PHYSICAL REVIEW E VOLUME 54, NUMBER 6 DECEMBER 1996

Towards a nonperturbative theory of hydrodynamic turbulence: Fusion rules, exact bridge
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In this paper we address nonperturbative aspects of the analytic theory of hydrodynamic turbulence. Of
paramount importance for this theory are the “fusion rules” that describe the asymptotic properties of
n-point correlation functions when some of the coordinates tend toward one other. We first derive here, on the
basis of two fundamental assumptions, a set of fusion rules for correlations of velocity differences when all the
separations are in the inertial interval. Using this set of fusion rules we consider the standard hierarchy of
equations relating theth-order correlationgoriginating from the viscous term in the Navier-Stokes equations
to (n+ 1)th order(originating from the nonlinear ternand demonstrate that for fully unfused correlations the
viscous term is negligible. Consequently the hierarchic chain of equations is decoupled in the sense that the
correlations of G+ 1)th order satisfy a homogeneous equation that may exhibit anomalous scaling solutions.
Using the same hierarchy of equations when some separations go to zero we derive, on the basis of the
Navier-Stokes equations, a second set of fusion rules for correlations with differences in the viscous range. The
latter includes gradient fields. We demonstrate that eméryorder correlation function of velocity differences
Fo(R1,Ry, . ..) exhibits its own crossover length, to dissipative behavior as a function of, s&4,. This
length depends on and on the remaining separatidRg,Rs, . . . .When all these separations are of the same
order R this length scales ag,(R)~ n(R/L)* with X,=({n— {ns1t+ {3~ $2)1(2—¢5), with £, being the
scaling exponent of thath-order structure function. We derive a class of exact scaling relations bridging the
exponents of correlations of gradient fields to the exponéntsf the nth-order structure functions. One of
these relations is the well known “bridge relation” for the scaling exponent of dissipation fluctuations
pn=2—{c [S1063-651X96)07111-5

PACS numbds): 47.27—i

I. INTRODUCTION The issue under study is not new; decades of experimental
and theoretical attentioifsee, for example[9,10,12—-19)

In a recent series of papefs—4] we developed an ap- have been devoted to two types of simultaneous correlation
proach to the theory of the universal scaling properties thafunctions; the first type includes the structure functions of
characterize the statistical invariants of fully developed tur-velocity differences,
bulent flows. The main technical tool of this approach was

renormalized perturbation theory, which allows us, after ex- Sh(R)y={|w(r,r")|™, (1.1
act resummations, to obtain insights about the nonperturba-
tive properties of the universal statistics of turbulence. The w(r,r')=u(r’)—u(r), R=r'—r (1.2

main nonperturbative results which were obtained(gray-

drodynamic interactions are local in physical space and invhere( ) stands for a suitably defined ensemble average. A

scale space once the sweeping effects are remdiigdhe  second type of correlations include gradients of the velocity

inner, viscous scale which appears perturbatively as an ultrdield. An important example is the ratdr,t) at which en-

violet cutoff leads nonperturbatively to the anomalous scalergy is dissipated into heat due to viscous damping. This rate

ing of correlations involving velocity gradients; afid) the s roughly »|Vu(r,t)|?. An often-studied simultaneous cor-

outer scale of turbulence appears in the theory as a renormatklation function ofe(r,t) =e(r,t)— € is

ization scale after infinite resummations of a renormalized

perturbation series that converges order by order. The aim of Kee(R)=(e(r+R)e(r)). 1.3

this paper is to present additional nonperturbative results that

together with the previous findings begin to assemble to AVithin the famous Kolmogorov 194(K41) approach15] to

solid structure of the theory of hydrodynamic turbulence.turbulence one predicts that fé in the inertial range, i.e.,

Brief presentations of some of these results were offered im<R<L, S,(R) is (eR)"® andK . (R)=»?e"*R™¥3 Here

[5-98]. L and » are, respectively, the outer scale of turbulence and
the Kolmogorov viscous cutofk is the mean energy flux per
unit time per unit mass.

“Electronic address: fnLvov@wis.weizmann.ac.il, URL: Experimental measurements show that in some aspects
http://lvov.weizmann.ac.il Kolmogorov was remarkably close to the truth. The major

"Electronic address: cfProcac@weizmann.weizmann.ac.il, URL&spect of his predictions, that the statistical quantities depend
http://chemphys.weizmann.ac.il/procaccia.html on the length scal® as power laws, is corroborated by ex-
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periments. On the other hand, the predicted exponents seefme evaluation oD ,(R) does not pose conceptual difficul-
not to be exactly realized. For example, the correlationties. It was showrj4] that it is of the order odS,,;/dR.

K..(R) decays according to a power law, The evaluation of](R) poses some delicate issues, but it
B was believed that it is proportional 8,(R)/S,(R) (and see
Kee(R)=R™#, (1.4 pelow for more details This resulted in the famous hierar-

chic chain of equations of which many closure attempts have
failed to provide the desired anomalous scaling solutions.
At the heart of this paper we offer a way out of this
conundrum. The problem with EqL.7) is that it refers to a
S, (R)«Rén (1.5 “fully fused” quantity, and this fact leads to difficulties.
n ' ' What is meant by this is that the primitive object of the

but the numerical values of, deviate progressively from statistical theory of turbulence isot the structure function
n

n/3 whenn increase$§10,13. Something fundamental seems Sn(R), but rather the “fully unfused’n-rank tensor correla-
to be missing. tion function of velocity differences:

for »<R<L, with w having a numerical value of 0.2-0.3
instead of 8/3[12]. The structure functions also behave as
power laws,

The first positive answer within our approach appeared in ) , )
the context of correlation functions of gradient fields rather Fn(ri,r1ir2.fa; .. ifnay)
than of the velocity differencel3,16]. As indicated above, _ / , /
the discrepancy in the exponemtbetween the experimental =(W(r, 1) W(rz, ) W rp)). - (1.9
value and the naive expectation is large. This gave hope that . . . _
the explanation must lie close to the surface. Indeed, considl this quantity all the coordinates are distinct. The structure
ering the perturbative scheme fisr.(R) leads immediately unction Sy(R) is obtained by fusing all the coordinates
to the discovery of logarithmic ultraviolet divergences with iNto one pointr, and all the coordinateg into another point
some ultraviolet viscous scal acting as the renormaliza- "+ R. In this process of fusion one crosses the dissipative
tion scale. The summation of this infinite series results in &cale. To control this process we need to formulate the so-
factor (R/7)22 with some anomalous exponetwhich is, called “fusion rules” for turbulence, which govern the prop-
generally speaking, of the order of unity. Additional calcula-€'ties ofn-point correlation functions when two or more co-
tions lead to the exact resut=2—¢, and to the under- ordinates .fuse together. One cannot fuse blindly.
standing that this result means that the renormalized pertur- 1he main fundamental results of this paper are as follows.
bation series for the structure functions diverges in the limit (1) Fusion rules in the inertial intervalThe explanation
L—x as (L/R)%. The anomalous exponend are the de- of how fusion works was briefly given ifb]. We begin this
viations of the exponents d8,(R) from their K41 value. Paper in Secs. Il and Il with a detailed derivation of the
This is a very delicate and important point. It is not simple tofusion rules, considering all the pos§|ble relative geometries
see why a series each of whose terms converges whélf the sets of fused and unfused points.
Lo still diverges as a whole. One can understand this as in (2) The homogeneous equation for ret 1)-order cor-
resumming the series of a desired function one finds an incelation functions the fusion rules allow us to consider in
homogeneous equation whose inhomogeneous solutions ar&C: |V and V the generalized balance equati) for the
indeedL independent. However, the equation possesses aldglly unfused correlation functions. We demonstrate that for
homogeneous solutions which are inherently nonperturbativé1eS€ guantities the hierarchic chain of equations decouples,
in nature and may have anomalous scaling. Homogeneof1c€ Now the dissipative term vanishes when the viscosity
solutions must be matched with the boundary conditions, angf 90€s to zero. In the case of Eq.7) the termJ, contains
this is the way that the outer scale appears in the theory. AR correlation function with many fused coordinates. As a
important remaining step in the theoretical development is tg€sult(@nd cf. Sec. Vi it remains finite in the limit/—0. In
understand how to compute the anomalous expongnts t_he_ present case of fully unfuse.d' quaqtltles we get in the

The divergence of the entire perturbation series fodiMit ¥—0 ahomogeneous equationvolving only correla-
S,(R) with L— o forces us to seek a nonperturbative handlefions of ordern+1. The full an.aIyS|s of this equation is not -
on the theory. One fact that may potentially lead to a non€asy: and it deserves a considerable amount of attention in
perturbative control is the existence of a global balance bethe future. W _ _ _
tween energy input and dissipation. This may be turned into  (3) The existence of “viscous scaling functionslaving
a nonperturbative constraint on eactth-order structure obtained the generalized balance equation we can now study

function[4]. Using the Navier-Stokes equations one derived’recisely when, as a function of one separation distéseg

the set of equations of motion Ir1—r1]), the fully unfused correlation function crosses over
to dissipative behavior. It turns out that the scale at which
ISH(R,1) this happens depends on the ramkand on the remaining
o TDa(RD=Ju(RY), (1.0 inertial range distancesThe dependence on the inertial

range distances is characterized by anomalous exponents,

whereD,, and J,, stem from the nonlinear and the viscous and we compute them exactly in terms of the anomalous
terms in the Navier-Stokes equations, respectively. In th@&xponents,. This is done in Sec. VI.

