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In this paper we address nonperturbative aspects of the analytic theory of hydrodynamic turbulence. Of
paramount importance for this theory are the ‘‘fusion rules’’ that describe the asymptotic properties of
n-point correlation functions when some of the coordinates tend toward one other. We first derive here, on the
basis of two fundamental assumptions, a set of fusion rules for correlations of velocity differences when all the
separations are in the inertial interval. Using this set of fusion rules we consider the standard hierarchy of
equations relating thenth-order correlations~originating from the viscous term in the Navier-Stokes equations!
to (n11)th order~originating from the nonlinear term! and demonstrate that for fully unfused correlations the
viscous term is negligible. Consequently the hierarchic chain of equations is decoupled in the sense that the
correlations of (n11)th order satisfy a homogeneous equation that may exhibit anomalous scaling solutions.
Using the same hierarchy of equations when some separations go to zero we derive, on the basis of the
Navier-Stokes equations, a second set of fusion rules for correlations with differences in the viscous range. The
latter includes gradient fields. We demonstrate that everynth-order correlation function of velocity differences
Fn(R1 ,R2 , . . . ) exhibits its own crossover lengthhn to dissipative behavior as a function of, say,R1. This
length depends onn and on the remaining separationsR2 ,R3 , . . . .When all these separations are of the same
order R this length scales ashn(R);h(R/L)xn with xn5(zn2zn111z32z2)/(22z2), with zn being the
scaling exponent of thenth-order structure function. We derive a class of exact scaling relations bridging the
exponents of correlations of gradient fields to the exponentszn of the nth-order structure functions. One of
these relations is the well known ‘‘bridge relation’’ for the scaling exponent of dissipation fluctuations
m522z6. @S1063-651X~96!07111-5#

PACS number~s!: 47.27.2i

I. INTRODUCTION

In a recent series of papers@1–4# we developed an ap-
proach to the theory of the universal scaling properties that
characterize the statistical invariants of fully developed tur-
bulent flows. The main technical tool of this approach was
renormalized perturbation theory, which allows us, after ex-
act resummations, to obtain insights about the nonperturba-
tive properties of the universal statistics of turbulence. The
main nonperturbative results which were obtained are~i! hy-
drodynamic interactions are local in physical space and in
scale space once the sweeping effects are removed;~ii ! the
inner, viscous scale which appears perturbatively as an ultra-
violet cutoff leads nonperturbatively to the anomalous scal-
ing of correlations involving velocity gradients; and~iii ! the
outer scale of turbulence appears in the theory as a renormal-
ization scale after infinite resummations of a renormalized
perturbation series that converges order by order. The aim of
this paper is to present additional nonperturbative results that
together with the previous findings begin to assemble to a
solid structure of the theory of hydrodynamic turbulence.
Brief presentations of some of these results were offered in
@5–8#.

The issue under study is not new; decades of experimental
and theoretical attention~see, for example,@9,10,12–14#!
have been devoted to two types of simultaneous correlation
functions; the first type includes the structure functions of
velocity differences,

Sn~R!5^uw~r,r8!un&, ~1.1!

w~r,r8![u~r8!2u~r!, R[r82r ~1.2!

where^ & stands for a suitably defined ensemble average. A
second type of correlations include gradients of the velocity
field. An important example is the ratee(r,t) at which en-
ergy is dissipated into heat due to viscous damping. This rate
is roughly nu¹u(r,t)u2. An often-studied simultaneous cor-
relation function ofê(r,t)5e(r,t)2 ē is

Kee~R!5^ê~r1R!ê~r!&. ~1.3!

Within the famous Kolmogorov 1941~K41! approach@15# to
turbulence one predicts that forR in the inertial range, i.e.,
h!R!L, Sn(R) is (ēR)

n/3 andKee(R).n2ē4/3R28/3. Here
L andh are, respectively, the outer scale of turbulence and
the Kolmogorov viscous cutoff.ē is the mean energy flux per
unit time per unit mass.

Experimental measurements show that in some aspects
Kolmogorov was remarkably close to the truth. The major
aspect of his predictions, that the statistical quantities depend
on the length scaleR as power laws, is corroborated by ex-
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periments. On the other hand, the predicted exponents seem
not to be exactly realized. For example, the correlation
Kee(R) decays according to a power law,

Kee~R!}R2m, ~1.4!

for h!R!L, with m having a numerical value of 0.2–0.3
instead of 8/3@12#. The structure functions also behave as
power laws,

Sn~R!}Rzn, ~1.5!

but the numerical values ofzn deviate progressively from
n/3 whenn increases@10,13#. Something fundamental seems
to be missing.

The first positive answer within our approach appeared in
the context of correlation functions of gradient fields rather
than of the velocity differences@3,16#. As indicated above,
the discrepancy in the exponentm between the experimental
value and the naive expectation is large. This gave hope that
the explanation must lie close to the surface. Indeed, consid-
ering the perturbative scheme forKee(R) leads immediately
to the discovery of logarithmic ultraviolet divergences with
some ultraviolet viscous scaleh̃ acting as the renormaliza-
tion scale. The summation of this infinite series results in a
factor (R/h̃)2D with some anomalous exponentD which is,
generally speaking, of the order of unity. Additional calcula-
tions lead to the exact resultD522z2 and to the under-
standing that this result means that the renormalized pertur-
bation series for the structure functions diverges in the limit
L→` as (L/R)dn. The anomalous exponentsdn are the de-
viations of the exponents ofSn(R) from their K41 value.
This is a very delicate and important point. It is not simple to
see why a series each of whose terms converges when
L→` still diverges as a whole. One can understand this as in
resumming the series of a desired function one finds an in-
homogeneous equation whose inhomogeneous solutions are
indeedL independent. However, the equation possesses also
homogeneous solutions which are inherently nonperturbative
in nature and may have anomalous scaling. Homogeneous
solutions must be matched with the boundary conditions, and
this is the way that the outer scale appears in the theory. An
important remaining step in the theoretical development is to
understand how to compute the anomalous exponentsdn .

The divergence of the entire perturbation series for
Sn(R) with L→` forces us to seek a nonperturbative handle
on the theory. One fact that may potentially lead to a non-
perturbative control is the existence of a global balance be-
tween energy input and dissipation. This may be turned into
a nonperturbative constraint on eachnth-order structure
function @4#. Using the Navier-Stokes equations one derives
the set of equations of motion

]Sn~R,t !

]t
1Dn~R,t !5Jn~R,t !, ~1.6!

whereDn and Jn stem from the nonlinear and the viscous
terms in the Navier-Stokes equations, respectively. In the
stationary state the time derivative vanishes and one has the
balance equation

Dn~R!5Jn~R!. ~1.7!

The evaluation ofDn(R) does not pose conceptual difficul-
ties. It was shown@4# that it is of the order ofdSn11 /dR.
The evaluation ofJn(R) poses some delicate issues, but it
was believed that it is proportional toSn(R)/S2(R) ~and see
below for more details!. This resulted in the famous hierar-
chic chain of equations of which many closure attempts have
failed to provide the desired anomalous scaling solutions.

At the heart of this paper we offer a way out of this
conundrum. The problem with Eq.~1.7! is that it refers to a
‘‘fully fused’’ quantity, and this fact leads to difficulties.
What is meant by this is that the primitive object of the
statistical theory of turbulence isnot the structure function
Sn(R), but rather the ‘‘fully unfused’’n-rank tensor correla-
tion function of velocity differences:

Fn~r1 ,r18 ;r2 ,r28 ; . . . ;rn ,rn8!

5^w~r1 ,r18!w~r2 ,r28!•••w~rn ,rn8!&. ~1.8!

In this quantity all the coordinates are distinct. The structure
function Sn(R) is obtained by fusing all the coordinatesr i
into one pointr, and all the coordinatesr i8 into another point
r1R. In this process of fusion one crosses the dissipative
scale. To control this process we need to formulate the so-
called ‘‘fusion rules’’ for turbulence, which govern the prop-
erties ofn-point correlation functions when two or more co-
ordinates ‘‘fuse’’ together. One cannot fuse blindly.

The main fundamental results of this paper are as follows.
~1! Fusion rules in the inertial interval. The explanation

of how fusion works was briefly given in@5#. We begin this
paper in Secs. II and III with a detailed derivation of the
fusion rules, considering all the possible relative geometries
of the sets of fused and unfused points.

~2! The homogeneous equation for the(n11)-order cor-
relation functions: the fusion rules allow us to consider in
Sec. IV and V the generalized balance equation~4.7! for the
fully unfused correlation functions. We demonstrate that for
these quantities the hierarchic chain of equations decouples,
since now the dissipative term vanishes when the viscosity
n goes to zero. In the case of Eq.~1.7! the termJn contains
a correlation function with many fused coordinates. As a
result~and cf. Sec. VI! it remains finite in the limitn→0. In
the present case of fully unfused quantities we get in the
limit n→0 ahomogeneous equationinvolving only correla-
tions of ordern11. The full analysis of this equation is not
easy, and it deserves a considerable amount of attention in
the future.

~3! The existence of ‘‘viscous scaling functions’’Having
obtained the generalized balance equation we can now study
precisely when, as a function of one separation distance~say
ur182r1u), the fully unfused correlation function crosses over
to dissipative behavior. It turns out that the scale at which
this happens depends on the rankn and on the remaining
inertial range distances. The dependence on the inertial
range distances is characterized by anomalous exponents,
and we compute them exactly in terms of the anomalous
exponentszn . This is done in Sec. VI.

