:

-1 ~1

Q = AJ d»v, dy, Wiv v + (v = v = 1Y — v = i)

[ ERE
Here W(y.v,) is some positive function. v = (k-/k) . v, = (k3/k)>* and x =s/(5 — 5).
Therefore, sign Q = —signs(2s — 3). The flux changes sign for s; =0 and s, = 5/2 which
correspond to the equilibrium spectra E.(k) = k* and E,(k) * k' that give equipartition of
the energy and of the wave action respectively. This can be proved in any order of
perturbation theory. For the case in question. s =4 and Q < 0. Therefore, if the spectrum
(31) was stable. it would be realised for scales larger than that of the pump while the
Kolmogorov-41 spectrum [[1] extends towards smaller scales up to the viscous range.

After recalculation of the behaviour of the velocity differencies dbfo(l) = v(r + 1) — v(r),
the formulas (31, 32) give the following scaling: do(/) = [" = const in the inertial interval
[4). Formally considered for any / (which presumes a pump with / = 0), the spectrum (31)
thus corresponds to the velocity differences which do not turn into zero while [/ — 0.
Velocity discontinuities can only be tangential due to incompressibility. Any tangential
discontinuity is an exact solution of the Euler equation (for v 1 Vo, the nonlinear term is
zero). And it is natural that a random set of such discontinuities (giving the spectrum (31)
might also be a steady solution of the respective statistical equations. Moreover, this
physical explanation of the solution (31) gives an insight allowing us to predict (following
[4]) that this spectrum considered for all / is inevitably unstable as with any tangential
discontinuity in the framework of the Euler equation.

It would be interesting to find this inverse cascade experimentally. It is not surprising
that it has not vet been found since one needs steady turbulence at the scales much larger
than the pumping scale. Most experimental and natural set-ups violate the second condition
while grid turbulence violate the first (steadiness). Indeed, an inverse cascade is formed in
a decelerating way (time increases with a scale), so that such a cascade cannot be formed
in a decaying turbulence. Most probably. it could be first obtained in numerics (if it exists
at all).
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Returning to a more realistic picture with a small-scale Kolmogorov spectrum (giving
dv(ly=1'? at [ —0) and a large-scale spectrum (31). one can imagine large sheets with
different nonzero mean velocities and small eddies arising at the boundaries of the sheets
due to the Kelvin-Helmholtz instabilitv. Eddies give the Kolmogorov cascade while the
regions with large-scale velocity differences being randomly distributed give for small
k=1/1(I> L)o, = |w(x)dy ="'~ = k "= which corresponds to the spectrum (32).

This might be. however. that even the presence of the small-scale Kolmogorov-41
spectrum cannot save the spectrum (32) trom being unstable. This is a nonisotropic per-
turbation which can provide a large-scale instability of the spectrum (32). Indeed, a steady
correction carrying a constant momentum flux. according to dimensional consideration
looks as follows

ontk. Ry . _ (Rk)

BRI ooh e 2D

Ak, Q) k*
Using the same technique as in Section 3. one can show that this on(k, R) i1s an exact
stationary solution of the collision integral. linearized with respect to a small deviation from
the spectrum (31). So if the momentum ot the auxiliary wave field flows towards small k,
then the variation of the energy spectrum should grow quickly as k decreases:

OEGRY st (33)

Etk. ()
This formula implies the structural mstabilits of the isotropic spectrum (32) with respect to
the angular modulation of a small-scale pump: cven a weakly anisotropic pump produces
a strongly amisotropic large-scale turbulence. Such an instability was first predicted by
Falkovich [4]. This probably explains both the absence of the spectrum (32) and the
presence of substantial large-scale nonisotropy in the experimental data.

Note also that the usual Fourier transform relating correlation functions of the velocity

0
Lot + 1) = boeeap k- 1y cok)o(—k) )y dk

diverges loganthmically for spectrum (32)

Whether the spectrum (32) might be observed at the edge of dissipative interval [45] is,
in our opmion. a rather controversial and open question.

4. COMPLEMENTARITY OF TURBULENCE DESCRIPTION IN CLEBSCH AND VELOCITY
VARIABLES

The traditional approach to the analvuical description ot turbulence {40, 36] is based on
the Euler equation in the k-representation

S 1. k) - L ,

e ‘:" I kiq. preste quefte. pydgd™p + f(z, k) (34)

with an external random Gaussian force 1. Here the vertex

Liptkigop) = UKy = P (KPP (plitk 0,0 + ko p)0(k + g + p) (35)

is expressed via the transverse projector P (k) = 0, = k Kk k=
Statistical description can he provided in the (k. w)-representation in terms of the double
correlation function £, (k. c)o(k = q)o(or — 'y = (v, (k. w)vf(q.©")) and the Green's

function G, (. K)ok = qioGer = L 07) = o (K. o) ofiq. w')) giving the response of the
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velocity to an external force f (per unit mass). Here the angular brackets denote ensemble
averaging.

Probably the mostly powerful tool used hitherto is the Direct Interaction Approximation
(DIA) introduced by Kraichnan [40]. The collision integral governing the evolution of the
double correlator F,(k. ) has the following torm in DIA:

I = [0k + k. + k)d(w + @ + 02){ G (0, k)T (Ky) Fppls, ky) Fy (@, k)

ij
+ (;rr!(\((’):~ kl)rxl/v’y(kl)f—//f(“}l‘ h//‘] ’F;j'((lj- k) (36)
+ GM(“)‘ k)r\”;,’,(k)}:;ﬁ((ul . k“ )f.,”,’,((l):. bfk:)}rl{m(k‘kl, kz)d3k1d3k2d(uldﬂ)2.

Further details and the equation for G can be found in the monograph [10] completely
devoted to DIA.