stationary state the time derivative vanishes and one has the (4) Exact bridge relationsWith a precise evaluation of
balance equation the viscous scaling functions and the fusion rules in hand we

can consider correlation functions of gradient fields, and re-
D, (R)=J,(R). 1.7 late their scaling exponents to the anomalous exponents
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{n. The result of this exercise, which is presented in Secunprimed coordinates, and keep all the primed coordinates
VII, is an infinite set of bridge relations. We consider corre-different. To get(2.2) we also fuse all the primed coordi-

lations of the type nates.
Note that one can also consider another type of fusion, in
ICT)=(€e(X1) €(Xy) - - €(Xp)W(T'1,r7) - -W(ry, 1)) which pairs of coordinates; andr{ which are associated
) with the velocity differencen(r; ,rj’) coalesce. We will refer
xR (1.9 {0 the fusion of coordinates with a velocity difference as a

whereR is a typical separation between any pair, and we aréUSion of type A, and a fusion of coordinates that are not
interested inth;we scaﬁn relations betwe)ér? th,e exponen ssociated with a velocity difference as a fusion of type B.
9 P he properties of these two limiting procedures are different,

(p) (2) ; i ion i
pr and the gxponen@n. Note that,uo_ In th!s notation 'S and they have to be studied separately. It is commonly as-
the well studied 17,12 exponent of dissipation fluctuation sumed that the limit of type B exists, and the limit remains

V.VhiCh is denotecp. On the basis of the Ngvier—Stokes €qua-finite when »—0. This is equivalent to the statement that
tions and the fusion rules we establish rigorously that Sy(Tolr1,T> r.) and S,(R) are independent of Re for
] ] sn

P _ asymptotically large Re. Although this property looks inno-
Mo =P~ ln+sp- (110 cent, it is a deep statement that in general needs to be sup-
In particular we offer a solid derivation of the phenomeno-POrted by theory. In the language of diagrammatic perturba-
logically guessed bridge relatid®,14] u=2— ¢ tion thepry thls.property is a consequence of the locality of

In Sec. VIl we summarize the paper and indicate the€VeY d'f’ilgfam in the pertL_lrbatlon expansion for these_quan-
direction of the road ahead. In this summary we reiterate th&ti€s; this property was discussed in detail[B. In [3] it
assumptions that were used throughout, with special emph¥/as €xplained that there exists a mechanism for the appear-

sis on those that need to be checked against experiments. 1€ of the viscous scale in the statistical theory. However,
this mechanism operates only when one correlates gradients

of the velocity fields rather than the velocity differences
themselves. Thus the above statement is equivalent to the
In this section we discuss the fusion rules that arise wheassumptionthat there are no additional nonperturbative
some of the coordinates of anpoint correlation function ~mechanisms for the appearance of the viscous scales in the
tend toward one other. We begin by introducing the set otheory of correlations of velocity differences. Additional ob-

Il. FUSION RULES FOR THE INERTIAL INTERVAL

correlation functions that are required by the analysis. jects that appear naturally in the theory are correlations
whose tensorial nature is of lower rank, including scalars and
A. Correlation functions and related quantities vectors. The first one is the scalar quantity which is appro-

priate for even orders 0§,. To keep in mind its scalar

The fully unfused correlation functiol,, was introduced nature we denoted it if] as $,(R) and define it as

in Eq. (1.8). Other statistical quantities of interest have the
same number of velocity differences but they depend on a Sz (R1=(]W(rg,N|2™, R=r—ro. 2.3
smaller number of coordinates. In the language developed m ' '

beIOW we will refer to SUCh quant't'es as pal’tla”y fused Cor'The quantltyOSZm(R) |S analytlc For Odd Order structure

relation functions. For example, if all the velocity differences,nctions we introduce a vector objest . . (R) according
are evaluated with respect to the same point we define ap m

n-rank tensor
] — 2m
Su(FolT1T 2, - - ) = (W(To,F)W(Tg, ) - - W(To, ) Sim+1(R)=(WolTo DIW(ro 0. (24

2.1 Here and below we will use Greek indices to indicate vector

Note that in an inhomogeneous ensemble this quantity deand tensor components, and Roman indices to indicate the

- . order of the quantity. The placement of indices as subscripts
pends explicitly orrg. Obviously,F,, depends on many more . : : :
: . . or superscripts has no special meaning, and is chosen for
coordinates thars,. It is useful sometimes, therefore, to

represent correlation functiofs, in terms of the partly fused convenience.
P party ; In isotropic turbulence the vect@®;,,,,(R) can only be

quantitiesS, . This can always be done: represedr; ,rj oriented alongR. This allows us the introduction of a scalar

asw(rj,ro) +w(ro,ri), and by substitution find the needed antit R) which depends on the maanitude Rf
relation. It can also be useful to chooggas the center of quantity Som 1 (R) whi P gnii

mass of all the coordinates iR,. We will return to such R,
relations when we need them. Szm+1(R)= 7 Sam+1(R). (2.9
One can fuse more points together. For example, we can

have only one separation vector distance, and form the |ater sections we use the objects defined here to study the
n-rank tensor fusion rules and their consequences.

Sh(R)=Sy(rolr) =S(rolr,r, - .. 1), (2.2 B. Basic properties of correlation functions

whereR=r—r,. Equationg2.1) and(2.2) can be understood in systems with flux equilibrium

as the limit of(1.8) when pairs of coordinates fuse together. The systems that we discuss are driven on a characteristic
For example, in going from{1.8) to (2.1) we fuse all the scale referred to as the outer scaleThis driving can be
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tion due to viscosity, and in the inviscid limit the kinetic
R energy is conserved. In three dimensions we deal with a
“direct” energy cascade in which the intake of energy on the
scaleL is balanced by dissipation on a small scal&L.

We invoke two fundamental assumptigris]

(1) Scale invarianceall the correlation functions are ho-
mogeneous functions of their arguments in the core of the
inertial interval n<<|r;—rq|<L:

Fa(NFL NI o N AT =N (g T 5T,
(2.6)

where £, are scaling exponents. It is obvious that all the
other types of correlation and structure functions that ema-
nate from this most general quantity and which were detailed
in the preceding subsection share the same scaling expo-
nents. Accordingly,, is also the usual scaling exponent of
the nth-order structure functior2.3). We should stress at
FIG. 1. The geometry of fusion of type A. Lines connecting this point that this assumption does not follow from the scale
points indicate velocity differences across that distance. In this exinyariance of the structure functions. The latter can be scale
ample there are three velocity differences across small separatiofgyariant even ifF, is not.
(of_ the order ofr) and two velocity differences across large sepa- (2) Universality of the scaling exponentis means that
rations, of the order oR. we can fix an arbitrary set of velocity differences on the scale
of L, and the scaling exponents of the correlation functions
achieved by either a time-dependent low frequency “stirringwill not depend on the precise choice of thescale motions.
force” or by specifying given values af at a set of “bound- Mathematically this is expressed as the following property of
ary” points with a characteristic separatioraway from our  the conditional average: if for<n |r,—r/|<L, and for
observation pointsg,ry,r;, etc. The system suffers dissipa- i>n, |r{ —r;|~L, then

(W(rg,r)W(rp,rg) - - W(rn, F)|W(rye1,Fneg) - - W(Fan s Fhen))
=Fn(ry,ry; ... ,ré)an,N(rnH,féH; RN FRVIN (AN B (2.7

The precise meaning of the universality assumption is that the funcligrisave the same scaling exponentskasin the

inertial interval. They may be different functions in the inertial interval and in particular they may differ in their crossover to
viscous behavior. Theidiffereny crossover scales may depend on the large scale motions that were fixed in the conditional
average.

C. Fusion rules for the fusion ofp pairs of points in velocity differences(type A)

1. General case2<p=n-2

The first set of fusion rules that we derive concefgswhenp pairs of pointsry,ry, ... f, ,r; (p<n) which involve p
velocity differences tend to some poirg, see Fig. 1. Here we exclude the special cgsed andp=n—1 in which the
leading scaling contribution vanishes by symmetry. We will consider these special cases in the next subsections.