~4! Exact bridge relations. With a precise evaluation of
the viscous scaling functions and the fusion rules in hand we
can consider correlation functions of gradient fields, and re-
late their scaling exponents to the anomalous exponents
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zn . The result of this exercise, which is presented in Sec.
VII, is an infinite set of bridge relations. We consider corre-
lations of the type

Kpe
~n![^e~x1!e~x2!•••e~xp!w~r1 ,r18! •••w~rn ,rn8!&

}R2mn
~p!
, ~1.9!

whereR is a typical separation between any pair, and we are
interested in the scaling relations between the exponents
mn
(p) and the exponentszn . Note thatm0

(2) in this notation is
the well studied@17,12# exponent of dissipation fluctuation
which is denotedm. On the basis of the Navier-Stokes equa-
tions and the fusion rules we establish rigorously that

mn
~p!5p2zn13p . ~1.10!

In particular we offer a solid derivation of the phenomeno-
logically guessed bridge relation@9,14# m522z6.

In Sec. VIII we summarize the paper and indicate the
direction of the road ahead. In this summary we reiterate the
assumptions that were used throughout, with special empha-
sis on those that need to be checked against experiments.

II. FUSION RULES FOR THE INERTIAL INTERVAL

In this section we discuss the fusion rules that arise when
some of the coordinates of ann-point correlation function
tend toward one other. We begin by introducing the set of
correlation functions that are required by the analysis.

A. Correlation functions and related quantities

The fully unfused correlation functionFn was introduced
in Eq. ~1.8!. Other statistical quantities of interest have the
same number of velocity differences but they depend on a
smaller number of coordinates. In the language developed
below we will refer to such quantities as partially fused cor-
relation functions. For example, if all the velocity differences
are evaluated with respect to the same point we define an
n-rank tensor

Sn~r0ur1 ,r2, . . . ,rn!5^w~r0 ,r1!w~r0 ,r2!•••w~r0 ,rn!&.
~2.1!

Note that in an inhomogeneous ensemble this quantity de-
pends explicitly onr0. Obviously,Fn depends on many more
coordinates thanSn . It is useful sometimes, therefore, to
represent correlation functionsFn in terms of the partly fused
quantitiesSn . This can always be done: representw(r j ,r j8)
asw(r j ,r0)1w(r0 ,r j8), and by substitution find the needed
relation. It can also be useful to chooser0 as the center of
mass of all the coordinates inFn . We will return to such
relations when we need them.

One can fuse more points together. For example, we can
have only one separation vector distance, and form the
n-rank tensor

Ŝn~R![S̃n~r0ur!5Sn~r0ur,r, . . . ,r!, ~2.2!

whereR[r2r0. Equations~2.1! and~2.2! can be understood
as the limit of~1.8! when pairs of coordinates fuse together.
For example, in going from~1.8! to ~2.1! we fuse all the

unprimed coordinates, and keep all the primed coordinates
different. To get~2.2! we also fuse all the primed coordi-
nates.

Note that one can also consider another type of fusion, in
which pairs of coordinatesr j and r j8 which are associated
with the velocity differencew(r j ,r j8) coalesce. We will refer
to the fusion of coordinates with a velocity difference as a
fusion of type A, and a fusion of coordinates that are not
associated with a velocity difference as a fusion of type B.
The properties of these two limiting procedures are different,
and they have to be studied separately. It is commonly as-
sumed that the limit of type B exists, and the limit remains
finite when n→0. This is equivalent to the statement that
Sn(r0ur1 ,r2 , . . . ,rn) and Sn(R) are independent of Re for
asymptotically large Re. Although this property looks inno-
cent, it is a deep statement that in general needs to be sup-
ported by theory. In the language of diagrammatic perturba-
tion theory this property is a consequence of the locality of
every diagram in the perturbation expansion for these quan-
tities; this property was discussed in detail in@2#. In @3# it
was explained that there exists a mechanism for the appear-
ance of the viscous scale in the statistical theory. However,
this mechanism operates only when one correlates gradients
of the velocity fields rather than the velocity differences
themselves. Thus the above statement is equivalent to the
assumption that there are no additional nonperturbative
mechanisms for the appearance of the viscous scales in the
theory of correlations of velocity differences. Additional ob-
jects that appear naturally in the theory are correlations
whose tensorial nature is of lower rank, including scalars and
vectors. The first one is the scalar quantity which is appro-
priate for even orders ofSn . To keep in mind its scalar
nature we denoted it in@4# as S̊2m(R) and define it as

S̊2m~R![^uw~r0 ,r!u2m&, R[r2r0 . ~2.3!

The quantity S̊2m(R) is analytic. For odd order structure
functions we introduce a vector objectS2m11

a (R) according
to

S2m11
a ~R![^wa~r0 ,r!uw~r0 ,r!u2m&. ~2.4!

Here and below we will use Greek indices to indicate vector
and tensor components, and Roman indices to indicate the
order of the quantity. The placement of indices as subscripts
or superscripts has no special meaning, and is chosen for
convenience.

In isotropic turbulence the vectorS2m11
a (R) can only be

oriented alongR. This allows us the introduction of a scalar
quantityS2m11(R) which depends on the magnitude ofR:

S2m11
a ~R!5

Ra

R
S2m11~R!. ~2.5!

In later sections we use the objects defined here to study the
fusion rules and their consequences.

B. Basic properties of correlation functions
in systems with flux equilibrium

The systems that we discuss are driven on a characteristic
scale referred to as the outer scaleL. This driving can be
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achieved by either a time-dependent low frequency ‘‘stirring
force’’ or by specifying given values ofu at a set of ‘‘bound-
ary’’ points with a characteristic separationL away from our
observation pointsr0 ,r08 ,r1, etc. The system suffers dissipa-

tion due to viscosity, and in the inviscid limit the kinetic
energy is conserved. In three dimensions we deal with a
‘‘direct’’ energy cascade in which the intake of energy on the
scaleL is balanced by dissipation on a small scaleh!L.

We invoke two fundamental assumptions@15#
~1! Scale invariance: all the correlation functions are ho-

mogeneous functions of their arguments in the core of the
inertial intervalh!ur i2r0u!L:

Fn~lr1 ,lr18 ; . . . ;lrn ,lrn8!5lznFn~r1 ,r18 ; . . . ;rn ,rn8!,
~2.6!

where zn are scaling exponents. It is obvious that all the
other types of correlation and structure functions that ema-
nate from this most general quantity and which were detailed
in the preceding subsection share the same scaling expo-
nents. Accordinglyzn is also the usual scaling exponent of
the nth-order structure function~2.3!. We should stress at
this point that this assumption does not follow from the scale
invariance of the structure functions. The latter can be scale
invariant even ifFn is not.

~2! Universality of the scaling exponents: this means that
we can fix an arbitrary set of velocity differences on the scale
of L, and the scaling exponents of the correlation functions
will not depend on the precise choice of theL-scale motions.
Mathematically this is expressed as the following property of
the conditional average: if fori<n ur i2r i8u!L, and for
i.n, ur i82r i u;L, then

^w~r1 ,r18!w~r2 ,r28! •••w~rn ,rn8!uw~rn11 ,rn118 ! •••w~rn1N ,rn1N8 !&

5F̃n~r1 ,r18 ; . . . ;rn ,rn8!Fn,N~rn11 ,rn118 ; . . . ;rn1N ,rn1N8 !. ~2.7!

The precise meaning of the universality assumption is that the functionsFn have the same scaling exponents asFn in the
inertial interval. They may be different functions in the inertial interval and in particular they may differ in their crossover to
viscous behavior. Their~different! crossover scales may depend on the large scale motions that were fixed in the conditional
average.

C. Fusion rules for the fusion ofp pairs of points in velocity differences„type A…

1. General case:2<p<n22

The first set of fusion rules that we derive concernsFn whenp pairs of pointsr1 ,r18 , . . . ,rp ,rp8 (p,n) which involvep
velocity differences tend to some pointr0, see Fig. 1. Here we exclude the special casesp51 andp5n21 in which the
leading scaling contribution vanishes by symmetry. We will consider these special cases in the next subsections.

Consider the situation in which the typical separation of all the coordinatesr1 , . . . ,rp8 from r0 is r , whereas all the other
separations remain much larger, say of the order ofR, r!R!L. We will show, on the basis of assumptions (1) and(2), that

Fn~r1 ,r18 ; . . . ;rn ,rn8!5F̃p~r1 ,r18 ; . . . ;rp ,rp8!Cn,p~rp11 ,rp118 ; . . . ;rn ,rn8!, ~2.8!

where F̃p is a tensor of rankp associated with the firstp tensor indices ofFn . The (n2p)-rank tensor
Cn,p(rp11 ,rp118 ; . . . ;rn ,rn8) is a homogeneous function with a scaling exponentzn2zp , and is associated with the remaining
n2p indices ofFn . The derivation of the fusion rule~2.8! follows from Bayes’s theorem. We write

Fn~r1 ,r18 ; . . . ;rn ,rn8!5E dw~rp11 ,rp118 !•••dw~rn ,rn8!w~rp11 ,rp118 !•••w~rn ,rn8!P@w~rp11 ,rp118 !•••w~rn ,rn8!#

3^w~r1 ,r18!,w~r2 ,r28!•••w~rp ,rp8!uw~rp11 ,rp118 !w~rp12 ,rp128 !•••w~rn ,rn8!&, ~2.9!

FIG. 1. The geometry of fusion of type A. Lines connecting
points indicate velocity differences across that distance. In this ex-
ample there are three velocity differences across small separations
~of the order ofr ) and two velocity differences across large sepa-
rations, of the order ofR.
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whereP@w(rp11 ,rp118 )•••w(rn ,rn8)# is the probability to see
the tensorw(rp11 ,rp118 )•••w(rn ,rn8). Next note the conse-
quence of assumption 2: the scaling laws of the correlation
functions at scaler are the same independent of whether we
force the system on the scaleL@r or on the scaleR@r . The
conditional average in~2.9! is proportional toF̃p , and hence
~2.8!.

