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Fusion Rules in Turbulent Systems with Flux Equilibrium
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Fusion rules in turbulence specify the analytic structure of many-point correlation functisons of the
turbulent field when a group of coordinates coalesce. We show that the existence of universal flux
equilibrium in fully developed turbulent systems combined with a direct cascade induces universal
fusion rules. In certain examples these fusion rules suffice to compute the multiscaling exponents
exactly, and in other examples they give rise to an infinite number of scaling relations that constrain
enormously the structure of the allowed theory.

PACS numbers: 47.27.Gs, 05.40.4j, 47.27.Jv

In a series of recent papers, elements of the analytic (1) Scale invariance: All correlation functions are
theory of Navier-Stokes turbulence [1-4] and passivehomogeneous functions of their arguments in the core of
scalar turbulent advection [5—8] were presented. In thishe inertial intervalp < |r; — ro| < L:

Letter we explain that the structure of the essential part — G

of these theories is economically summarized by a set of Su(AxolArs, Ars, ., Axn) = A% Sy(Folry, 12, 10
“fusion rules” that determine the analytic structurersf (2)

point correlation functions when a group of coordinateswhere(, are scaling exponents.

tend together. We show here that the fusion rules can (2) Universality of the fine scale structure of turbu-
be deduced from very few general assumptions aboudence: In its strong version this means that the corre-
the nature of the universal flux equilibrium that existslation functions of the type (1) have a universal functional
in fully developed turbulent systems. Of course, thedependence on the separation distances when they are all
same fusion rules can also be established by diredn the interior of the inertial intervaln, L). This means
calculations in specific examples. We first deduce théhat we can fix an arbitrary set of velocity differences on
fusion rules, then we exemplify their utility in determining the scale ot., and the correlation functions will depend on
scaling exponents, and, lastly, we demonstrate how in oni@eir precise choice only via an overall factor determined
example the fusion rules follow from first principles. by thelL-scale motions. Mathematically this is expressed

Consider a turbulent fielda(r,7) which is either a as the following property of the conditional average:
vector or a scalar and dgnote the differgmqellrz, 1) = C (w(rolr)w(rolra) - - - w(rolr,) W (rolr))
u(ry, 1) — u(ry, ). We discuss the statistical properties
of the turbulent field in terms of simultaneous many-point X w(rolry) - - w(rolry))

correlation functions of dlff_erences with respect to one, = S,(rolry,ra, . .., 1) Pun(rolrl,....xh)  (3)
two, or more references points: , .
for |r; —rol ~ L and |r; — ro| < L. The functions
Su(xolry,ra, ..., r,) = (wlrolr)w(rolrs) - - w(rolrs)), S, coincide with S, in the inertial interval. They can
S0 X IE L, X Epi s ) = (W(ro|r)) differ in their crossover to viscous behavior, and their

, , (different) crossover scales may depend on the large scale

Xw(rolrs) - - - w(rolr,)w(rglr,+1) - - wrglrarm)). (1) motions. A weaker version of the universality assumption
etc. Note that whem is a vector then-point correlation ~ concerns with the scaling exponent only. In this version
is ann-rank tensor. The class of systems that we discusthe functionsS, and S, may differ, but their scaling
are driven on a characteristic scale referred to as the outexponents coincide. This weaker version is sufficient
scaleL. This driving can be achieved either by a time for most of our developments below. Note that in both
dependent low frequency “stirring force” or by specify- versions{, can be identified with the scaling exponent
ing given values oli at a set of “boundary” points with of the n-order structure functio|w(ro|r)|"). We are
a characteristic separatidn away from our observation particularly interested in multiscaling systems in whigh
pointsry, rj,r;, etc. The systems have dissipation (vis-is a nonlinear function of.
cosity, diffusivity, etc.), and in the dissipationless limit The derivation of these two properties from first prin-
there exists an integral of motion which we refer to asciples differs from system to system. In this Letter we
“energy.” We consider systems with a “direct” cascadediscuss the fusion rules and their consequences in systems
in which the intake of energy on the scdleis balanced for which these assumptions are valid. The first set of

by dissipation on a small scale < L. fusion rules that we derive conceri$s when p points
We invoke two assumptions of the Kolmogorov [9] (p < n) tend tor, (so that the typical separation frorg
type. is r), and all the other separations remain much larger, of
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the order ofR, r < R < L. Without loss of generality, we can choose thpsmordinates as;,r»,...,r,. We claim
that