Consider the situation in which the typical separation of all the coordirrates . ,r;, from ry is r, whereas all the other
separations remain much larger, say of the ordd®,af<R<L. We will show, on the basis of assumptions (1) &8&4, that

Fa(re,ris .. r)=Fp(re,rys ... ;rp,r;)\lfn,p(rp+l,r[’)+l; ceina ), (2.8

where Ep is a tensor of rankp associated with the firstp tensor indices ofF,. The (n—p)-rank tensor
lIfn,p(errl,rg,H; ..., rp) is a homogeneous function with a scaling exporignt {p, and is associated with the remaining
n—p indices ofF,. The derivation of the fusion rul€.8) follows from Bayes'’s theorem. We write

Fa(re,ry; .. i ’rrq):f AW(rpsq,Fpeq) AW TOW(T g, Ty g) - WO ) PIW(T g, Ty g) - - - W(Tg,T) ]

X(W(T Y, F) WO, T5) - - - WO PO W(E 1T DW(T 2, ) - - W(En T)), 2.9
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WhereP[W(rpH,rl’Hl) Sw(ry, ,rr’])] is the probability to see 3. Fusion rule for one large separation distance

the tensom(rp1,ry. 1) --W(ry,rp). Next note the conse-  cConsiderF (ry,r};r,15; . . . ifa,r4) with all the coordi-
quence of assumption 2: the scaling laws of the correlatiopates being nearby except for, which is far away, a dis-
functions at scale are the same independent of whether weignceR from the remaining 8— 1 coordinates which are all
force the system on the scale>r or on the scal&>r. The  yijthin a ball of radiusr. Since we assume that the flow is

conditional average i(2.9) is proportional toF,, and hence isotropic, the tensoF, is a (generally reduciblerepresenta-
28. o S tion of the rotation group. Moreover, in the situation dis-
The first impression is tha2.8) means statistical inde- cussed here the isotropization of the small scébéshe or-

pendence of the small scale motion from the large scalegjer ofr) with respect to the direction &t=r;—r, leads to a
This is not so. The difference is that the assumption of stagjirect product structure

tistical independence would lead t,=F,F,_,. Indeed,

the first factorF, has the same order of magnitude and the e ( T 1 P SHNN JN 4
same exponent &s; in (2.8). However, the factoF,_, has "
a scaling exponent, _, rather thang,— ¢, which is the ex- —C =L a ,. byt
. =C—F "(R,ro,r5 . irg,rh). (2.1
ponent of W, ,. When all the large separations are of the R n (Rir2,r nif) (212

same ordeR, ¥, ,~ S,(R)/S,(R) which in the case of mul- ] ) o o

tiscaling is much larger thaR, ,~S, ,(R). We thus un- The constraint of incompressibility, which is always true,
derstand that the fusion rules in fact demonstrate the exisan be written as

ence of a very special statistical dependence of the small appag.ag, ... o . ) ) N

scales on the iarge scales. This dependence stems physically ~ V1 ©n "(ry T2, i, fp) =0 (2.13

from the existence of a direct energy flux from large to Sma”AppIying the divergence operator {@.12 we find the fol-

scales. We will see that it can lead to a totally unconvens b e of the incompressibility constraint:
tional scaling structure of the theory. We should stress that V"9 P y '

these fusion rules were derived from first principles for 9\~

p=2 in Navier-Stokes turbulendd] and for passive scalar C( 2+ R&_R) ng """ MRy, 1. i, rh)=0.

advection for anyp [18]. (2.14
2. Fusion of one pair of points in a velocity difference This equation has two solutiong) C=0, (ii) Enmlle.

As we mentioned the cage=1 in which the velocity However, according to the general ritg must be propor-
difference across a small scales|r,—r}| is correlated with ~ tional to Ré~¢n-1, Thus the first solution is realized; the
n—1 velocity differences across larger distances requires eontribution which isxRé~¢n-1 vanishes due to the incom-
special attention. A naive application of the fusion r(2eB) pressibility constraint. Therefore in order to find the actual
results inF,=F4(ry,r;) which vanishes due to space homo- scaling behavior we need to consider the next nonvanishing
geneity. In order to evaluate the leading nonvanishing tern¢valuation which iR independent:

N .
we expandu(r;) in a Taylor series around(r,), Fea oyt Perin, (219
N ’
u(r) =u(r) +Vau(ry)-(n=ry)+---. 210 qpeeqitis interesting. It means that in the case considered
) ) i here in which all the separations of orderexcept one
Using this we can write (which is of orderR, n<r<R<L) the scaling exponent of
. the correlation functionF,, is fully determined by small
lim Fo(re,rys .. 5ra,rp) r-scale fluctuations.
r—r In addition to these cases we will need below the fusion
rules for some special geometries of fusions of type A in
=(r1=r1) - Va(u(r)w(ra,rp) - - - W(rn 1)) which the generarevalugtion is inapplicable. Theseycl?ases are

) o ) treated in Appendix A and referred to as needed.
The correlation function in this formula depends on all the

separation distances, and the gradient with respeagtpaks

S . D. Rules for fusions of type B
up contributions from all the differencas—r,. Therefore P

the gradient can be evaluated as the inverse of the smallest of 1. Coalescence of two poin{p=2)
these,| V|~ 1/Rpi, whereRpi=minlri—r}. For r <Rp, Fusions of type B refer to situations in which there are
this leads to the evaluation p coordinates within a ball of small radius but no two

coordinates that belong to a velocity difference, see Fig. 2.
;. ) , The simplest case ig=2 in which|r;—r,| is much smaller
Fa(r1.fas. - i, fo) = mS“(R)‘ (21D than an)E) other sep:ration. Consi|dér thztla velocity differences
w(rq,r;) andw(r,,ry). They can be reexpressed as
This formula creates an immediate worry about the situation
in which R,,j, becomes of the order ofor smaller. We will
analyze this situation in Appendix A 1. Now we will consider
the next special case of fusion, whprn—1. W(r2,13) =W(rz,ro) +W(ro,r3), (2.1

W(ry,r) =W(ry,ro) +w(ro,ry),
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Clearly, the correlation function

f Fa(ri.riire,rairs,raifrcnd)

n =(W(ry,r)W(ry, ro)wrg,ra){wi"=3) (2.20

has three types of contributions. The first” is indepen-
dent of the small separations,

FO=F(rg,rl;ro,r5:To0.r5:drarib). (2.21)

2r The second type of contribution has either one velocity dif-
ference or a product of two velocity differences across a
small separation. Both these contributions have a leading
term that is proportional to‘z. The third type of contribution
FIG. 2. The geometry of fusion of type B. Lines connecting has a product of three velocity differences across a small
points indicate velocity differences across that distance. In this eXseparation and is proportional t&. In conclusion, the scal-

ample there are three velocity differences across large separatioqﬁg behavior is similar to the one displayed in EA8), with
but three coordinates within a ball of small radius the addition of a term constant in Fgo)

wherero=[r,+r,]/2. This allows us to write 3. General case: fusion of n points without velocity difference

(W(r g, r)W(ro, T IW ™2y =(W(r},ro)w(rs,ro){w}"=2) The above discussion of fusion of type B of two and three
) o points allows us to offer a general statement concerning the
—(W(rq,ro)w(ry,ro){wi" =) asymptotic behavior ofn-point correlation functionsrF,,

whenp of the coordinates are separated from each other by

_ ’ n-2
(W(r1,ro)w(rz, o/ {w}™ %) small distances of the order of and 2n— p coordinates are

+<W(r1,r0)w(r2,ro){w}“*z). separated by a large separation of the ordeR.dh terms of
the definition(1.8) we will take thep close-by coordinates as
(2.17 r,f2,....fp, and the 2—p coordinates aspq,... Iy
Here we used the shorthand notatipm}"~2 to denote the ~and Fiy.-. ,_r,’1 Recall that this choice means that we do not
remaining product oh— 2 velocity differences. have velocity differences across small scales.

The first term on the right-hand side is independent of the 10 See the asymptotic behavior we need to repeat the
small separation, and is a homogeneous function of the larg@Hbstitutions of the type2.16 and(2.19), i.e., for I<j<p
separations with a scaling expongfit The next two terms , ,
contain one velocity difference across small separations W(ry,Fj ) =W(rj,ro) +W(ro,fj,). (2.22
which according to the discussion of Fig. 1 is proportional to )
ré2. The last term has two velocity differences across a smaff\s before, the center of masstig=(Zf_,r)/p. The result
separation, and is also proportional to the same factor. Thigf this substitution can be readily guessed from the cases
allows one to formulate a fusion rule of type B for fusion of P=2,3:
two points (not associated with velocity differencen the 0
following form: Fa(r1, s fhidr ) =Fio + 22 FO. (223
Fa(r,riirz,osdnond) = Fa(ro,risra, rai{ne rd) J
_ r\ & In this formulaF{?) is independent of the small separation,
=Sz(|r1—r2|)\pn’2(r0;r1,rg;{rk,rﬁ})a(ﬁ) Rén. and each ternFﬁ"J; originates fromj velocity differences

across small separations. These velocity differences are
(218 w(r;,rp) wherei<p. There are alway<)=p!/j!(p—j)!
) different products ofj velocity differences across small
2. Coalescence of three pointp=3) scales ianj’)p More explicitly,