The first impression is that~2.8! means statistical inde-
pendence of the small scale motion from the large scales.
This is not so. The difference is that the assumption of sta-
tistical independence would lead toFn5FpFn2p . Indeed,
the first factorFp has the same order of magnitude and the
same exponent asF̃p in ~2.8!. However, the factorFn2p has
a scaling exponentzn2p rather thanzn2zp which is the ex-
ponent ofCn,p . When all the large separations are of the
same orderR, Cn,p;Sn(R)/Sp(R) which in the case of mul-
tiscaling is much larger thanFn2p;Sn2p(R). We thus un-
derstand that the fusion rules in fact demonstrate the exist-
ence of a very special statistical dependence of the small
scales on the large scales. This dependence stems physically
from the existence of a direct energy flux from large to small
scales. We will see that it can lead to a totally unconven-
tional scaling structure of the theory. We should stress that
these fusion rules were derived from first principles for
p52 in Navier-Stokes turbulence@4# and for passive scalar
advection for anyp @18#.

2. Fusion of one pair of points in a velocity difference

As we mentioned the casep51 in which the velocity
difference across a small scaler[ur12r18u is correlated with
n21 velocity differences across larger distances requires a
special attention. A naive application of the fusion rule~2.8!
results inFn}F1(r1 ,r18) which vanishes due to space homo-
geneity. In order to evaluate the leading nonvanishing term
we expandu(r18) in a Taylor series aroundu(r1),

u~r18!5u~r1!1“1u~r1!•~r182r1!1•••. ~2.10!

Using this we can write

lim
r1→r18

Fn~r1 ,r18 ; . . . ;rn ,rn8!

5~r182r1!•“1^u~r1!w~r2 ,r28!•••w~rn ,rn8!&.

The correlation function in this formula depends on all the
separation distances, and the gradient with respect tor1 picks
up contributions from all the differencesr j2r1. Therefore
the gradient can be evaluated as the inverse of the smallest of
these,u“ i u;1/Rmin whereRmin[mini$ur i2r1u%. For r!Rmin
this leads to the evaluation

Fn~r1 ,r18 ; . . . ;rn ,rn8!;
r

Rmin
Sn~R!. ~2.11!

This formula creates an immediate worry about the situation
in whichRmin becomes of the order ofr or smaller. We will
analyze this situation in Appendix A1. Now we will consider
the next special case of fusion, whenp5n21.

3. Fusion rule for one large separation distance

ConsiderFn(r1 ,r18 ;r2 ,r28 ; . . . ;rn ,rn8) with all the coordi-
nates being nearby except forr1, which is far away, a dis-
tanceR from the remaining 2n21 coordinates which are all
within a ball of radiusr . Since we assume that the flow is
isotropic, the tensorFn is a ~generally reducible! representa-
tion of the rotation group. Moreover, in the situation dis-
cussed here the isotropization of the small scales~of the or-
der of r ) with respect to the direction ofR[r182r1 leads to a
direct product structure

Fn
a1 ,a2 , . . . ,an~r1 ,r18 ;r2 ,r28 ; . . . ;rn ,rn8!

5C
Ra1

R
F̃n

a2 , . . . ,an~R,r2 ,r28 ; . . . ;rn ,rn8!. ~2.12!

The constraint of incompressibility, which is always true,
can be written as

“1
a1Fn

a1 ,a2 , . . . ,an~r1 ,r18 ;r2 ,r28 ; . . . ;rn ,rn8!50. ~2.13!

Applying the divergence operator to~2.12! we find the fol-
lowing form of the incompressibility constraint:

CS 21R
]

]RD F̃n
a2 , . . . ,an~R,r2 ,r28 ; . . . ;rn ,rn8!50.

~2.14!

This equation has two solutions:~i! C50, ~ii ! F̃n}1/R
2.

However, according to the general ruleF̃n must be propor-
tional to Rzn2zn21. Thus the first solution is realized; the
contribution which is}Rzn2zn21 vanishes due to the incom-
pressibility constraint. Therefore in order to find the actual
scaling behavior we need to consider the next nonvanishing
evaluation which isR independent:

Fn
a1 ,a2 , . . . ,an~r1 ,r18 ;r2 ,r28 ; . . . ;rn ,rn8!}r zn. ~2.15!

This result is interesting. It means that in the case considered
here in which all the separations of orderr except one
~which is of orderR, h!r!R!L) the scaling exponent of
the correlation functionFn is fully determined by small
r -scale fluctuations.

In addition to these cases we will need below the fusion
rules for some special geometries of fusions of type A in
which the general evaluation is inapplicable. These cases are
treated in Appendix A and referred to as needed.

D. Rules for fusions of type B

1. Coalescence of two points„p52…

Fusions of type B refer to situations in which there are
p coordinates within a ball of small radiusr , but no two
coordinates that belong to a velocity difference, see Fig. 2.
The simplest case isp52 in which ur12r2u is much smaller
than any other separation. Consider the velocity differences
w(r1 ,r18) andw(r2 ,r28). They can be reexpressed as

w~r1 ,r18!5w~r1 ,r0!1w~r0 ,r18!,

w~r2 ,r28!5w~r2 ,r0!1w~r0 ,r28!, ~2.16!
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wherer05@r11r2#/2. This allows us to write

^w~r1 ,r18!w~r2 ,r28!$w%n22&5^w~r18 ,r0!w~r28 ,r0!$w%n22&

2^w~r1 ,r0!w~r28 ,r0!$w%n22&

2^w~r18 ,r0!w~r2 ,r0!$w%n22&

1^w~r1 ,r0!w~r2 ,r0!$w%n22&.

~2.17!

Here we used the shorthand notation$w%n22 to denote the
remaining product ofn22 velocity differences.

The first term on the right-hand side is independent of the
small separation, and is a homogeneous function of the large
separations with a scaling exponentzn . The next two terms
contain one velocity difference across small separations
which according to the discussion of Fig. 1 is proportional to
r z2. The last term has two velocity differences across a small
separation, and is also proportional to the same factor. This
allows one to formulate a fusion rule of type B for fusion of
two points ~not associated with velocity difference! in the
following form:

Fn~r1 ,r18 ;r2 ,r28 ;$rk ,rk8%!2Fn~r1 ,r18 ;r1 ,r28 ;$rk ,rk8%!

5S̃2~ ur12r2u!Cn,2~r0 ;r18 ,r28 ;$rk ,rk8%!}S rRD z2

Rzn.

~2.18!

2. Coalescence of three points„p53…

The next topic of discussion is the fusion of type B~with-
out velocity differences! of three points~say r1 , r2, and
r3), as shown in Fig. 2. As before, the separations between
these points are all of the order ofr , and all the other sepa-
rations are much larger, of the order ofR, R@r . As in the
case ofp52 we denote the center of mass of these coordi-
nates asr0: r05(r11r21r3)/3. We express the two of the
velocity differences according to~2.16!, and the third veloc-
ity difference in analogy:

w~r3 ,r38!5w~r3 ,r0!1w~r0 ,r38!. ~2.19!

Clearly, the correlation function

Fn~r1 ,r18 ;r2 ,r28 ;r3 ,r38 ;$rk ,rk8%!

5^w~r1 ,r18!w~r2 ,r28!w~r3 ,r38!$w%n23& ~2.20!

has three types of contributions. The first,Fn
(0) is indepen-

dent of the small separations,

Fn
~0!5F~r0 ,r18 ;r0 ,r28 ;r0 ,r38 ;$rk ,rk8%!. ~2.21!

The second type of contribution has either one velocity dif-
ference or a product of two velocity differences across a
small separation. Both these contributions have a leading
term that is proportional tor z2. The third type of contribution
has a product of three velocity differences across a small
separation and is proportional tor z3. In conclusion, the scal-
ing behavior is similar to the one displayed in Eq.~A8!, with
the addition of a term constant inr , Fn

(0)

3. General case: fusion of n points without velocity difference

The above discussion of fusion of type B of two and three
points allows us to offer a general statement concerning the
asymptotic behavior ofn-point correlation functionsFn
whenp of the coordinates are separated from each other by
small distances of the order ofr , and 2n2p coordinates are
separated by a large separation of the order ofR. In terms of
the definition~1.8! we will take thep close-by coordinates as
r1 ,r2 , . . . ,rp , and the 2n2p coordinates asrp11 , . . . ,rn
and r18 , . . . ,rn8 Recall that this choice means that we do not
have velocity differences across small scales.

To see the asymptotic behavior we need to repeat the
substitutions of the type~2.16! and ~2.19!, i.e., for 1< j<p

w~r j ,r j 8
8 !5w~r j ,r0!1w~r0 ,r j 8

8 !. ~2.22!

As before, the center of mass isr05((k51
p rk)/p. The result

of this substitution can be readily guessed from the cases
p52,3:

Fn~r1 ,r18 ; . . . ;rp ,rp8 ;$rk ,rk8%!5Fn,p
~0! 1(

j52

p

Fn,p
~ j ! . ~2.23!

In this formulaFn,p
(0) is independent of the small separation,

and each termFn,p
( j ) originates from j velocity differences

across small separations. These velocity differences are
w(r i ,r0) where i<p. There are alwaysCp

j 5p!/ j !(p2 j )!
different products of j velocity differences across small
scales inFn,p

( j ) More explicitly,

Fn,p
~2! 5F (

i1. i251

p

S2~r0ur i1,r i2!GCn,2 , ~2.24!

Fn,p
~3! 5F (

i1. i2. i351

p

S3~r0ur i1,r i2,r i3!GCn,3 , ~2.25!

etc. On the left hand side of these equations the functions
Fn,p
( j ) depend on all the coordinates. The functionS̃j is a ho-

mogeneous function ofj separationsr i2r0, with a scaling

FIG. 2. The geometry of fusion of type B. Lines connecting
points indicate velocity differences across that distance. In this ex-
ample there are three velocity differences across large separations,
but three coordinates within a ball of small radiusr .
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exponentz j . The functionsCn, j are homogeneous functions
of n2p large separationsrk2r0 ~with k5p11, . . . ,n) and
n large separationsrm8 2r0 ~with m51, . . . ,n) with a scaling
exponentzn2z j . Schematically we can summarize the scal-
ing behavior ofFn,p

( j ) as

Fn,p
~ j ! }S rRD z j

Rzn. ~2.26!