Sl’l(rolrl? r23 ] rn) = §p(r0|rlsr27 cee rp)\l"n,p(rolrp+19r])+27 e ,rl’l) ’ (4)

where V¥, ,(rolr,+1,r,42,...,1,) iS @ homogenous function with a scaling exponént- ¢,. The derivation of the
fusion rule (4) follows from Bayes’ theorem and assumptions (1) and (2). We write

Su(xolry,rp, ... 1) = [dW(rolrpH)---dW(roIrn)W(rolrpﬂ)---W(rolrn)T[W(rolrp+1)---W(rolrn)]

X Aw(rolry), w(rolrz) - - - w(rolr),)[w(rolr, + 1 )W(rolr,12) - - - w(rolr,)), )

where P[w(rolr,+1)---w(rolr,)] is the probability to ' To evaluate/,, , we consider a related object in which all
see the tensow(rglr,+1)---w(rolr,,). Next, note the the gradients are taken at different points:
consequence of assumption (2): The scaling laws of thej — VO VYR YRyl i
correlation functions at scaleare the same, independent ”27" nlr Tp = klekp gy
of whether we force the system on the scales> r or X (wh (rolr)w" (rolr}) - - - w*r (xolr, )w' (rolr),)
on the scaleR > r. The conditional average in (5) is % w(r| ) wlrole,)) 8
proportional toS,, and hence (4). This result seems WiTolr2p+1) == Wirolln)7, (8)
rather obvious at this point, but we will see that it leadswhere the contraction tensof ensures that the re-
to a totally unconventional scaling structure of the theoryquires scalar is obtained. We will represent this
We should stress that for Navier-Stokes and passive-scalguantity in a compact form without displaying
advection these fusion rules fpr= 2 were derived from all the tensor indices as]z,,,n(rolrl,rz,...,rn) =
first principles [4,8]. V.V, ---V,;}CSn(rolrl,r{,...,rn). The quantity (8)
The next set of fusion rules is obtained for the structureyives usJ,,, when the first p points coalesce together
function S, ,, of (1) when two groups op = n andg =  with r,, whereas all the rest of the coordinates remain
m points tend tory andry, respectively. The separation a typical distanceR from ry. WhenR is in the inertial
between these groups of points is of the ordeRofThe interval we expect scaling behavior in termsRyf
derivation of the fusion rules is now obvious, with the

—_ 2 s

result Japa = RTECPT. ©)

R (UNS 1) ST e SR TUBUNS S Considering the distances between all the coalescing
s < points to be in the inertial range, we apply (4) and find
- Sp(l’()ll'l, ry,..., rp)Sq(r(l)lrn+1’ Fp+2,..., rn+q) for Zp Coalescing pointS

X \Pn,m,p,q(ro,r(l)lr[)+la~-~arn;rn+q+1’-~~,rn+m)~ (6) _ < / /
The SCallng exponent Oﬂ’n’m’p’q IS évn+’n _ é«p _ é«q. J2p,n(r0|rls r29 crr rn) - Vrl T Vr]’) SZp(rolrl, rls RS ] r )
Note that the fusion rules (4) and (6) amet decompo- X W0, (rolrap+1,T2p 42,0000 T0). (20)

sitions into products of lower order correlation functlons,We expect that/,,, is independent of the first 2

and the functionsP are not correlations of velocity dif- . .
. . coordinates when the distances between them are well
ferences across large separations. In fact, we will show : . :
in the viscous regime. We will denote by(2p,n,R)

that ¥ is much larger than the corresponding correlation IR .
: , L2 : S . the characteristic viscous length at whidh, crosses
functions in all situations with multiscaling. Evidently, oo . AN
smoothly from inertial range behavior to dissipative

one can derive similar fusion rules for three, four, or . i
. . . . behavior. Of course, this is also the crossover scale of
more groups of coalescing points with large separat|0n§