The next topic of discussion is the fusion of typdith-

out velocity differences of three points(say ry, r,, and @

r3), as shown in Fig. 2. As before, the separations between Frp=

these points are all of the order pfand all the other sepa-

rations are much larger, of the order Bf R>r. As in the

case ofp=2 we denote the center of mass of these coordi- F(3)={

nates agy: ro=(r,+r.+rs)/3. We express the two of the np

velocity differences according t@.16), and the third veloc-

ity difference in analogy: etc. On the left hand side of these equations the functions

Ff{)p depend on all the coordinates. The functignis a ho-

W(r3,r3) =W(rs,ro) +w(ro,rs). (219  mogeneous function of separations;—r,, with a scaling

P
> Sz(ro|ri1,ri2)}‘l’n,2, (2.29

i15p=1

p
v.3, (229

Se.(ro|"i11ri2,ri3)

i1>ip>ig=1
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exponent; . The functions¥,, ; are homogeneous functions
of n—p large separationg,—rq (with k=p+1,...n) and

n large separations,—rq (with m=1,. .. n) with a scaling r>>R
exponent,— ¢ . Schematically we can summarize the scal-
ing behavior ofFY)), as

é’.
. r ]
FgJ;)oc(—) Rén, (2.26 o ,
: R FIG. 3. The geometry of fusion with a mixture of type A and B.
p —_—.
We stress that since we are concerned with the limdR, Fa(ry,ry; ... ;rp,rr’);{rk,r;})=2 Fg”p (2.27)
i=q

the leading term in2.23 is alwaysF\%) which is indepen-

dent of r. The leadingr dependence is carried by There is no constant term now, and the leading-order contri-

Fffr))“fgz- This does not mean, however, that the higher-pution is proportional ta‘a. The exceptionas always is

order terms in(2.23 are unimportant. They will provide the that whengq=1 the leading scaling behavior i$2. We note

leading-order contributions to correlation functions of veloc-that the function;g:“(n% are different from the analogous func-

ity gradientsas will be shown in Sec. Il G. tions FY). but they have the same scaling behavflt';f;j,)

ocRgn(r/R)éj. The explicit expressions analogous (121225

and (2.295 can be written down when needed. We will find

that the subleading terms contribute the most important con-
In this subsection we consider the even more general caggbutions in various situations.

in which we have within the ball of small radiusy pairs of

points associated with the velocity differencegr;,r/) F. Fusion rules for the fusion of two or more groups of pairs

(1si=q), and (p—q) points(sayrqs,...,I,) associated The next set of fusion rules is obtained for the structure

with velocity differences across large separations of ordefunction F,, when two groups ofp and g points (with

R>r, see Fig. 3. The rest of the coordinatgsry ,k>p are  p+q<n) tend tor, and ro, respectively. The separation

separated by large distances of the ordeRofor this case between these groups of points is of the orderRofThe

we need again to reexpresp-q) velocity differences derivation of the fusion rules of type A for the simplest situ-

w(r| ,rj’) (forj=q+1,...p) inthe manner 0f2.22, andto  ation when all the coordinates are differéand separated by

substitute these into the definition Bf, (1.8). The result of r or by R) obviously follows from the same basic properties

this process is an equation similar(@23), but with impor-  of velocity correlation functions which we discussed in Sec.

E. Mixture of A- and B-type fusions

tant differences: Il B. The result looks similar to Eq2.8):
|
Fo(ra,ris o) =Fp(ra,rs o g M) Fo(Tpeas o -+ - prgoFprg) Whopa(Tptqe 1 pgets - - - 5Fnsln)-
(2.28
|
The scaling exponent o, , 4 is {,—{,—{q- As in the G. Fusion rules for correlation functions including unfused
case of the fusion rule®.8), also(2.28 arenot decomposi- velocity gradients

tions into products of lower-order correlation functions, and |, this subsection we use the fusion rules obtained above
the functionsW are not correlations of velocity differences 1, eyalyate the leading-order scaling behavior of correlation
across large separations. As before, the functiinsare  fynctions that include unfused velocity derivatives. To be
much larger than the corresponding correlation functions i%pecific, consider thej-order derivativesV,V,, ...V,
a_II _S|tuat|o_ns with multiscaling. Evidently one can derive i, V,=4ldr;. We are going to apply thig-order deriva-
similar fusion rules for three, four, or more groups of coa-iye on correlation functions wittp fusing points, with
lescing points with large separations between the groupg<p such that the derivatives operate only on coordinates
The structure of the resulting correlation function will be ayithin this group ofp points. We will also consider a con-
product of the correlation function associated with eachstrained derivative, i.e., such that; + Vo + - - +V,=0.
group times some functiod’ of big separations which car- jth such a derivative we get a particularly simple result.
ries the overall exponent. There are two situations to consider. If thefusing points
The generalization of these fusion rulgenich are of type  undergo a fusion of type A, the leading scaling behavior of
A) to the more complicated cases with fusions of type B orthe g-order derivative is simplyr~9. In the case of fusions
to mixed types of fusion is now obvious: we can considerof type B we consult with Eq(2.23 and find that the
every group of points separately in the way that we discusselading-order contribution with respect to the small distance
for the case of fusion of just one group of points. ris
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Vi VyFa=V;-- ~Vq§q(r0|r1,r2, Co W the direction ofp using the general requirement of incom-
(2.29 pressibility:
I - ; . ~a PaP
The contributions arising from the ternd) all vanish un- FSP(p)=A| (2+ () 8ap— Lo pzﬁ pe2. 3.1

der the derivatives. To see that this is so fosja<q we

recall[cf. (2.24), (2.29] that although the functions’ de-  This form is standard for the second-order structure function
pend on all th§p separations; —ro, it is a sum of functions  jn jsotropic turbulence. We reiterate that when we extract
S; each thWh'Ch de?_ends only on a subsej aimall sfepa—h F, out of a many-point correlation function in the process of
rations. Thus we find a nonzero contribution for t €tusion, there is the issue of the directionfvith respect to

g-order derivative only from terms with=q. The leading  ,iher vector separations which we address next.
contribution forr <R always comes from thg=q term. It is

noteworthy that this contribution is independent of the re-  gypleading contributions: effect of helicity and anisotropy
maining p—qg small separations, if they exist.

In summary, the rule is that when we fupecoordinates
on which g gradients are applied, the correlation function
scales asymptotically as'e™ 9Rén~¢p for fusions of type A ;
andréa~9Rén~ for fusions of type B. The second resultis 1€ analysis of these terms depends very much on the
independent of the number of additional points in the ball ofn"’mirae of the two-point scalar correlation functién(p)
sizer that do not have a gradient applied to them. Thesé=F2" (p) in anisotropic turbulence. When the forcing of tur-
additional points can be even fused together or wjthThis bulence is isotropic, this function depends on the magnlt_ude
result will be the starting point for the discussion of thelpl only. In general, however, the dependence on the orien-

correlation function7, of the balance equation. tation of p with respect to the anisotropic forces may be
important. It is useful therefore to represefi(p) as a

“multipole” expansion according to

The dependence on the anglepak an interesting subject
that deserves full analysis in a separate study. Here we only
touch on some of the essential issues.

Ill. THE FUSION OF TWO POINTS: TENSOR

STRUCTURE AND THE EFFECTS OF ANISOTROPY -
_ , _ Fap)=2 Fa,(p), 3.2
In the preceding section we focused on the scaling expo- /=0

nents that characterize the leading contribution to the corre- 4 o
lation function in the asymptotic regime when some points Fo (p)= E Y/m(f))f Fo(pdY, m(dE (3.3
fused together. In this section we address the tensor structure m=-/
of the correlation functions, and the subleading terms that . R . .
exist because of the dependence on the angles between ththis expansion thg=pl/p, & is unit vector, and the func-
small separation vector and the remaining large separatio#onsY  m are the standard spherical harmonics. We chose to
vectors. This second subject is related to the rich and impor€xpand in these functions since the relevant symmetry group
tant issue of the decay of the effects of anisotropic forcingin our problem is the group of rotations & In a scale-
and we do not exhaust this issue in the present section. Sonfdvariant situation we expect that each componént
of the results are relevant, however, in a much broader corfcales as
text.
Fo, xph, (3.4
A. Tensor structure in the fusion of two points . .
and in general the exponengs depend ory’. That this is so
In all the previous discussion of the fusion rules when twowjith universal exponentg, was proved18] in the case of
points (say r; andr,) were fused we focused only on the Kraichnan's model of passive scald], but there is still no
scaling exponent of the functidf,(p) with p=r;—r,. Here  analogous proof in the case of Navier-Stokes turbulence. We
we will go further in examining the structure of the resulting will assume, in order to proceed, that the exponghtexist.
correlation functions. For /<2 which we discuss explicitly we believe that these
The fusion of two points involves just one small separa-exponents are also universal.
tion distancep=r;—r,. In general the asymptotic behavior =~ Under these assumptions the calculation of the subleading
of the correlation function may depend on the angle betweegontributions to the fusion rules in the case of the fusion of
p and the remaining large separation vectors. This depernwo points is straightforward. We first consider the partial
dence is discussed in the next subsection. Here we considgaceF“ of then-rank tensoiF,, with respect to the first two
the isotropic part which will be shown to be the leadingindices. Next we decompose it into spherical harmonics ac-
contribution. It is easy to determine the dependende,afn  cording to the “multipole” expansiof7]:

©

Frd(rot+zpro—am{rc.re) :Zo Fao(rot ipro— 3 {r i), (3.5

;
Fﬁf}(r(ﬁ-%p,l’o—%p;{rk,ré})zm;/ Y/m(i))f Fa(ro+3p& o= 3pE{N MY, m(HE, (3.9
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The first term,F{ G, corresponds to the leading contribution Egﬁ(p)IeaﬁnyyEz (p), Foup)xpfr  (3.1D
with the scaling behaviopsR(én~¢2) which was discussed ’ ' ’

above.(Remember t_haRa'f the characteristic sepa_ratlpn N The physical origin of this term in the multipole expansion is
the correlation functior;“.) The next-order contributions 4 |oca| flux of helicity. Even when the average helicity flux is

are given byFi%, zero, the local value of the flux conditioned on the velocities
va R , fixed at certain coordinates may be nonzero.
Far(rriira,oi{nGrd) The exponenis, is the leading exponent describing the

rate of decay of the effects of anisotropy, and may be com-
puted using perturbation theory, disregarding the nonpertur-
The scaling behavior 0?2/ can be read fron{3.4) under bative effects which are the subject of this paper,[Q@_eZ]],

. - o . and references therein. The resuliBis=4/3, and again one
the usual assumption of universality; the two points that fuse

together relate to the unfused points in the same way that theexpects this result to be numerically close to the truth. We do

two-point correlation function relates to the anisotropic forc-EiOthzcr)i;?:gspg;szr:éyaznxen:; degg?grgﬁ:'gfgfg?gggtee d
ing. We can thus write with impunity Y ' g

that these exponents are universal. These issues have to be
considered independently in the future.

=Fo (P W (Foiri Toi{ra ). (3.7

Fo, opfl, W, RO FL. (3.9
To estimate the value @8, and B, we need to understand IV. GENERALIZED BALANCE EQUATION
what is the physics that determines them. In fact, since we o _ )
considered the partial trace of the correlation function, we A. Derivation of generalized balance equation

end up with F, which is even under the transformation  The starting point of this analysis is the Navier-Stokes
p— — p. Accordingly, although the exponents are as stated irequations for incompressible flows:
(3.8) the coefficients of all odd” quantities are zero. In order au(r.)
. /) H H - u r!
to examine odd” contributions one needs to form a correla +u(r - Vu(r,t) + Vp(rt) = »V2u(r,t),
tor which is not even irp. As an example we consider

F5P(p)=(U,(r+p)ug(n —u,(r—pugn). (3.9 V.-u(r,t)=0. (4.1)

Since this object is manifestly odd ip it vanishes when ) _
there exists inversion symmetry. For turbulence with nonn general we need to add a forcing term to these equations.
zero helicity Fgﬁ(p)g&o and the leading contribution to It was shown in[4] that as far as the balance equations are
F28(p) [which is F2£(p)] is determined by the flux of he- concgrr)ed, the effect of the forcmg term is felt in the energy
licity. This is reminiscent of the flux of energy which deter- containing s_cgles only. For this reason we do not write the
mines the leading contribution to the second-order structurg)rcm.g e>_<p|_|C|tIy. As usual_the gradient of the pressure in
function. Standard K41 dimensional reasoning leads to th 4.0 |sHeI|m|nated.by applying the .transverse projection op-
prediction 8, =1, see, for exampld;11]. This holds prob- eratorP. The Navier-Stokes equations take on the form
ably with the same accuracy as the K41 prediction fer
which is ¢,=2/3 instead of the experimental value au(r,t)
{,~0.70[12,13. ot
We can easily determine the tensor structurEg‘ﬁ(p) in
isotropic incompressible turbulen¢ie the absence of inver-
sion symmetry.

FS8(p) = €apyp,F21(p), Faxlp)xpPt,  (3.10

where €,4, is the fully antisymmetric unit tensor
(€123= — €213=1). As we mentioned, in the presence of in-
version symmetryF,(—p) =F,(p) and all terms which are where the kerneP,,4(r) is the following difference:

odd in/_in (3.2 are zero. On the other hand this is not the

case for, /(p), which appears in the fusion of two points in _ _pll

a many—po/int correlation function. Even if the turbulent flow Pap(n)=0apd(1) = Pag(1). @4
itself has inversion symmetry, the geometry of all the points I ) o ) )
appearing in(3.7) can lead to nonvanishing odd compo- HereP,(r) is the kernel of the longitudinal projector wh_|ch
nents ofEZ/. The positions of the points,r}, . . . aresuch appears here due to the effect of the pressure term in the

that there is no inversion symmetry around the center of thé\lavier-Stokes equation:
fusing coordinates; andr, which isro=(r;+r,)/2. There-

fore F, (p)#0 and because of the same constraints it has pll (= i
the same tensor structure @&10: ap A7

+P[u(r,t)-V]u(r,t)=vV2u(r,t). (4.2

The application oP to any given vector fiel@(r) is nonlo-
cal, and has the form

[Sa(r)]a=j dr'Pg(rag(r—r’), 4.3

Sap  3lalp
r3 r5

(4.5
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Given the equation of motion we can take the time derivativeand the “dissipative” termZ7,, originates from the viscosity
of Eq. (1.8). We find term in the Navier-Stokes equation:

aw(ry,ri,t)

n , )
R VR s
E W(ry, 1)) s ——— (et Tn(ry,1g nin)

(4.6) n

o o . . =2 (VEHVE(W(ry,ry) . Wi, 1) .. W(ry, ).
Substituting Eq(4.2), and considering the stationary state in =1
which 9F,/9t=0 we find the balance equations (4.9

, , ) , In writing these equations we used the fact that in the sta-
Dy(r1,ras -« sfnf) =Tn(feris -« M), (A7) tionary state the time designation is unneeded. We also used
the following shorthand notation:
where the “interaction” terntD,, stems from the nonlinear

and pressure terms:
. (Su.Vu)j“=Jdrpaﬁ(r,-—r)uy(r)vyuﬁ(r), (4.10
Dy(ry,r7; - - ;rn,rr’]):jz:l (W(rq,ry)---[(Pu-Vu);

- and denoted ijZ the Laplacian operator acting am.
—(Pu-Vu);,]---w(rp,ry)), (4.8  Equation(4.8) can be written explicitly in the form

n
Dz “”(rl,ri;...;rn.r,;)=j§1 fdrPajﬁ(r)<wa1(r1,r1)---Lﬁ(r,-,rj',r)---wan(rn,r;», (4.19)

n

E [u(ry) +u(ry)] (4.14

where

I\)lH

L(ry.ri n)=[u(rj=n)-Vjug(r;—r)
—u(r{=r)-Viug(r/—-n]. (412

and the following velocity differences:

. w(r)=u(rj—u, w(rj)=u(r)-u. (419
Now we begin to analyze the balance equafigh?), (4.9,
(4.1, and(4.12]. For brevity we do not display hef@nd below arguments of
the velocityu. Using(4.15 we can preserit ; in (4.12 as a

B. Galilean invariance of the generalized balance equation ~ Sum of two terms:

The balance equation must be Galilean invariant. Equa-
tion (4.9) for 7, depends only on velocity differences and La(rjrf D=LP(rjr] .n+LEr.r/r). (416
clearly is Galilean invariant. This is not so obvious in the
case of Eq.(4.11) for D, becausel; in (4.12 contains Here the first term depends only on velocity differences:
velocities itself. In order to clarify the Galilean invariance of
D, let us express ; via velocity differences only. The first

Der v p=Iwr.—r)-V. '—1).V!
step is to subtract fromg(rj—r) under the derivativ¥y/; the L (11 D =[w(rj=n)- Vi +w(rj —=n)- Vj]

velocity ug(r{ —r) (independent of;) and fromug(rj —r) XWg(r;=r,1] =T). (4.1

under the derivatiij’ the velocityus(r;—r) (independent

of rj). Then Eq.(4.12) takes the form However, the second term does not have this property:
L(ry,rir)=[u(r;j—r)-V;+u(rj—r)-V/] LE(rj 1 D =0-[V;+ V] Iwg(r;—r,r/ ). (4.18

XWp(r =11 =1). @13 Appendix B we show that this term gives zero contribu-
tion to Eq. (4.1 for D,,. Therefore we can get an expres-
For the next step let us introducgr,,ri;...;r,,r)) asthe sion for D, by replacinglL ; in Eq. (4.11) with L(Bl) taken

mean velocity over all & space coordinates: from Eq. (4.17):
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__Jd _
[uy(rj—r)—uy]WJr[uy(rj’—r)—uy]
Y

ari,
xwﬁ(rj—r,rj’—r)...Wan(rn,rr’])>. (4.19

This expression fofD,, depends only on velocity differences and therefore the Galilean invariance becomes obvious.