We stress that since we are concerned with the limitr!R,
the leading term in~2.23! is alwaysFn,p

(0) which is indepen-
dent of r . The leading r dependence is carried by
Fn,p
(2)}r z2. This does not mean, however, that the higher-

order terms in~2.23! are unimportant. They will provide the
leading-order contributions to correlation functions of veloc-
ity gradientsas will be shown in Sec. II G.

E. Mixture of A- and B-type fusions

In this subsection we consider the even more general case
in which we have within the ball of small radiusr q pairs of
points associated with the velocity differencesw(r i ,r i8)
(1< i<q), and (p2q) points ~say rq11 , . . . ,rp) associated
with velocity differences across large separations of order
R@r , see Fig. 3. The rest of the coordinatesrk ,rk8 ,k.p are
separated by large distances of the order ofR. For this case
we need again to reexpress (p2q) velocity differences
w(r j ,r j8) ~for j5q11, . . . ,p) in the manner of~2.22!, and to
substitute these into the definition ofFn ~1.8!. The result of
this process is an equation similar to~2.23!, but with impor-
tant differences:

Fn~r1 ,r18 ; . . . ;rp ,rp8 ;$rk ,rk8%!5(
j5q

p

F̃n,p
~ j ! . ~2.27!

There is no constant term now, and the leading-order contri-
bution is proportional tor zq. The exception~as always! is
that whenq51 the leading scaling behavior isr z2. We note
that the functionsF̃n,p

( j ) are different from the analogous func-
tions Fn,p

( j ) but they have the same scaling behavior,F̃n,p
( j )

}Rzn(r /R)z j . The explicit expressions analogous to~2.24!
and ~2.25! can be written down when needed. We will find
that the subleading terms contribute the most important con-
tributions in various situations.

F. Fusion rules for the fusion of two or more groups of pairs

The next set of fusion rules is obtained for the structure
function Fn when two groups ofp and q points ~with
p1q,n) tend to r0 and r08 , respectively. The separation
between these groups of points is of the order ofR. The
derivation of the fusion rules of type A for the simplest situ-
ation when all the coordinates are different~and separated by
r or byR) obviously follows from the same basic properties
of velocity correlation functions which we discussed in Sec.
II B. The result looks similar to Eq.~2.8!:

Fn~r1 ,r18 ; . . . ;rn ,rn8!5F̂p~r1 ,r18 ; . . . ;rp ,rp8!F̃q~rp11 ,rp118 ; . . . ;rp1q ,rp1q8 !Cn,p,q~rp1q11 ,rp1q118 ; . . . ;rn ,rn8!.
~2.28!

The scaling exponent ofCn,p,q is zn2zp2zq . As in the
case of the fusion rules~2.8!, also~2.28! arenot decomposi-
tions into products of lower-order correlation functions, and
the functionsC are not correlations of velocity differences
across large separations. As before, the functionsC are
much larger than the corresponding correlation functions in
all situations with multiscaling. Evidently one can derive
similar fusion rules for three, four, or more groups of coa-
lescing points with large separations between the groups.
The structure of the resulting correlation function will be a
product of the correlation function associated with each
group times some functionC of big separations which car-
ries the overall exponent.

The generalization of these fusion rules~which are of type
A! to the more complicated cases with fusions of type B or
to mixed types of fusion is now obvious: we can consider
every group of points separately in the way that we discussed
for the case of fusion of just one group of points.

G. Fusion rules for correlation functions including unfused
velocity gradients

In this subsection we use the fusion rules obtained above
to evaluate the leading-order scaling behavior of correlation
functions that include unfused velocity derivatives. To be
specific, consider theq-order derivatives“1“2 , . . . ,“q ,
with “ j[]/]r j . We are going to apply thisq-order deriva-
tive on correlation functions withp fusing points, with
q<p, such that the derivatives operate only on coordinates
within this group ofp points. We will also consider a con-
strained derivative, i.e., such that“11“21•••1“q50.
With such a derivative we get a particularly simple result.
There are two situations to consider. If thep fusing points
undergo a fusion of type A, the leading scaling behavior of
theq-order derivative is simplyr zp2q. In the case of fusions
of type B we consult with Eq.~2.23! and find that the
leading-order contribution with respect to the small distance
r is

FIG. 3. The geometry of fusion with a mixture of type A and B.

6274 54VICTOR L’VOV AND ITAMAR PROCACCIA



“1•••“qFn5“1•••“qS̃q~r0ur1 ,r2 , . . . ,rq!Cn,q .
~2.29!

The contributions arising from the termsFn
( j ) all vanish un-

der the derivatives. To see that this is so for 2< j<q we
recall @cf. ~2.24!, ~2.25!# that although the functionsFn

( j ) de-
pend on all thep separationsr i2r0, it is a sum of functions
S̃j each of which depends only on a subset ofj small sepa-
rations. Thus we find a nonzero contribution for the
q-order derivative only from terms withj>q. The leading
contribution forr!R always comes from thej5q term. It is
noteworthy that this contribution is independent of the re-
mainingp2q small separations, if they exist.

In summary, the rule is that when we fusep coordinates
on which q gradients are applied, the correlation function
scales asymptotically asr zp2qRzn2zp for fusions of type A
and r zq2qRzn2zq for fusions of type B. The second result is
independent of the number of additional points in the ball of
size r that do not have a gradient applied to them. These
additional points can be even fused together or withr0. This
result will be the starting point for the discussion of the
correlation functionJn of the balance equation.

III. THE FUSION OF TWO POINTS: TENSOR
STRUCTURE AND THE EFFECTS OF ANISOTROPY

In the preceding section we focused on the scaling expo-
nents that characterize the leading contribution to the corre-
lation function in the asymptotic regime when some points
fused together. In this section we address the tensor structure
of the correlation functions, and the subleading terms that
exist because of the dependence on the angles between the
small separation vector and the remaining large separation
vectors. This second subject is related to the rich and impor-
tant issue of the decay of the effects of anisotropic forcing,
and we do not exhaust this issue in the present section. Some
of the results are relevant, however, in a much broader con-
text.

A. Tensor structure in the fusion of two points

In all the previous discussion of the fusion rules when two
points ~say r1 and r2) were fused we focused only on the
scaling exponent of the functionF̃2(r) with r5r12r2. Here
we will go further in examining the structure of the resulting
correlation functions.

The fusion of two points involves just one small separa-
tion distancer5r12r2. In general the asymptotic behavior
of the correlation function may depend on the angle between
r and the remaining large separation vectors. This depen-
dence is discussed in the next subsection. Here we consider
the isotropic part which will be shown to be the leading
contribution. It is easy to determine the dependence ofF̃2 on

the direction ofr using the general requirement of incom-
pressibility:

F̃2
ab~r!5AF ~21z2!dab2z2

rarb

r2 Grz2. ~3.1!

This form is standard for the second-order structure function
in isotropic turbulence. We reiterate that when we extract

F̃2 out of a many-point correlation function in the process of
fusion, there is the issue of the direction ofr with respect to
other vector separations which we address next.

Subleading contributions: effect of helicity and anisotropy

The dependence on the angle ofr is an interesting subject
that deserves full analysis in a separate study. Here we only
touch on some of the essential issues.

The analysis of these terms depends very much on the
nature of the two-point scalar correlation functionF2(r)
[F2

aa(r) in anisotropic turbulence. When the forcing of tur-
bulence is isotropic, this function depends on the magnitude
uru only. In general, however, the dependence on the orien-
tation of r with respect to the anisotropic forces may be
important. It is useful therefore to representF2(r) as a
‘‘multipole’’ expansion according to

F2~r!5 (
l 50

`

F2,l ~r!, ~3.2!

F2,l ~r!5 (
m52l

l

Yl m~ r̂!E F2~rj!Yl m~ ĵ!dĵ. ~3.3!

In this expansion ther̂[r/r, ĵ is unit vector, and the func-
tionsYl m are the standard spherical harmonics. We chose to
expand in these functions since the relevant symmetry group
in our problem is the group of rotations SO~3!. In a scale-
invariant situation we expect that each componentF2,l
scales as

F2,l }rb l , ~3.4!

and in general the exponentsb l depend onl . That this is so
with universal exponentsb l was proved@18# in the case of
Kraichnan’s model of passive scalar@19#, but there is still no
analogous proof in the case of Navier-Stokes turbulence. We
will assume, in order to proceed, that the exponentsb l exist.
For l <2 which we discuss explicitly we believe that these
exponents are also universal.

Under these assumptions the calculation of the subleading
contributions to the fusion rules in the case of the fusion of
two points is straightforward. We first consider the partial
traceFn

aa of then-rank tensorFn with respect to the first two
indices. Next we decompose it into spherical harmonics ac-
cording to the ‘‘multipole’’ expansion@7#:

Fn
aa~r01

1
2r,r02

1
2r;$rk ,rk8%!5 (

l 50

`

Fn,l
aa ~r01

1
2r,r02

1
2r;$rk ,rk8%!, ~3.5!

Fn,l
aa ~r01

1
2r,r02

1
2r;$rk ,rk8%!5 (

m52l

l

Yl m~ r̂!E Fn
aa~r01

1
2rj,r02

1
2rj;$rk ,rk8%!Yl m~ ĵ!dĵ, ~3.6!
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The first term,Fn,0
aa , corresponds to the leading contribution

with the scaling behaviorr2
zR(zn2z2) which was discussed

above.~Remember thatR is the characteristic separation in
the correlation functionFn

aa .) The next-order contributions
are given byFn,l .0

aa ,

Fn,l
aa ~r1 ,r18 ;r2 ,r28 ;$rk ,rk8%!