Being a finite closure of the initially infinite chain of equations, DIA is an uncontrolied
approximation. It preserves. nevertheless. some basic symmetries (though not the whole set
as we show in this section) of the Euler equation. The most important one is Jakobi
identity for the vertex

[ru,’ij"(k) + r‘/im'(q} - l n\(p)]b(k + q + p) = 0 (37)

that gives energy conservation: |/,(k.w)d*k = 0. Therefore, the Kolmogorov spectrum
carrying a constant energy flux should be an exact stationary solution in the framework of
DIA i.e. it should make /(k.w) disappear. Let us now demonstrate this following [27].
Looking for solutions in the form Fk. w) = P,k ' flw/k') and Gk, ) = P,]-k‘xg(a)/k*)
one can see that this is possible if 2x + v = 5. Executing then in the second term of (36) a
conformal transformation similar to (16)

k= k'k/k'. ko= khho k= kTk/K (38)

and accordingly in the third term with A < k-. we obtain the collision integral in the
factorized form

I(k) = /'l(k. wdw = }'dmdm]du,):d‘ka\‘k,d‘/@(k + Kk, + k)0 + 0, + )

X Grlw . KDE (k) Fy s K F(o, k) (39)

. B 8—x-2v
x [rmu(k k]' kl) + (L) [V‘fun(kl‘k~ k]) + ( k ) rm[l(kz‘\kl’ k) .

2

1

For the Kolmogorov indices v =23 and v = 113, this integral turns into zero. We shall
not dwell upon the problem of divergencies since thev can be completely swept away by
passing to Lagrange variables [46] or using the improved DIA approximation [31].

Another integral of motion that can be expressed in terms of the double velocity
correlator is the helicity H = |(v - rotv)dr that characterizes the knottedness’ of the flow
[6] (remember that the Clebsch variables thus describe only flows with zero helicity). For
homogeneous turbulence. the spectral density of this integral can be expressed in terms
of the pseudoscalar quantity {v-rotv)=!kA(k)dk such that the double correlator ac-
quires the term F,},{(k. 1) =i€,(k,/k)A(k.1). The time evolution of A(k, ) is defined by
the same collision integral (36) with the vertex I, replaced by Ry(k.bfk,.k;)=
1€,k (KK . K2). Helicity conservation is provided by the identity

[R, (k) + Ry, (q) + R (p)ok +q+p)=0 (40)

that makes it possible to find an exact solution of the linearized DIA [7]. Looking for the
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solution in the form of the Kolmogorov spectrum with the small pseudoscalar correction

FAk. o) = Pk */‘( " ) + e,k ‘h(‘—))
! e k k:/‘,

and making the same contormal transformation (38) we get similarly to (39)

- r l']
(k) = r()(k +~ k. + koG + @, + w~)[R,,,,,(k) + ( E) Ry (k) + (ki) Rmu(kz)]

* A0 G e KOl (k) F (o kst FoGon KD ] dodw,dw,dkdk, dk,. (41)

Here O[GTF.F| = 0GUF.F + GTOFF ~ GTUF .OF and p = 14/3 — 5. The stationary solu-
tion corresponds to s = [4/3 [7]. This solution describes Kolmogorov turbulence with large
energy flux and small helicity flux.

As it can be seen from (39, 41). these spectra exhaust all universal power solutions to be
obtained in the framework of DIA. By universal. we mean solutions whose scaling
exponent does not depend on the precise form of the w-dependencies. Indeed, one can
recalculate the solutions (32) with the action flux obtained in the previous section for the
double velocity correlator. then substitute them into (39) and find the first bracket to be
nonzero (and to have a definite sign). Sull. there exists a possibility that other factors
(which have different signs in different regions of k-space) can turn the collision integral
into zero for spectra with scaling exponents v. v, « depending on the w-dependencies. but
this seems unlikel

As far as the weakly amsotropic spectrum (26) s concerned, it carries the flux of
momentum of auxiliary wave field. As well as the action, this integral of motion cannot be
expressed as a linear tunction of the double velocity correlator. To show that this spectrum
does not satisfy finite closure in terms ot velocities. one can write down the linearized
anisotropic DIA |10, 42] and for the sceond angular harmonic after the conformal
transformation onc has (41) with the tirst square bracket being replaced by

/ \

Pcosthl ik + Pocos H‘)( ) l Ik + Po(cos H:)(L) [,u(ka).
LA k- )
This 18 nonzero. demonstrating agam that not every exact solution found in Clebsch
variables can be obtamed as a universal sofution in the perturbation approach in terms of
velocities. The same consideration can be done in any (finite) order of perturbation theory.
We therefore conclude that exact stationary solutions corresponding to motion integrals
that are not linear functions of the double velocity correlator cannot be obtained by the
traditional perturbation approach in terms of moments of the velocity field.

5. CONCLUSION

Small steady anisotropic corrections {13, 30) found analytically in the present paper solve
the problem of structural stability of three-dimensional turbulence spectra with respect to
the pumping variation. Note that by the same means the structural instability of the inverse
energy cascade in two-dimensional turbulence was recently predicted [4]. These solutions
also provide a basis for solving the general stability problem of turbulence spectra in
hydrodynamics. including the temporal behaviour of perturbations. Such a steady correc-
tion is called a neutrally stable mode in stability theory [13] and it defines the asymptotics
of arbitrary perturbation either at & — = or at k — (). By analogy with the stability theory
of the spectra of wave turbulence [13| onc may suggest also the following picture of the
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mporal evolution of any anisotropic perturbation arising in the inertial interval at some
stant of time on top of the Kolmogorov spectrum; the first angular harmonic of the

perturbation quickly (during a few turnover times) acquires the asymptotical form (30) at
large wavenumbers. The left edge of the perturbation will move upscale (towards small k)

by the law k < ¢~
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