C. Locality of the interaction term

We begin to analyze the interaction ter, (4.19 for the most general configuration for which all tha 2oordinates
s rj’ are different, and all th@(2n—1) separations are of the same order of magnitude, which we design&e Hyis
analysis wherR is in the inertial interval follows the ideas of the analysis presentdd]isec. VI A for the interaction term
of the structure function. The interaction term that we face here is a significantly more complicated object. The main point is
that the integral over appearing in Eq(4.19 for D,, is “local” in the following sense. First it converges in the “ultraviolet”
(UV) limit. This limit has to be considered) whenr—0, (i) when (;—r) becomes very close to any of the121
coordinates other thar, and(iii) when (rj’ —r) becomes very close to any of the2 1 coordinates other tha'rj . Second,
it converges in the “infrared”(IR) limit whenr—o. The idea for the proof of these properties lies in the use of the fusion
rules which we discussed in Sec. Il.

1. Ultraviolet convergence

To demonstrate the convergence of the integrabinin the ultraviolet region we can consider any term from the sum on
j. Writing uy(r,-—r)z[EL‘:luy(rj —r)]/n, and using Eq(4.14), we consider one of thk terms in the sum. The integral that
appears is of the form

1 J
I=5J AP (1) 2= (W (T, 1) - - Wy (1= LW (=1, 1] =) - W (1)) (4.20
1y

As the coordinate is being integrated over, the most dan- respect tor; could be evaluated asrlivhenr;=r,. How-

gerous uItrayioIet.contributio.n comes from the region Ofever, if we take into account the tensor structureF@‘fB
smallr. In this region the projection operator can be evalu'displayed in Eq(3.1), we see that this dangerous contribu-
ated as 1F. Other coalescence eventsrowith other coor- ._tion vanishes. Accordingly, the derivative is evaluated as the
friverse of the distance betwegnand the nearest coordinate
in the correlation function, leading to convergence in the
ultraviolet.

tion operator does not become singular. Whebecomes
small, there are two possibilitie§) rj#r, and(ii) rj=ry. In

the first case the correlation function itself is analytic in the
region r—0, and we can expand it in a Taylor series 2. Infrared convergence

const-B-r+--- whereB is anr-independent vector. The i

constant term is annihilated by the projection operator. The 10 understand the convergenceD%, when the integra-
term linear inr vanishes under ther integration due to tion variabler becomes very large we can consider again the

r——r symmetry. The next term which is proportional to tyPical term(4.20. The relevant geometry is shown in Fig.
r2 is convergent in the ultraviolet. In the second case we There is one velocity difference across the coordinates
have a velocity difference across the lengthAccordingly ~ 'j—F andrj—r (which is shown on the right of the figure

we need to use the fusion ru{d4), and we learn that the (n—1) velocity differences across coordinates that are all
leading contribution is proportional 2. This is not suffi-  Within a ball of radiusR (at the left of the figurk and one

cient for convergence in the ultraviolet if the derivative with velocity difference across the large distamoshich is much
larger tharR. In the notation of this figure the leading-order

contribution for larger is obtained from the fusion rules
(A4) for the situation on the right an@.8) for the geometry
on the left. The resulting evaluation for the leading term is

N2

[ocrénea| L
r

r

R {n-1
) . 4.2)

On the face of it, this term is near dangerous. For K41 scal-

FIG. 4. Typical geometry withr(—1) velocity differences ina ing ther dependence cancels, and the integral is logarithmi-

ball of radiusR on the left separated by a large distanzeR from  cally divergent. For anomalous scaling the integral con-
a pair of points on the right. verges sincel,.1={,_1+{, due to Hoelder inequalities.
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This convergence seems slow. However, the situation is imnomalous scaling exponengs, ;# (n+1)/3. It should be
fact much safer. If we take into account the precise form ofstressed that the evaluatiof.22 remains correct for every
the second-order structure function in the fusion rules weaerm in D,, but various terms cancel to give zero in the
find that the divergence with respectridranslates in factto homogeneous equatioprovided that the scaling exponent
&557(Rj)/¢9Rj7 which is zero due to incompressibility. The ¢, is chosen correctlyTo make this important point clear we
next-order term is convergent even for sim#et1) scaling.  exemplify it with the simple case=2 for whichD,, can be
This completes the proof of locality ¢#.8). The conclusion greatly  simplified. Consider the scalar object
is that when all the separationsy are of the same order of Fp(ry,r7,r,,r5) =(W(r{|r;)-w(r,|r3)). The terms in the sca-
magnitudeR, the main contribution to the integral i@.8) lar balance equation for this case are exactly

comes from the region~R. Therefore the integral can be

evaluated by straightforward power counting, leading to Dy(rq,5,F2,15)=d[S5(r 1) — Ss(r12)1/2dr,
R +d[Sa(r1r2)— Sa(ruz)J/2dry,
p,~ SR 22 :

R (5.7

It should be stressed that a more detailed analysis demon- jz(fl,fiyfzvfé)ZV{Vf[sz(fnr)—sz(flz)])
strates that when the separatignbetween the coordinates
that do not involve velocity differencese., separations like +Vi,[82(r1,2)—82(r1,2,)]}. (5.2
Ik but notR;) go to zero, the evaluation does not change. A
direct proof of this fact for the case when all such separation¥Vhen all the separations are of the orderFofve can see
are fusedi.e., the standard structure functjomas presented explicitly that J,~ vS,(R)/R? which is much smaller than
in [4]. On the other hand, if we consider fusions of type A, ineach term inD,. Considering the scale-invariant solution
which coordinates across a velocity difference coalesc&;(R)=AR¢ whereA is a dimensional coefficient, we see
(p=R;), we need to be more careful. When two points un-that
dergo a fusion of type A the rough evaluation B, is
{[dS(p)/dp]1} Shs1(R)/S:(R) ] whereR is the characteris-
tic value of large separations. However, taking into account
the tensor structure of the first factor one sees that it vanishes
due to the incompressibility constraint. In the next-orderObviously the solution foD,=0 requires the unique choice
term the evaluation of the gradient isRlandD,,—0 when  {3=1 which is the known exponent f@&; [14]. The coeffi-
p—0. cient A is now determined as, which is the mean energy
dissipation per unit mass and unit time.
D. The dissipative term We presently do not know how to find the homogeneous
. ) . . solution of the equatiorD,=0 for higher values oh. We
The evaluation of the quantity/, is more straightfor- a6 even not fully confident that this is an equation in the
ward. When all the separatiog andr;; are of the same ;g5] sense and not just a constraint that will not be sufficient
order R, the correlator in(4.9) is evaluated simply as o 5 ynique determination of the scaling exponefiis We
Sn(R). The Laplacian is then of the order oRfl The evalu-  fee| however, that this is an interesting equation that will
ation is offer interesting and worthwhile insights.
Sn(R)

jnNVT- (4.23 VI. THE DISSIPATIVE SCALING FUNCTIONS

-1 - -1 -1
{3 —rés 1+r§3 _rla ]

, . A
Dy(ry,rq1,r2,r3)= 2 [ri> 12 172 172/

. In this section we consider the dissipative “scales” and
When one of the separations becomes much smaller than tR@ow that they are actually scaling functions. To define prop-
rest the evaluation can be read directly from the definitiorerly the dissipative length we use the fact that there is a
(4.9 and from the fusion rules. Denoting the smallest sepacrossover from the scale-invariant solution of the homoge-

ration byr i, we write neous equation to dissipative solutions whén becomes
comparable to any of the termsIm,. This happens when at

T~ Sy i) Sh(R) (4.24) least one of the separations appearin¢bir2) becomes small

n ™S, (R)IFZ,, ' enough. Denoting the smallest separation gswe evaluate

To~vSy(r min)/r2,, From this we can estimate, using the

balance equationSy(r min) ~[Ss(R)/vR]r2,~ er2/v. In

the inertial range we havé&,(r)~ (er)?3(r/L)%2 %3 The
We noted that when all the separations involved in ourwiscous scalep, for the second-order structure function is

correlation functions are of the same order of magnitude, anthen determined from finding where these two expressions

when v—0 (which is the limit of infinite Reynolds number are of the same order of magnitude, i.e.,

Re), the termJ,, becomes negligible compared 19,. The o o

ratio J,/D, is evaluated as'S,(R)/RS,, 1(R), which for enalv=_eny)?(r/L)s2~ 25, (6.1

fixed R vanishes in the limiv— 0. Thus the “balance equa- L

tion” becomes ashomogeneoumtegro-differential equation Using the outer velocity scald, we estimatee~U/L and

D,=0 which may have scale-invariant solutions with end up with

V. THE HOMOGENEOUS EQUATION
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)

7,~LRe M7, (6.2 K= e(xy) e(X)W(rg|r]) - - - W(rg| 1)) R4

Note that this result is not in agreement with the ad hoc (7.2
application of the multifractal mod¢tL4,22,23 which pre-
dicts 7,~LRe 2(2+%2),