5F̃2,l ~r!Cn,2,l ~r0 ;r18 ,r28 ;$rk ,rk8%!. ~3.7!

The scaling behavior ofF̃2,l can be read from~3.4! under
the usual assumption of universality; the two points that fuse
together relate to the unfused points in the same way that the
two-point correlation function relates to the anisotropic forc-
ing. We can thus write with impunity

F̃2,l }rb l , Cn,2,l }Rzn2b l . ~3.8!

To estimate the value ofb1 andb2 we need to understand
what is the physics that determines them. In fact, since we
considered the partial trace of the correlation function, we
end up with F̃2 which is even under the transformation
r→2r. Accordingly, although the exponents are as stated in
~3.8! the coefficients of all oddl quantities are zero. In order
to examine oddl contributions one needs to form a correla-
tor which is not even inr. As an example we consider

F2
ab~r!5^ua~r1r!ub~r!2ua~r2r!ub~r!&. ~3.9!

Since this object is manifestly odd inr it vanishes when
there exists inversion symmetry. For turbulence with non-
zero helicity F2

ab(r)Þ0 and the leading contribution to
F2

ab(r) @which is F2,1
ab(r)# is determined by the flux of he-

licity. This is reminiscent of the flux of energy which deter-
mines the leading contribution to the second-order structure
function. Standard K41 dimensional reasoning leads to the
predictionb151, see, for example,@11#. This holds prob-
ably with the same accuracy as the K41 prediction forz2,
which is z252/3 instead of the experimental value
z2'0.70 @12,13#.

We can easily determine the tensor structure ofF2,1
ab(r) in

isotropic incompressible turbulence~in the absence of inver-
sion symmetry!:

F2,1
ab~r!5eabgr̂gF2,1~r!, F2,1~r!}rb1, ~3.10!

where eabg is the fully antisymmetric unit tensor
(e12352e21351). As we mentioned, in the presence of in-
version symmetryF2(2r)5F2(r) and all terms which are
odd in l in ~3.2! are zero. On the other hand this is not the
case forF̃2,l (r), which appears in the fusion of two points in
a many-point correlation function. Even if the turbulent flow
itself has inversion symmetry, the geometry of all the points
appearing in~3.7! can lead to nonvanishing oddl compo-
nents ofF̃2,l . The positions of the pointsr18 ,r28 , . . . aresuch
that there is no inversion symmetry around the center of the
fusing coordinatesr1 and r2 which is r05(r11r2)/2. There-
fore F̃2,l (r)Þ0 and because of the same constraints it has
the same tensor structure as~3.10!:

F̃2,1
ab~r!5eabgr̂gF̃2,1~r!, F̃2,1~r!}rb1. ~3.11!

The physical origin of this term in the multipole expansion is
a local flux of helicity. Even when the average helicity flux is
zero, the local value of the flux conditioned on the velocities
fixed at certain coordinates may be nonzero.

The exponentb2 is the leading exponent describing the
rate of decay of the effects of anisotropy, and may be com-
puted using perturbation theory, disregarding the nonpertur-
bative effects which are the subject of this paper, see@20,21#,
and references therein. The result isb254/3, and again one
expects this result to be numerically close to the truth. We do
not possess presently any numerical estimates forb l with
higher values ofl , and as we said before it is not guaranteed
that these exponents are universal. These issues have to be
considered independently in the future.

IV. GENERALIZED BALANCE EQUATION

A. Derivation of generalized balance equation

The starting point of this analysis is the Navier-Stokes
equations for incompressible flows:

]u~r,t !

]t
1u~r,t !•“u~r,t !1“p~r,t !5n¹2u~r,t !,

“•u~r,t !50. ~4.1!

In general we need to add a forcing term to these equations.
It was shown in@4# that as far as the balance equations are
concerned, the effect of the forcing term is felt in the energy
containing scales only. For this reason we do not write the
forcing explicitly. As usual the gradient of the pressure in
~4.1! is eliminated by applying the transverse projection op-
eratorPJ . The Navier-Stokes equations take on the form

]u~r,t !

]t
1PJ @u~r,t !•“#u~r,t !5n¹2u~r,t !. ~4.2!

The application ofPJ to any given vector fielda(r) is nonlo-
cal, and has the form

@PJa~r!#a5E dr8Pab~r8!ab~r2r8!, ~4.3!

where the kernelPab(r) is the following difference:

Pab~r!5dabd~r!2Pab
uu ~r!. ~4.4!

HerePab
uu (r) is the kernel of the longitudinal projector which

appears here due to the effect of the pressure term in the
Navier-Stokes equation:

Pab
uu ~r!5

1

4p Fdab

r 3
2
3r ar b

r 5 G . ~4.5!
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Given the equation of motion we can take the time derivative
of Eq. ~1.8!. We find

]Fn

]t
5(

j51

n Kw~r1 ,r18 ,t !•••
]w~r j ,r j8 ,t !

]t
•••w~rn ,rn8 ,t !L .

~4.6!

Substituting Eq.~4.2!, and considering the stationary state in
which ]Fn /]t50 we find the balance equations

Dn~r1 ,r18 ; . . . ;rn ,rn8!5Jn~r1 ,r18 ; . . . ;rn ,rn8!, ~4.7!

where the ‘‘interaction’’ termDn stems from the nonlinear
and pressure terms:

Dn~r1 ,r18 ; . . . ;rn ,rn8!5(
j51

n

^w~r1 ,r18!•••@~PJu•“u! j

2~PJu•“u! j 8#•••w~rn ,rn8!&, ~4.8!

and the ‘‘dissipative’’ termJn originates from the viscosity
term in the Navier-Stokes equation:

Jn~r1 ,r18 ; . . . ;rn ,rn8!

5n(
j51

n

~¹ j
21¹ j 8

2
!^w~r1 ,r18! . . .w~r j ,r j8! . . .w~rn ,rn8!&.

~4.9!

In writing these equations we used the fact that in the sta-
tionary state the time designation is unneeded. We also used
the following shorthand notation:

~PJu•“u! j
a5E drPab~r j2r!ug~r!“gub~r!, ~4.10!

and denoted by¹ j
2 the Laplacian operator acting onr j .

Equation~4.8! can be written explicitly in the form

Dn
a1 ,a2 , . . . ,an~r1 ,r18 ; . . . ;rn ,rn8!5(

j51

n E drPa jb
~r!^wa1

~r1 ,r18!•••Lb~r j ,r j8 ,r!•••wan
~rn ,rn8!&, ~4.11!

where

Lb~r j ,r j8 ,r![@u~r j2r!•“ jub~r j2r!

2u~r j82r!•“ j8ub~r j82r!#. ~4.12!

Now we begin to analyze the balance equation@~4.7!, ~4.9!,
~4.11!, and~4.12!#.

B. Galilean invariance of the generalized balance equation

The balance equation must be Galilean invariant. Equa-
tion ~4.9! for Jn depends only on velocity differences and
clearly is Galilean invariant. This is not so obvious in the
case of Eq.~4.11! for Dn becauseLb in ~4.12! contains
velocities itself. In order to clarify the Galilean invariance of
Dn let us expressLb via velocity differences only. The first
step is to subtract fromub(r j2r) under the derivative“ j the
velocity ub(r j82r) ~independent ofr j ) and fromub(r j82r)
under the derivative“ j8 the velocityub(r j2r) ~independent
of r j8). Then Eq.~4.12! takes the form

Lb~r j ,r j8 ,r!5@u~r j2r!•“ j1u~r j82r!•“ j8#

3wb~r j2r,r j82r!. ~4.13!

For the next step let us introduceū(r1 ,r18 ; . . . ;rn ,rn8) as the
mean velocity over all 2n space coordinates:

ū[
1

2n(k51

n

@u~rk!1u~rk8!# ~4.14!

and the following velocity differences:

w~r j ![u~r j !2ū, w~r j8![u~r j8!2ū. ~4.15!

For brevity we do not display here~and below! arguments of
the velocityū. Using~4.15! we can presentLb in ~4.12! as a
sum of two terms:

Lb~r j ,r j8 ,r!5Lb
~1!~r j ,r j8 ,r!1Lb

~2!~r j ,r j8 ,r!. ~4.16!

Here the first term depends only on velocity differences:

Lb
~1!~r j ,r j8 ,r!5@w~r j2r!•“ j1w~r j82r!•“ j8#

3wb~r j2r,r j82r!. ~4.17!

However, the second term does not have this property:

Lb
~2!~r j ,r j8 ,r!5ū•@“ j1“ j8#wb~r j2r,r j82r!. ~4.18!

In Appendix B we show that this term gives zero contribu-
tion to Eq.~4.11! for Dn . Therefore we can get an expres-
sion forDn by replacingLb in Eq. ~4.11! with Lb

(1) taken
from Eq. ~4.17!:
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Dn
a1 ,a2 , . . . ,an~r1 ,r18 ; . . . ;rn ,rn8!52E dr(

j51

n

Pa jb
~r!Kwa1

~r1 ,r18!•••H @ug~r j2r!2ūg#
]

]r jg
1@ug~r j82r!2ūg#

]

]r jg8
J

3wb~r j2r,r j82r! . . .wan
~rn ,rn8!L . ~4.19!

This expression forDn depends only on velocity differences and therefore the Galilean invariance becomes obvious.