b ! »2p.n With respect to the firstj2coordinates. This allows
etween the groups. The structure of the resulting correds” to evaluate the coalescing gradients by taking e 2
lation function will be a product of the correlation func- i 0 be (2 R): 99 y 9
tion associated with each group times some funcioof separations o bg{2p. n., ft)-
big separations which carries the overall exponent. Jopa(rolry, 1o, ....1,) ~1(2p, n,R)%r 2P
Next, we discuss fusion rules for correlation functions < W |
that include gradient fields. These rules depend on the n2p(olr2p 1. 12p 42 .. Fn)
type of rotational invariant that one can define from (2p coalescing poinis (11)
the tensors that appear after taking gradients. We wi
consider only the lowest order invariant which is a scala
under rotation. For passive scaldrshis is |[VT - VT|?,
and for a vectou the quantity|Vu|? is the square of the
strain tensor;;s;;, wheres;; = (du;/dr; + du;/dr;)/2.
Consider the quantity
Japn(oltop i1, ... 1) = (IVu(ro)[*” Jpgmm@olri, 2, ..., 1) ~ n(p,n, R)* P (g, n, R)% 1

IJf there are two groups of coalescing points with gradi-
ents, withp points coalescing onto, and g points co-
alescing onry, respectively, we considef, , ... (where,
as beforep + m = p + ¢ is the total number of points).
The rule forp andq coalescing points is

X W(rolrap+1) - - wirolr,)). (7) X Woympa@olrpi,Tpio,....tn).  (12)
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The generalization of this fusion rule for three or moren > 1 the exact homogeneous differential equation
groups of coalescing points with gradients is obvious. 2n A

This is as much as one can do in general. Now the |:_K Z Vf, + an}Fﬁn(n,rz,---,l‘zn) =0, (18)
crucial issue is how;(zp n, R) depends on its arguments. a=1
The simplest version of the theory comes about wheRyhere x is the molecular diffusivity andv2 is the

the dissipative length is independent®f (2p,n,R) = | gpjacian operator acting an,. The operatofB,, is the

n(2p,n). This is realized, for example, in passive scalargm of the binary operatorB

convection as is shown below. In this case the fusion

2n
rules imply various sets of scaling relations. For exampleg . — ;. (ry — 1p) 92 B,, = Z B o
the exponentg (2p, n) of J,,,, are given by ap = e Iraidrg;’ b e ap
19
EQpn) = &0 — by (13) (19)

Note that fusion rules equivalent to this simple versionHereh”/(r) is the eddy diffusivity that behaves ligR*

: , - With0 < ¢, <2andfH =2 — &.
were proposed in [10] on the basis of formal assumption&’ n the %ertial rangze of scagliles we can disreaard the
used in field theory, namely, existence of an uItravioIetL 9 9

universal renormalization-group fixed point and “asymp- e}placllan operator(js 'ntEq' (19;)' I_:or dern;mg .tt?]e er]JS|on
totic completeness.” rules (4) we consider thp coalescing points with char-

As another example of scaling relations, consider th cteristic separa;uom and den_o'_[e their coordmgtes by
correlation functions he indexa or a’. The remaining2n — p coordinates
25) ” ” ) have characteristic separatiofs and are denoted by
Kee (R) = ([Vu()|™[Vu(r + r)I) « R7#. (14) g or g/. We assemble [8] theB operators in three
From (12) inthe case = m = p = g = 2s we get a set groups By =3 4oa Baa Bowp=Yp-p Bpp, and
of scaling relations Zaﬂ Ba,_;. The evaluation of the action of the
w(2s) = 265 — Lus . (15) operators in the first and second groupsHgr% and
} i ) ) H/R%, respectively. The evaluation of the action of each
Next, we can consider a correlation bigradient fields  torm in the third group isHR/rR%. However, space