We are going to make the assumption that a similar
mechanism operates in the general case®#®. The ratio- \here R is a typical separation between any pair and
nale for this assumption is that a careful analysis of the in¢(x)=1|Vv(x)|2, and we are interested in the scaling rela-
tegra[s forD,, does not offer a visible .mechanism fora.can-_ tions between the exponenﬁsﬁp) and the exponents,,.
cellation of the leading-order evaluatpn. The mechan}smlmote that,ugz) in this notation is the well studieft7,17]
as follows: as long as all the separations are in the meruaé

I =(e(Xy) €(Xp) - - - €(Xg)WIT4|1]) - - ~W(rp|rp)yor R
(7.3

interval 7, is negligible. When one separation, e.g;s,
diminishes towards zero, and all the other separations are
the order ofR, the internal cancellations leading to the ho-
mogeneous equatio®,,=0 disappear, an®, is evaluated
as in(4.22. The termJ, is now dominated by one contri-
bution that can be written in shorthand notation as
vViF.(r12.{R}). We can solve forF,(rq,,{R}) in this
limit:

Fa(r12,{R)=r{Sh: 1(R)/ VR,

On the other hand we have, from the fusion r(2e28), the
form of the same quantity wheny, is still in the inertial

range, i.e.F,(r12,{R})~S,(r12)S,(R)/S,(R). To estimate
the viscous scaley,, we find when these two evaluations are
of the same order. The answer is

Gt i lnam e
2—-{ '
We note that the Hoelder inequalities guarantee fhat0

and increases witlm. We see that the viscous “length”
actually an anomalous scaling function.

(6.3

R\ *n
nn(R)Inz(E) , Xn (6.4

is

VIl. EXACT BRIDGE RELATIONS

In this section we derive importariand exact scaling
relations between the exponefdtsof the structure functions
and exponents involving correlations of the dissipation field.
We consider correlations of the type

I =(e(x)W(re|r}) - - - W(ry|r)ycR™#n ) (7.1)

n
}-n:ijzzl (w(rarg, 0 wirifrf

xponent of dissipation fluctuation which is denojedWe

begin with the rigorous calculation oM.

Consider (4.9) for Jn:+o(X1,X1:X2,X5:F1,F1, « - Fnulp)
in the limit x;—X,. The leading contribution in the limit
arises from the Laplacians with respect to the coalescing
points:

lim Jnpo=v lim (Vi+V3)

X1—Xp X1—Xg

X{U(X)U(X)W(Tr,r7) - -W(ry,r)).
(7.4

Moving one gradient around and taking the trace with re-
spect to the first two tensor indices we see that in this limit

(7.5

(n)

€

lim J2%,=—2K

r1—ro

As explained in the precding section, when the two points
coalesceD,, . , of the balance equation loses its internal can-
celations, and we can therefore conclude immediately that

Sn+3(R)
—

K~ (7.6)

In terms of the scaling exponents we are led to the exact
relation

(7.7

The scaling relations satisfied ) require considerations
of the second time derivative of the correlatidn8g).

1
:U’g ):1_§n+3-

)W) W), 0). (7.8

Using the Navier-Stokes equations for the time derivativegjescribed above, we can prove that the integrals owsrd

we derive a new balance equati@{?+ B = 7% where,
using the definition4.12),

n
Dﬁ,z):J drdr’ >, P(r)P(r’)
i£Z1

X(W(rg|ry)- - L(ri,rf,r)---

XL(rj,rf 1) - -w(rg|rp)). (7.9

Using the fusion rules and following steps similar to those

r’ converge. Accordingly, when all the separations are of the
order ofRR, every term inD{? is evaluated a$,, ,(R)/R?.
The term 7% takes on the form

n
TP =v2 3 (VY (VZ+V2)
ij=1

XQW(r|ry)- - -w(rfr) - - -w(rglr)- - -w(rp|rp)).

(7.10
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As before, when all the separation in this quantity are of theHowever, we have presented here a “two-dimensional” ar-
order of R, the Laplacian operators introduce a factor ofray of bridge relations depending on the indiaesand p
1/R?* and the evaluation of this quantity is whose experimental test with high Reynolds number flows
J§]2)~ 1?S,(R)/R?. Clearly this is negligible compared to with good resolution of the dissipative scales is highly desir-
typical terms inD? . The quantityB'?) contains a cross able, considering the putative exact nature of these relations.
contribution with one Laplacian operator and one nonlinear
term with a projection operator. The integral is again local,
and one can show that the evaluation is VIIl. SUMMARY AND CONCLUSIONS
B~ S, . ,(R)/R® which is also negligible compared to
typical terms inD?.

Now we consider the fusion of two pairs of coordinates,
e.g. r,—0 and rz;—0. As before, the cancelations in

In terms of predictions the theory described above has a
lot to offer. First, we have presented the fusion rules, and it is
extremely worthwhile to test them against experimental data.
D%Z) are eliminated, and the evaluation of a typical term©ne can achieve a reason_able test already by using existing
becomes the evaluation of the quantity. The other two termg""ta sets from atmpspherlc boundary layers or grid turbu-
in the balance equation also become of the same order b&NCe- In such experiments one measures usually at one space
cause the Laplacian operatové and V2 are evaluated as POINt as a function of time. Using the standard Taylor hy-
r;2 andrs?, respectively. As before, we can consider thePOthesis one can measure many-point correlation functions

resulting balance equation as a differential equation foff POINts placed along one line. Itis possible to examine the

Fu(r 12,7 34,{R}). The leading term in this equation is properties of such correlation functions when one distance is
much smaller than all others. Another prediction pertains to
412V2V2F (115,34 {RD~ B2+ D@ ~S,  ,(R)/R2 the viscous scaling function and the anomalous exponents
Xn that characterize them, see E6.3). To test these predic-
The solution is tions one needs a good resolution of the subdissipative scales

in a high Reynolds number experiment. Such data are not
Fa(r 12,7 s {RD~ 1543804 2(R)/VR2. (71D readily available, but very worthwhile to acquire. Another
) . () important point raised briefly in this paper has to do with the
Finally we can write the quantitie)C.” in terms of the cor-  get of exponentss, which govern the anisotropic properties
relation function as of the correlation functions. We noted elsewhfgthat the
n . same set of exponents characterizes the correlation functions
K5 =v?  lim OV1V2V3V4-7'-n+4(f12,f34,{R})- of gradient fields with nontrivial transformation properties
f12:f347 (7.1  under the rotation symmetry group. These were never mea-
' sured either.
Using (7.11) here we end up with the evaluation For the sake of clarity we want to reiterate at this point the
o set of assumpt?ons that underli.e our findings. Fir_st, thg fusion
7C(2T~Sn+e/R2°c R #n | “512):2_§n+6- (7.13 rules Were.denved on the bq5|s of two assumptions, i.e., the
homogeneity of the many-point correlation functions and the
For the standard exponept= MSZ) we choosen=0 and ob- universality of the scaling exponents,. The second as-

tain the phenomenologically proposed “bridge relation”  sumption has strong support from decades of physical and
numerical experiments. The first one was never checked, and
u=2—1_s. (7.14 in spite of the fact that it seems plausible, it is very worth-

while to put it to test. The locality of the integrals of the
This is a derivation of this scaling relation on the basis of theinteraction ternD,, follows from the fusion rules without an
Navier-Stokes equations. In general, if we haveissipation  additional assumption. However, in the derivation of the
fields correlated witt velocity differences the scaling ex- bridge relations we employed an additional assumption that
ponent can be found by considerimpgtime derivatives of there is no hidden cancellation in the leading evaluation of

(1.8), with the final result D, . If there is a cancellation, all the bridge relations change
(P significantly. For example, the relatign=2— {g which is
M =P~ Ln+3p- (7.19  pased on this assumption will changese=2¢,— ¢, if the

. leading-order evaluation cancels, and the next one does not.
We see that Eqd7.7), (7.13, and(7.15 can be guessed if This noint is discussed in detail [#]. To test this assump-

we assert thafor the sake of scaling purposéi®e dissipation tion one can, for example, measure carefully the bridge rela-

field e(r) can be swapped in the correlation function with 4jons to distinguish between these two possibilities.
w3(r4|r))/Ry, whereR, is the characteristic scale. This re-

minds one of the Kolmogorov refined similaribypothesis
We should stress thdt) our result does not depend on any
uncontrolled hypothesis, an() it does not imply the cor-
rectness of the hypothesis. Our result is implied by the re- This work was supported in part by the German Israeli
fined similarity hypothesis, but not vice versa. Foundation, the U.S.—Israel Bi-National Science Foundation,

We end this section by noting that the accepted values ahe Minerva Center for Nonlinear Physics, and the Naftali
© and g which are about 0.2 and 1.8, respectively, are inand Anna Backenroth-Bronicki Fund for Research in Chaos
good agreement with the standard bridge relat{@rl4). and Complexity.
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Fa(ry, 11t 1o {re i) = 3Fa(re,rre, rs{rea rid).
(A3)

The object on the right hand side has two velocity differ-
ences across a small separatignand n—2 large separa-
tions. Therefore it follows the usual fusion rul€®.8) for
p=2. Accordingly