C. Locality of the interaction term

We begin to analyze the interaction termsDn ~4.19! for the most general configuration for which all the 2n coordinates
r j , r j8 are different, and all then(2n21) separations are of the same order of magnitude, which we designate byR. This
analysis whenR is in the inertial interval follows the ideas of the analysis presented in@4# Sec. VI A for the interaction term
of the structure function. The interaction term that we face here is a significantly more complicated object. The main point is
that the integral overr appearing in Eq.~4.19! forDn is ‘‘local’’ in the following sense. First it converges in the ‘‘ultraviolet’’
~UV! limit. This limit has to be considered~i! when r→0, ~ii ! when (r j2r) becomes very close to any of the 2n21
coordinates other thanr j , and~iii ! when (r j82r) becomes very close to any of the 2n21 coordinates other thanr j8 . Second,
it converges in the ‘‘infrared’’~IR! limit when r→`. The idea for the proof of these properties lies in the use of the fusion
rules which we discussed in Sec. II.

1. Ultraviolet convergence

To demonstrate the convergence of the integral inDn in the ultraviolet region we can consider any term from the sum on
j . Writing ug(r j2r)5@(k51

n ug(r j2r)#/n, and using Eq.~4.14!, we consider one of thek terms in the sum. The integral that
appears is of the form

I5
1

nE drPa jb
~r!

]

]r jg
^wa1

~r1 ,r18!•••wg~r j2r,rk!wb~r j2r,r j82r!•••wan
~rn ,rn8!&. ~4.20!

As the coordinater is being integrated over, the most dan-
gerous ultraviolet contribution comes from the region of
small r . In this region the projection operator can be evalu-
ated as 1/r 3. Other coalescence events ofr with other coor-
dinates contribute less divergent integrands since the projec-
tion operator does not become singular. Whenr becomes
small, there are two possibilities:~i! r jÞrk and~ii ! r j5rk . In
the first case the correlation function itself is analytic in the
region r→0, and we can expand it in a Taylor series
const1B•r1••• whereB is an r-independent vector. The
constant term is annihilated by the projection operator. The
term linear in r vanishes under thedr integration due to
r→2r symmetry. The next term which is proportional to
r 2 is convergent in the ultraviolet. In the second case we
have a velocity difference across the lengthr . Accordingly
we need to use the fusion rule~A4!, and we learn that the
leading contribution is proportional tor z2. This is not suffi-
cient for convergence in the ultraviolet if the derivative with

respect tor j could be evaluated as 1/r when r j5rk . How-

ever, if we take into account the tensor structure ofF̃2
ab

displayed in Eq.~3.1!, we see that this dangerous contribu-
tion vanishes. Accordingly, the derivative is evaluated as the
inverse of the distance betweenr j and the nearest coordinate
in the correlation function, leading to convergence in the
ultraviolet.

2. Infrared convergence

To understand the convergence ofDn when the integra-
tion variabler becomes very large we can consider again the
typical term~4.20!. The relevant geometry is shown in Fig.
4. There is one velocity difference across the coordinates
r j2r and r j82r ~which is shown on the right of the figure!,
(n21) velocity differences across coordinates that are all
within a ball of radiusR ~at the left of the figure!, and one
velocity difference across the large distancer which is much
larger thanR. In the notation of this figure the leading-order
contribution for larger is obtained from the fusion rules
~A4! for the situation on the right and~2.8! for the geometry
on the left. The resulting evaluation for the leading term is

I}r zn11SRj

r D z2SRr D
zn21

. ~4.21!

On the face of it, this term is near dangerous. For K41 scal-
ing ther dependence cancels, and the integral is logarithmi-
cally divergent. For anomalous scaling the integral con-
verges sincezn11<zn211z2 due to Hoelder inequalities.

FIG. 4. Typical geometry with (n21) velocity differences in a
ball of radiusR on the left separated by a large distancer@R from
a pair of points on the right.
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This convergence seems slow. However, the situation is in
fact much safer. If we take into account the precise form of
the second-order structure function in the fusion rules we
find that the divergence with respect tor j translates in fact to
]S2

bg(Rj )/]Rjg which is zero due to incompressibility. The
next-order term is convergent even for simple~K41! scaling.
This completes the proof of locality of~4.8!. The conclusion
is that when all the separations inDn are of the same order of
magnitudeR, the main contribution to the integral in~4.8!
comes from the regionr;R. Therefore the integral can be
evaluated by straightforward power counting, leading to

Dn;
Sn11~R!

R
. ~4.22!

It should be stressed that a more detailed analysis demon-
strates that when the separationsr between the coordinates
that do not involve velocity differences~i.e., separations like
r jk but notRj ) go to zero, the evaluation does not change. A
direct proof of this fact for the case when all such separations
are fused~i.e., the standard structure function! was presented
in @4#. On the other hand, if we consider fusions of type A, in
which coordinates across a velocity difference coalesce
(r5Rj ), we need to be more careful. When two points un-
dergo a fusion of type A the rough evaluation ofDn is
$@dS2(r)/dr#%@Sn11(R)/S2(R)# whereR is the characteris-
tic value of large separations. However, taking into account
the tensor structure of the first factor one sees that it vanishes
due to the incompressibility constraint. In the next-order
term the evaluation of the gradient is 1/R andDn→0 when
r→0.

D. The dissipative term

The evaluation of the quantityJn is more straightfor-
ward. When all the separationsRj and r i j are of the same
order R, the correlator in ~4.9! is evaluated simply as
Sn(R). The Laplacian is then of the order of 1/R2. The evalu-
ation is

Jn;n
Sn~R!

R2 . ~4.23!

When one of the separations becomes much smaller than the
rest the evaluation can be read directly from the definition
~4.9! and from the fusion rules. Denoting the smallest sepa-
ration by rmin we write

Jn;nS2~rmin!
Sn~R!

S2~R!rmin
2 . ~4.24!

V. THE HOMOGENEOUS EQUATION

We noted that when all the separations involved in our
correlation functions are of the same order of magnitude, and
whenn→0 ~which is the limit of infinite Reynolds number
Re!, the termJn becomes negligible compared toDn . The
ratio Jn /Dn is evaluated asnSn(R)/RSn11(R), which for
fixedR vanishes in the limitn→0. Thus the ‘‘balance equa-
tion’’ becomes ahomogeneousintegro-differential equation
Dn50 which may have scale-invariant solutions with

anomalous scaling exponentszn11Þ(n11)/3. It should be
stressed that the evaluation~4.22! remains correct for every
term inDn , but various terms cancel to give zero in the
homogeneous equation,provided that the scaling exponent
zn is chosen correctly. To make this important point clear we
exemplify it with the simple casen52 for whichDn can be
greatly simplified. Consider the scalar object
F2(r1 ,r18 ,r2 ,r28)5^w(r1ur18)•w(r2ur28)&. The terms in the sca-
lar balance equation for this case are exactly

D2~r1 ,r18 ,r2 ,r28!5d@S3~r 128!2S3~r 12!#/2dr1

1d@S3~r 182!2S3~r 1828!#/2dr18,

~5.1!

J2~r1 ,r18 ,r2 ,r28!5n$¹1
2@S2~r 128!2S2~r 12!# !

1¹18
2

@S2~r 182!2S2~r 1828!#%. ~5.2!

When all the separations are of the order ofR we can see
explicitly that J2;nS2(R)/R

2 which is much smaller than
each term inD2. Considering the scale-invariant solution
S3(R)5ARz3 whereA is a dimensional coefficient, we see
that

D2~r1 ,r18 ,r2 ,r28!5
z3A

2
@r

128

z321
2r 12

z321
1r

182
z321

2r
1828

z321
#.

Obviously the solution forD250 requires the unique choice
z351 which is the known exponent forS3 @14#. The coeffi-
cient A is now determined asē, which is the mean energy
dissipation per unit mass and unit time.

We presently do not know how to find the homogeneous
solution of the equationDn50 for higher values ofn. We
are even not fully confident that this is an equation in the
usual sense and not just a constraint that will not be sufficient
for a unique determination of the scaling exponentszn . We
feel, however, that this is an interesting equation that will
offer interesting and worthwhile insights.

VI. THE DISSIPATIVE SCALING FUNCTIONS

In this section we consider the dissipative ‘‘scales’’ and
show that they are actually scaling functions. To define prop-
erly the dissipative length we use the fact that there is a
crossover from the scale-invariant solution of the homoge-
neous equation to dissipative solutions whenJ2 becomes
comparable to any of the terms inD2. This happens when at
least one of the separations appearing in~5.2! becomes small
enough. Denoting the smallest separation asrmin we evaluate
J2;nS2(r min)/rmin

2 From this we can estimate, using the
balance equation,S2(rmin);@S3(R)/nR#rmin

2 ;ērmin
2 /n. In

the inertial range we haveS2(r );( ēr )2/3(r /L)z222/3. The
viscous scaleh2 for the second-order structure function is
then determined from finding where these two expressions
are of the same order of magnitude, i.e.,

ēh2
2/n5~ ēh2!

2/3~r /L !z222/3. ~6.1!

Using the outer velocity scaleUL we estimateē;UL
3/L and

end up with
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h2;LRe21/~22z2!. ~6.2!

Note that this result is not in agreement with the ad hoc
application of the multifractal model@14,22,23# which pre-
dictsh2;LRe22/(21z2).

We are going to make the assumption that a similar
mechanism operates in the general case ofnÞ2. The ratio-
nale for this assumption is that a careful analysis of the in-
tegrals forDn does not offer a visible mechanism for a can-
cellation of the leading-order evaluation. The mechanism is
as follows: as long as all the separations are in the inertial
interval Jn is negligible. When one separation, e.g.,r 12,
diminishes towards zero, and all the other separations are of
the order ofR, the internal cancellations leading to the ho-
mogeneous equationDn50 disappear, andDn is evaluated
as in ~4.22!. The termJn is now dominated by one contri-
bution that can be written in shorthand notation as
n¹1

2Fn(r 12,$R%). We can solve forFn(r 12,$R%) in this
limit:

Fn~r 12,$R%!'r 12
2 Sn11~R!/nR. ~6.3!