with the same power (i.elVu|>) at | different points homogeneity results in a cancellation of this evaluation
which are separated by a distance of the ordeRofThe i the sum of the terms in this group [8]. The next order
corresponding exponepi(/, 2s) is surviving evaluation is agai/R%. We thus combine
w(l,2s) = 1oy — g (16) the second and third groups into an effective operator
atlorgg The equation to consider IB + BF,,=0. When
x. P =2 we can find the solution of this equation as the
ponent w(py, ps....,ps) Of a correlation of fields following expanS|on |2r; powers of the small differenge:
(Vu(e)|” [Va(e)|? - - [Vu(e)”) in which all the AxR}+ riCofR} + ris DofR} + rhEs{R} + -, where
separations is of the order Bfis A,, Cy, Dy, etc. are some functions of the large separations
n of the order ofR. When we use this solution to compute
w(pi,p2,....pn) = Z &, — &5 P = ij. (17) Sy, the leading contributiom{R} drops, and we find (4)
Jj=1 for p =2. Forp > 2 we need to distinguish between even
In usual operator algebras [11-14] every local field isand oddp’s because of the special property of passive
associated with a leading exponent and the correlatiogdvection in whichS,,+; =0. The next evemp is p = 4.
function scales with the sum of these exponents. In thi§or this case we find a solution in the form
case the algebra is different. There is a global expotignt |: i 5 }
Faa!
aa'=1

from which one subtracts the sum of individual exponents F§ = As{R} + C4{R}
{p,- In multiscaling situations the global exponent is a
nonlinear function ofg =Y, . Accordingly, it is not a + DufR}[(r12r13)® + (riaria)® + (riara3)® + -]
property of every |nd|V|duaI fleld We note here without + FC(rr . 1) Wy ARY + - 20
demonstration that invariants of the gradient field tensors 312,15, 4 W 41K (20)
other than scalars are associated with other individuavhereF; is a contribution of a new type, as it solves the
exponents. homogeneous equation (18). Computisyg the first two
The range of applicability of these fusion rules shouldterms disappear, and in a multiscaling situation the leading
be understood on the basis of the equations of motiofontribution becomes the last. In fact, this is the general
for any given system. As an example, we explain herdule for any even order, and is the explicit mechanism
briefly why they are applicable for Kraichnan’s model for the fusion rules in this particular case. It arises here
[15] of passive-scalar convection with a driving velocity from the possibility to split the total operat@#, into the
field that is8 correlated in time. It was shown [15,16] two groupsB, and B, such that forp coalescing points

that the cumulant parfs, of the Zrorder correlation fB carries the leading contribution. Since the sum of
function F,, = (T'(r1, 1)T(xrp, 1) ---T(ry,, t)) satisfies for Laplacians in (18) is also dominated by the sum up to
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p, the crossover scalg(p,2n, R) from inertial range to direct cascade of energy in which there exists a universal
dissipative behavior is determined in this case by a balandéux equilibrium. The second class involves gradients,
between—« >4 _, V2 andl?,,. It therefore cannot depend and these bring in an explicit dependence on a viscous
onnoronR n(p,2n,R)=n(p). The fusion rules (14)— scale that, in general, is not universal. We explained why
(16) which were based on the independencenobn R in the case of passive-scalar advection this problem may
follow. be solved. Accordingly, one can derive an infinite set
In fact, these result and, in particular, the scalingof nontrivial scaling relations that allow the expression
relations (13) seem sufficient to determine the exponentsf the scaling exponents of the correlation functions of
£, in their entirety. The necessary steps were detailed igradient fields with the exponents, of the structure
[8] and will not be repeated here. functions. For hydrodynamic turbulence the fusion rules
The case of Navier-Stokes turbulence calls for addithat involve gradients must be supplemented with a Navier-
tional considerations. The fusion rules (4) and (6) wereStokes based theory for tHedependence of the viscous
found from first principles forp = 2 [4], and we be- cutoff, which is our next project.
lieve that similar techniques can be used to establish them We thank Mark Nelkin, Uriel Frisch, and Bob Kraich-
for any p. Equations (11) and (12) follow, but in the nan for useful remarks concerning the viscous cutoffs and
Navier-Stokes case it is possible that the dissipative scalgniversality. This work has been supported in part by
n(p,n,R) is R dependent. If we assume that this is notthe US-Israel Binational Science Foundation and the Naf-
the case, the scaling relations obtained above should afali and Anna Backenroth-Bronicki Fund for Research in
ply also to the Navier-Stokes case. To explore anothe€haos and Complexity.
possibility we follow Kolmogorov’s refined similarity hy-
pothesis [17] in assuming that the conditional average
v{|Vu|*|w(0|r)) ~ w(0|r)*/R. This assumption means
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