FIG. 5. Special geometry of fusion that is discussed in Appendix
Al Fo(ry,risra e nd) =Fa(ry, r) Wi o 1)

APPENDIX A: SOME SPECIAL GEOMETRIES OF FUSION oc(L) ngén_ (A4)
AND THEIR IMPLICATIONS R
1. Special geometry of Fig. 5 This result was derived for the very specific geometry shown

As we discussed in Sec. Il C 2, the evaluati@ll) is  in Fig. 5. However, the last formula holds much more gen-
inapplicable when the smallest of the large separatisa$  erally. Even if we tilt the vector]—r; in an arbitrary angle,
Ir1—r2|=Rmin) (which is not associated with a velocity dif- the result remains invariant. The reason is that in the limit
ference becomes similar to small separations(across a <R the anisotropic effects of the large scales on the small
velocity differencg. To understand how to evaluate the cor- gcgles have already disappeared, as is shown in Sec. Ill. If
relation function in this case consider the liR{,;,=0 with e ruin the symmetry of rotation around theaxis we also
the help of the special geometry shown in Fig. 5. We havejp not change the final result. The change will be in the
four coordinatesty, ry, rp, andr; organized as shown in the factor in Eq.(A3) from 1/2 to a geometry-dependent factor
figure, i.e.,r;—r; along thez axis, r,=ry, andr, is on the  of the order of unity. We can even dissociajdrom r, over
x axis, with equal distances tq andr; . This special geom- distances of the order df;—r,|. Equation(A4) is rather
etry will help us to derive a result that holds more generally.universal.
In addition to the velocity differencesm(r,,r;) and
w(r,,r;) we can have any number of velocity differences
w(r;,r{), but we demand that the product of all the addi- ) T ) .
tional n—2 velocity differences(denoted in shorthand as !N Fig. 6 we show a situation in which there exist two
{w}"~2) remains invariant to rotations af radians around vglocny dlfferencgs across short_ dls_tances. The_dlfference
the x axis. In Fig. 5 we show two such additional velocity With the general situation shown in Fig.(for p=2) is that
differences acrosss—r} and r,—r. We will write the we have a fusion of points belonging to short and long sepa-

nth-order correlation function in shorthand notation as rations, I.€.,r>=rs. The same type of f_u5|on eX|_sted also n
Fig. 5, but there was only one short distance with a velocity

Fn(rl,ri;rz,ré;{rk,r{<})=(w(r1,ri)-w(rz,ré){w}“*z). difference across it. Now we have two. According to the
(A1) general rule we should have a contribution that is propor-

tional to ré2. The aim of this special discussion is to show
By definition w(r,,r5)=w(r,,r;)+w(r;,r;). Remembering that in this case there exists a subleading contribution that is

2. Special geometry of Fig. 6

thatr,=r, we get proportional tor¢s. This is important in the analysis that
involves the calculation of gradients with respect to these
Fn(re,rriro,thi{rc i) =Fo(re,rrs rhidrerid) positions. To this aim consider the correlation function
+Fn(rergirer{nand).
R
(A2)
L
Due to the rotation symmetry the first term on the right hand .
side of (A2) may be written asF,(ry,ry;r.,r2:{re.re}),
which by definition is the—F,(ry,ry;ro,r5;{r¢,re}). Finally
we derive the identity I
Zy {
I
1 ' 1‘; 2r
'\l/'x
I=L=1

FIG. 6. Special geometry of fusion that is discussed in Appendix FIG. 7. Special geometry of fusion that is discussed in Appendix
A 2. A 3.
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Fa(ry,riira,rara,raid{rerd) wherez is a unit vector in thez direction. We again use a
shorthand notatiofiw}" 2 for the product ofn—3 velocity
= ([W(rq,r)) - W(rg, 1) TW(rs,r5) - ZH{w}n—3), differences across large separations which depend on the co-

ordinates r,, r, and higher. Using now the fact that
(A5) wW(rs,rz)=w(rs,r;)+w(ry,r;) we compute

Fa(re,ir2, s ras{ne ) = ([w(ry,rp) - w(rz,rp) J[w(ry,ry) - ZJ{w}" %)
+ <[W(rl=ri) 'W(rZ!ré)][W( r3!ri) ' ,2]{W}n73>' (AG)
Rotating around th& axis we can rewrite the last correlator on the right hand sid@\6§ as the correlator on the left hand

side with an opposite sign. To see this note that all the terms are invariant except tive(tgrn) - z that changes sign. Thus
finally

Fn(rl!ri ; r21ré ; r3!ré ;{rk !rli}) = %([W(rl!ri) . W(rZ!ré)][W(rjll_’ré) : 2]{W}n73>' (A7)

This correlator has three explicit velocity differences across short distances, and therefore according to the general rule with
p=3 it is proportional tor¢3. In the general case without rotation symmetry the leading téenremains. Therefore we
conclude that in the geometry in which there are two velocity differences across a small separation and one point belonging to
a velocity difference across a large separafieee Fig. §, the correlation functiorr, can be written to leading order as

Fa(r 2.0 {ri i) = [Salre— ral) + o[ vy = r5) = Sp(| 1= 1) = Sp([r = r2l) W oo, 15 T i)
+[§3(ro|r1:r2 \3) +~S‘3("0|"i 1ré,r3)_§3(ro|ri F2,13) —ASJS(r0|r1,ré T3) W0 a(ro {r Mk

(A8)

whererg=[r{+r;+ry+ry+r3]/5, andﬁslz, '§3 ¥, ,, andW¥, 3 are homogeneous functions of their argumeirishe inertial

interval) with scaling exponents,, {3, {,— {», and{,— {3, respectively. The functio@ may be different from the function
S; in its dependence on the angles and the ratios between its argument coordinates. But they share the same scaling exponen

3. Special geometry of Fig. 7

In this subsection we consider the case in which there are four coordinates within the ballrotsizenly two coordinates
(r; andr;) belong to a velocity difference, see Fig. 3. The other two coordinateandrs) are in the ball, but they relate to
velocity differences across large separations. To understand the situation we again consider a special geometry, that of Fig. 7.
In this geometryr;=r,=r5; and we study the correlation function

Fa(r1, T2, i{re rich) = ((W(ry,rp) - ZIIw(rp,15) - W(rs, r3) {w}" ). (A9)
Making the substitutions
W(rp,r5)=W(rq,ry)=w(ry,ry)+wry,rs), (A10)
W(rz,rg) =w(ro,rg)=w(rq,ry)+wiry,rs), (A1l
we find that
2F (1,112, 5rs, g {ne i) = (Iw(ry,ry) - Z)wrg,ry) [H{w}"~3)
+([W(ry,r7)-ZIW(ry, ) - [W(rg,rp) +w(ry,r) {wp" ). (A12)
In obtaining this equation we used the symmetry under rotation around s in or. Under this rotatiom,—r; . The first
term on the right hand side has an explicit product of three velocity differences across a small distance, and it is therefore
proportional tor¢s. The second term has two velocity differences across a small scale, and according to the preceding

subsection it contains two contributions, one proportionaftand the other to“s. One can write it in a form similar t39)
and (40), but this is not needed at the moment.
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APPENDIX B: PROOF OF GALILEAN INVARIANCE

In this Appendix we prove that the quantitﬁz) which is not Galilean invariant does not contributeZ®, . Indeed, by
substituting(4.18) in (4.11) we have

(2)_2 f dr Pa ,B(r)<wa1(r11 1) ( Jar] rr)' : 'Wan(rniré)>' (Bl)

In its turn, this equation may be written as the difference of two tef®<)=D{? — D" which correspond to the two
terms in Eq.(4.4) for the kernelPaiB(r). By substituting in(B1) P,4(r) = 8,56(r) we have

n
,Dgza):jgl <Wa1(r1:ri)' (2)(rJ ,r ,0)- - -Wan(l’n,l’r’]». (B2)

Using the longitudinal prOJecth (r) instead of the transversal oifg, ﬁ(r) in Eqg. (B1) we have

’D(zb)_- fdl’ P B(N{W, (rg,r7) - (rl’rl ) We, (Mo o)) (B3

Let us show that both these terms are zéyot because of different reasgn€onsider the first expression deffa).
Substituting the explicit forng4.18 for ng)(rj ,rj’ ,0) and using the incompressibility constraiwhich allows one to commute

V;+V/ andu) one has

n
D=2, (Woy (110D ALV 4 V) UM (11D} - Wy (o) (B4)
This equation may be rewritten as
n
Dﬁf‘”:; (VE+VEUPW, (11, 1DW, (1,15 - W, (1o, Th). (B5)

Remember that due to space homogeneity the correlation function in the second line of this equation is independent of the sum
of coordlnate§” 1(r; +r ). ThereforeD(Za) is indeed equal to zero.

Consider next Eq(BS) for D). According to(4.18 LEew,(r;—r,r/ —r) and acting on this velocity with the longi-
tudinal projector gives zero because of the incompressibility constramt Thus we can concluﬂlﬁzﬁ%a{D(Zb)—O
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