On the other hand we have, from the fusion rule~2.28!, the
form of the same quantity whenr 12 is still in the inertial
range, i.e.,Fn(r 12,$R%)'S2(r 12)Sn(R)/S2(R). To estimate
the viscous scalehn we find when these two evaluations are
of the same order. The answer is

hn~R!5h2SRL D xn, xn5
zn1z32zn112z2

22z2
. ~6.4!

We note that the Hoelder inequalities guarantee thatxn.0
and increases withn. We see that the viscous ‘‘length’’ is
actually an anomalous scaling function.

VII. EXACT BRIDGE RELATIONS

In this section we derive important~and exact! scaling
relations between the exponentszn of the structure functions
and exponents involving correlations of the dissipation field.
We consider correlations of the type

Ke
~n![^e~x1!w~r1ur18!•••w~rnurn8!&}R2mn

~1!
, ~7.1!

K2e
~n![^e~x1!e~x2!w~r1ur18! •••w~rnurn8!&}R2mn

~2!
,
~7.2!

Kpe
~n![^e~x1!e~x2!•••e~xp!w~r1ur18!•••w~rnurn8!&}R2mn

~p!
,

~7.3!

where R is a typical separation between any pair and
e(x)[nu“(x)u2, and we are interested in the scaling rela-
tions between the exponentsmn

(p) and the exponentszn .
Note thatm0

(2) in this notation is the well studied@17,12#
exponent of dissipation fluctuation which is denotedm. We
begin with the rigorous calculation ofmn

(1) .
Consider ~4.9! for Jn12(x1 ,x18 ;x2 ,x28 ;r1 ,r18 , . . . ,rn ,rn8)

in the limit x1→x2. The leading contribution in the limit
arises from the Laplacians with respect to the coalescing
points:

lim
x1→x2

Jn125n lim
x1→x2

~¹1
21¹2

2!

3^u~x1!u~x2!w~r1 ,r18!•••w~rn ,rn8!&.

~7.4!

Moving one gradient around and taking the trace with re-
spect to the first two tensor indices we see that in this limit

lim
r1→r2

Jn12
aa 522Ke

~n! . ~7.5!

As explained in the precding section, when the two points
coalesceDn12 of the balance equation loses its internal can-
celations, and we can therefore conclude immediately that

Ke
~n!;

Sn13~R!

R
. ~7.6!

In terms of the scaling exponents we are led to the exact
relation

mn
~1!512zn13 . ~7.7!

The scaling relations satisfied bymn
(2) require considerations

of the second time derivative of the correlation~1.8!.

F̈n5 (
i , j51

n

^w~r1ur18 ,t !•••ẇ~r i ur i8 ,t !•••ẇ~r j ur j8 ,t !•••w~rnurn8 ,t !&. ~7.8!

Using the Navier-Stokes equations for the time derivatives
we derive a new balance equationDn

(2)1Bn
(2)5Jn

(2) where,
using the definition~4.12!,

Dn
~2!5E drdr8 (

i , j51

n

P~r!P~r8!

3^w~r1ur18!•••L~r i ,r i8 ,r!•••

3L~r j ,r j8 ,r8!•••w~rnurn8!&. ~7.9!

Using the fusion rules and following steps similar to those

described above, we can prove that the integrals overr and
r8 converge. Accordingly, when all the separations are of the
order ofR, every term inDn

(2) is evaluated asSn12(R)/R
2.

The termJn
(2) takes on the form

Jn
~2!5n2 (

i , j51

n

~¹ i
21¹ i 8

2
!~¹ j

21¹ j 8
2

!

3^w~r1ur18!•••w~r i ur i8!•••w~r j ur j8!•••w~rnurn8!&.

~7.10!
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As before, when all the separation in this quantity are of the
order of R, the Laplacian operators introduce a factor of
1/R2 and the evaluation of this quantity is
Jn

(2);n2Sn(R)/R
4. Clearly this is negligible compared to

typical terms inDn
(2) . The quantityBn

(2) contains a cross
contribution with one Laplacian operator and one nonlinear
term with a projection operator. The integral is again local,
and one can show that the evaluation is
Bn

(2);nSn11(R)/R
3 which is also negligible compared to

typical terms inDn
(2) .

Now we consider the fusion of two pairs of coordinates,
e.g. r 12→0 and r 34→0. As before, the cancelations in
Dn

(2) are eliminated, and the evaluation of a typical term
becomes the evaluation of the quantity. The other two terms
in the balance equation also become of the same order be-
cause the Laplacian operators¹1

2 and ¹3
2 are evaluated as

r 12
22 and r 34

22 , respectively. As before, we can consider the
resulting balance equation as a differential equation for
Fn(r 12,r 34,$R%). The leading term in this equation is

4n2¹1
2¹2

2Fn~r 12,r 34,$R%!'Bn
~2!1Dn

~2!;Sn12~R!/R2.

The solution is

Fn~r 12,r 34,$R%!;r 12
2 r 34

2 Sn12~R!/n2R2. ~7.11!

Finally we can write the quantitiesKee
(n) in terms of the cor-

relation function as

K2e
~n!5n2 lim

r12 ,r34→0
“1“2“3“4Fn14~r 12,r 34,$R%!.

~7.12!

Using ~7.11! here we end up with the evaluation

K2e
~n!;Sn16 /R

2}R2mn
~2!
, mn

~2!522zn16 . ~7.13!

For the standard exponentm5m0
(2) we choosen50 and ob-

tain the phenomenologically proposed ‘‘bridge relation’’

m522z6 . ~7.14!

This is a derivation of this scaling relation on the basis of the
Navier-Stokes equations. In general, if we havep dissipation
fields correlated withn velocity differences the scaling ex-
ponent can be found by consideringp time derivatives of
~1.8!, with the final result

mn
~p!5p2zn13p . ~7.15!

We see that Eqs.~7.7!, ~7.13!, and ~7.15! can be guessed if
we assert thatfor the sake of scaling purposesthe dissipation
field e(r) can be swapped in the correlation function with
w3(r1ur18)/R1, whereR1 is the characteristic scale. This re-
minds one of the Kolmogorov refined similarityhypothesis.
We should stress that~i! our result does not depend on any
uncontrolled hypothesis, and~ii ! it does not imply the cor-
rectness of the hypothesis. Our result is implied by the re-
fined similarity hypothesis, but not vice versa.

We end this section by noting that the accepted values of
m and z6 which are about 0.2 and 1.8, respectively, are in
good agreement with the standard bridge relation~7.14!.

However, we have presented here a ‘‘two-dimensional’’ ar-
ray of bridge relations depending on the indicesn and p
whose experimental test with high Reynolds number flows
with good resolution of the dissipative scales is highly desir-
able, considering the putative exact nature of these relations.

VIII. SUMMARY AND CONCLUSIONS

In terms of predictions the theory described above has a
lot to offer. First, we have presented the fusion rules, and it is
extremely worthwhile to test them against experimental data.
One can achieve a reasonable test already by using existing
data sets from atmospheric boundary layers or grid turbu-
lence. In such experiments one measures usually at one space
point as a function of time. Using the standard Taylor hy-
pothesis one can measure many-point correlation functions
for points placed along one line. It is possible to examine the
properties of such correlation functions when one distance is
much smaller than all others. Another prediction pertains to
the viscous scaling function and the anomalous exponents
xn that characterize them, see Eq.~6.3!. To test these predic-
tions one needs a good resolution of the subdissipative scales
in a high Reynolds number experiment. Such data are not
readily available, but very worthwhile to acquire. Another
important point raised briefly in this paper has to do with the
set of exponentsb l which govern the anisotropic properties
of the correlation functions. We noted elsewhere@6# that the
same set of exponents characterizes the correlation functions
of gradient fields with nontrivial transformation properties
under the rotation symmetry group. These were never mea-
sured either.

For the sake of clarity we want to reiterate at this point the
set of assumptions that underlie our findings. First, the fusion
rules were derived on the basis of two assumptions, i.e., the
homogeneity of the many-point correlation functions and the
universality of the scaling exponentszn . The second as-
sumption has strong support from decades of physical and
numerical experiments. The first one was never checked, and
in spite of the fact that it seems plausible, it is very worth-
while to put it to test. The locality of the integrals of the
interaction termDn follows from the fusion rules without an
additional assumption. However, in the derivation of the
bridge relations we employed an additional assumption that
there is no hidden cancellation in the leading evaluation of
Dn . If there is a cancellation, all the bridge relations change
significantly. For example, the relationm522z6 which is
based on this assumption will change tom52z22z4 if the
leading-order evaluation cancels, and the next one does not.
This point is discussed in detail in@4#. To test this assump-
tion one can, for example, measure carefully the bridge rela-
tions to distinguish between these two possibilities.
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APPENDIX A: SOME SPECIAL GEOMETRIES OF FUSION
AND THEIR IMPLICATIONS

1. Special geometry of Fig. 5

As we discussed in Sec. II C 2, the evaluation~2.11! is
inapplicable when the smallest of the large separations~say
ur12r2u5Rmin) ~which is not associated with a velocity dif-
ference! becomes similar to small separationsr ~across a
velocity difference!. To understand how to evaluate the cor-
relation function in this case consider the limitRmin50 with
the help of the special geometry shown in Fig. 5. We have
four coordinates,r1, r18 , r2, andr28 organized as shown in the
figure, i.e.,r182r1 along thez axis, r25r1, and r28 is on the
x axis, with equal distances tor1 andr18 . This special geom-
etry will help us to derive a result that holds more generally.
In addition to the velocity differencesw(r1 ,r18) and
w(r2 ,r28) we can have any number of velocity differences
w(r i ,r i8), but we demand that the product of all the addi-
tional n22 velocity differences~denoted in shorthand as
$w%n22) remains invariant to rotations ofp radians around
the x axis. In Fig. 5 we show two such additional velocity
differences acrossr32r38 and r42r48 . We will write the
nth-order correlation function in shorthand notation as

Fn~r1 ,r18 ;r2 ,r28 ;$rk ,rk8%!5^w~r1 ,r18!•w~r2 ,r28!$w%n22&.
~A1!

By definition w(r2 ,r28)5w(r2 ,r18)1w(r18 ,r28). Remembering
that r15r2 we get

Fn~r1 ,r18 ;r2 ,r28 ;$rk ,rk8%!5Fn~r1 ,r18 ;r18 ,r28 ;$rk ,rk8%!

1Fn~r1 ,r18 ;r1 ,r18 ;$rk ,rk8%!.

~A2!

Due to the rotation symmetry the first term on the right hand
side of ~A2! may be written asFn(r1 ,r18 ;r1 ,r28 ;$rk ,rk8%),
which by definition is the2Fn(r1 ,r18 ;r2 ,r28 ;$rk ,rk8%). Finally
we derive the identity

Fn~r1 ,r18 ;r2 ,r28 ;$rk ,rk8%!5 1
2Fn~r1 ,r18 ;r1 ,r18 ;$rk ,rk8%!.

~A3!

The object on the right hand side has two velocity differ-
ences across a small separationr , and n22 large separa-
tions. Therefore it follows the usual fusion rules~2.8! for
p52. Accordingly

Fn~r1 ,r18 ;r2 ,r28 ;$rk ,rk8%!5F2~r1 ,r18!Cn,2$rk ,rk8%)

}S rRD z2

Rzn. ~A4!

This result was derived for the very specific geometry shown
in Fig. 5. However, the last formula holds much more gen-
erally. Even if we tilt the vectorr182r1 in an arbitrary angle,
the result remains invariant. The reason is that in the limit
r!R the anisotropic effects of the large scales on the small
scales have already disappeared, as is shown in Sec. III. If
we ruin the symmetry of rotation around thex axis we also
do not change the final result. The change will be in the
factor in Eq.~A3! from 1/2 to a geometry-dependent factor
of the order of unity. We can even dissociater2 from r1 over
distances of the order ofur182r1u. Equation~A4! is rather
universal.

2. Special geometry of Fig. 6

In Fig. 6 we show a situation in which there exist two
velocity differences across short distances. The difference
with the general situation shown in Fig. 1~for p52) is that
we have a fusion of points belonging to short and long sepa-
rations, i.e.,r25r3. The same type of fusion existed also in
Fig. 5, but there was only one short distance with a velocity
difference across it. Now we have two. According to the
general rule we should have a contribution that is propor-
tional to r z2. The aim of this special discussion is to show
that in this case there exists a subleading contribution that is
proportional tor z3. This is important in the analysis that
involves the calculation of gradients with respect to these
positions. To this aim consider the correlation function

FIG. 6. Special geometry of fusion that is discussed in Appendix
A 2.

FIG. 7. Special geometry of fusion that is discussed in Appendix
A 3.

FIG. 5. Special geometry of fusion that is discussed in Appendix
A 1.

6282 54VICTOR L’VOV AND ITAMAR PROCACCIA



Fn~r1 ,r18 ;r2 ,r28 ;r3 ,r38 ;$rk ,rk8%!

5^@w~r1 ,r18!•w~r2 ,r28!#@w~r3 ,r38!• ẑ#$w%n23&,

~A5!

where ẑ is a unit vector in thez direction. We again use a
shorthand notation$w%n23 for the product ofn23 velocity
differences across large separations which depend on the co-
ordinates r4, r48 and higher. Using now the fact that
w(r3 ,r38)5w(r3 ,r18)1w(r18 ,r38) we compute

Fn~r1 ,r18 ;r2 ,r28 ;r3 ,r38 ;$rk ,rk8%!5^@w~r1 ,r18!•w~r2 ,r28!#@w~r18 ,r38!• ẑ#$w%n23&

1^@w~r1 ,r18!•w~r2 ,r28!#@w~r3 ,r18!• ẑ#$w%n23&. ~A6!

Rotating around thex axis we can rewrite the last correlator on the right hand side of~A6! as the correlator on the left hand
side with an opposite sign. To see this note that all the terms are invariant except the termw(r3 ,r18)• ẑ that changes sign. Thus
finally

Fn~r1 ,r18 ;r2 ,r28 ;r3 ,r38 ;$rk ,rk8%!5 1
2 ^@w~r1 ,r18!•w~r2 ,r28!#@w~r18 ,r38!• ẑ#$w%n23&. ~A7!

This correlator has three explicit velocity differences across short distances, and therefore according to the general rule with
p53 it is proportional tor z3. In the general case without rotation symmetry the leading termr z2 remains. Therefore we
conclude that in the geometry in which there are two velocity differences across a small separation and one point belonging to
a velocity difference across a large separation~see Fig. 6!, the correlation functionFn can be written to leading order as

Fn~r1 ,r18 ;r2 ,r28 ;r3 ,r38 ;$rk ,rk8%!5@S̃2~ ur12r2u!1S̃2~ ur182r28u!2S̃2~ ur12r28u!2S̃2~ ur182r2u!#Cn,2~r0 ,r38 ;$rk ,rk8%!

1@S̃3~r0ur1 ,r2 ,r3!1S̃3~r0ur18 ,r28 ,r3!2S̃3~r0ur18 ,r2 ,r3!2S̃3~r0ur1 ,r28 ,r3!#Cn,3~r0 ,$rk ,rk8%!,

~A8!

wherer05@r11r181r21r281r3#/5, andS̃2, S̃3, Cn,2 , andCn,3 are homogeneous functions of their arguments~in the inertial
interval! with scaling exponentsz2, z3, zn2z2, andzn2z3, respectively. The functionS̃3 may be different from the function
S3 in its dependence on the angles and the ratios between its argument coordinates. But they share the same scaling exponent.

3. Special geometry of Fig. 7

In this subsection we consider the case in which there are four coordinates within the ball of sizer , but only two coordinates
(r1 andr18) belong to a velocity difference, see Fig. 3. The other two coordinates (r2 andr3) are in the ball, but they relate to
velocity differences across large separations. To understand the situation we again consider a special geometry, that of Fig. 7.
In this geometryr15r25r3 and we study the correlation function

Fn~r1 ,r18 ;r2 ,r28 ;r3 ,r38 ;$rk ,rk8%!5^@w~r1 ,r18!• ẑ#@w~r2 ,r28!•w~r3 ,r38!#$w%n23&. ~A9!

Making the substitutions

w~r2 ,r28!5w~r1 ,r28!5w~r1 ,r18!1w~r18 ,r28!, ~A10!

w~r3 ,r38!5w~r1 ,r38!5w~r1 ,r18!1w~r18 ,r38!, ~A11!

we find that

2Fn~r1 ,r18 ;r2 ,r28 ;r3 ,r38 ;$rk ,rk8%!5^@w~r1 ,r18!• ẑ#uw~r1 ,r18!u2$w%n23&

1^@w~r1 ,r18!• ẑ#w~r1 ,r18!•@w~r18 ,r28!1w~r18 ,r38!#$w%n23&. ~A12!

In obtaining this equation we used the symmetry under rotation around thex axis inp. Under this rotationr1→r18 . The first
term on the right hand side has an explicit product of three velocity differences across a small distance, and it is therefore
proportional tor z3. The second term has two velocity differences across a small scale, and according to the preceding
subsection it contains two contributions, one proportional tor z2 and the other tor z3. One can write it in a form similar to~39!
and ~40!, but this is not needed at the moment.
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APPENDIX B: PROOF OF GALILEAN INVARIANCE

In this Appendix we prove that the quantityLb
(2) which is not Galilean invariant does not contribute toDn . Indeed, by

substituting~4.18! in ~4.11! we have

Dn
~2!5(

j51

n E dr j Pa jb
~r!^wa1

~r1 ,r18!•••L2
b~r j ,r j8 ,r!•••wan

~rn ,rn8!&. ~B1!

In its turn, this equation may be written as the difference of two terms,Dn
(2)5Dn

(2a)2Dn
(2b) which correspond to the two

terms in Eq.~4.4! for the kernelPa jb
(r). By substituting in~B1! Pab(r)5dabd(r) we have

Dn
~2a!5(

j51

n

^wa1
~r1 ,r18!•••Lb

~2!~r j ,r j8,0!•••wan
~rn ,rn8!&. ~B2!

Using the longitudinal projectorPa jb
uu (r) instead of the transversal onePa jb

(r) in Eq. ~B1! we have

Dn
~2b!5(

j51

n E dr j Pa jb
uu ~r!^wa1

~r1 ,r18!•••Lb
~2!~r j ,r j8 ,r!•••wan

~rn ,rn8!&. ~B3!

Let us show that both these terms are zero~but because of different reasons!. Consider the first expression forDn
(2a) .

Substituting the explicit form~4.18! for Lb
(2)(r j ,r j8,0) and using the incompressibility constraint~which allows one to commute

“ j1“ j8 and ū ) one has

Dn
~2a!5(

j51

n

^wa1
~r1 ,r18!•••$@~“ j1“ j8!•u#wa j

~r j ,r j8!%•••wan
~rn ,rn8!&. ~B4!

This equation may be rewritten as

Dn
~2a!5(

j51

n

~¹ j
b1¹ j

b!^ūbwa1
~r1 ,r18!wa2

~r j ,r28!•••wan
~rn ,rn8!&. ~B5!

Remember that due to space homogeneity the correlation function in the second line of this equation is independent of the sum
of coordinates( j51

n (r j1r j8). ThereforeDn
(2a) is indeed equal to zero.

Consider next Eq.~B3! for Dn
(2b) . According to~4.18! Lb

(2)}wb(r j2r,r j82r) and acting on this velocity with the longi-
tudinal projector gives zero because of the incompressibility constraint. Thus we can conclude thatDn

(2a)5Dn
(2b)50.
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