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Fusion Rules in Navier-Stokes Turbulence: First Experimental Tests
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We present the first experimental tests of the recently derived fusion rules for Navier-Stokes
turbulence. The fusion rules address the asymptotic properties of many-point correlation functions
as some of the coordinates coalesce, and form an important ingredient of the nonperturbative statistical
theory of turbulence. Here we test the fusion rules when the spatial separations lie within the inertial
range, and find good agreement between experiment and theory. For inertial-range separations and for
velocity increments which are not too large, a simple linear relation appears to exist for the Laplacian
of the velocity fluctuation conditioned on velocity increments. [S0031-9007(97)04425-6]
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In this Letter the predictions of the recently propos
fusion rules [1] are tested by analyzing a turbule
velocity signal at high Reynolds number. We start with
short theoretical summary.

The theory focuses on two-point velocity differences

wsx, x0, td ; usx0, td 2 usx, td , (1)

where usx0, td is the Eulerian velocity field accessibl
to experiment. One attempts to extract predictable a
computable results by considering the statistical proper
of w [2,3]. The most informative statistical quantitie
are the equal-time rank-n tensor correlation functions o
velocity differences

F nsx1, x0
1; x2, x0

2; . . . ; xn, x0
nd ­ kwsx1, x0

1dwsx2, x0
2d

· · · wsxn, x0
ndl , (2)

where k?l denotes averaging, and all coordinates a
distinct. We consider Navier-Stokes (N-S) turbulen
for which the scaling exponents are presumed to
universal (i.e., they do not depend on the detailed form
forcing), and where the correlationsF n are homogeneous
functions [2], namely

F nslx1, lx0
1, . . . , lx0

nd ­ lznF nsx1, x0
1, . . . , x0

nd , (3)

zn being the homogeneity (or scaling) exponent. Th
form applies when all distancesjxi 2 x0

i j are in the
“inertial range:” between the outer scaleL and the
dissipative scaleh of the system. Our aim here i
to describe the behavior of such functions as pairs
coordinates approach one another, or “fuse.” The fus
rules, derived in [1,4], govern the analytical structure
the correlation functions under this coalescence.

The statistical function that has been most commo
studied [2,3,5,6] is the structure functionSnsRd

SnsRd ­ kjwsx, x0djnl, R ; x0 2 x . (4)

Clearly, the structure function is obtained from (2) b
the fusing of all coordinatesxi into one pointx, and all
coordinatesx0

i into x0 ­ x 1 R. In doing so, one crosse
the viscous dissipation length scale. One then expec
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change of behavior, reflecting the role of the viscos
in the theory for SnsRd. In developing a N-S based
theory in terms ofSnsRd, one encounters the notoriou
closure problem: one must balance terms arising from
convective termu ? =u and the dissipativen=2u term,
neither of which can be neglected. Hence determin
SnsRd requires information aboutSn11sRd. All known
closures of this hierarchy of equations are arbitra
However, according to the theory of Refs. [1,4], the ful
unfusedF n does not suffer from this problem. When a
separations are in the inertial range, the viscous term m
be neglected, and one obtains [4] homogeneous equat
for F n in terms of F n only. Such homogeneous
equations may exhibit new, anomalous scaling solutio
for the correlation functionsF n.

There are various possible configurations of coal
cence. We will test only those in which the coalescin
points are those of velocity differences. One can a
consider the coalescence of points from different veloc
differences, but they are experimentally more difficult
measure; we will “precoalesce” all such points here a
comment on the effect of this [4]. The first set of fu
sion rules that we examine concernsF n whenp pairs of
coordinatesx1, x0

1, . . . , xp, x0
p, sp , nd of p velocity dif-

ferences coalesce, with typical separations between c
dinatesjxi 2 x0

i j , r for i # p, and all other separations
of the order ofR, r ø R ø L. The fusion rules predict

F nsx1, x0
1; . . . ; xn, x0

nd ­ F̃ psx1, x0
1; . . . ; xp , x0

pd

3 Cn,psxp11, x0
p11; . . . ; xn, x0

nd ,
(5)

where F̃p is a tensor of rankp associated with
the first p tensor indices ofF n, and it has a ho-
mogeneity exponentzp. The sn 2 pd-rank tensor
Cn,psxp11, x0

p11; . . . ; xn, r0
nd is a homogeneous function

with a scaling exponentzn 2 zp, and is associated with
the other n 2 p indices of F n. In the special case
p ­ 1, the leading order evaluation cancels by symmet
The next-order result, for a randomly oriented set of pa
© 1997 The American Physical Society
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with separationR, is

F nsx1, x0
1; . . . ; xn, x0

nd , sryRdSnsRd . (6)

One can also consider correlation functions under t
operation of gradients. One such set of functions, deno
JnsRd, has particular significance. It arises from the di
sipative term when one obtains a statistical balance fr
the N-S equations. For comparison with experiments
defineJnsRd in terms of the longitudinal velocity differ-
enceduR ; wsx, x 1 Rd ? RyR as

JnsRd ­ k=̃2usxd fduRgn21l . (7)

The Laplacian operator in (7) is interpreted as a fin
difference of longitudinal components of the velocity

=̂2usxd ­ fwsx, x 1 rd 2 wsx, x 2 rdg ? ryr3. (8)

The predictions of the fusion rules are different fo
r above and below the scaleh. This is due to the
fact that the scale at which correlation functions rea
the dissipative regime depends on the ordern of the
correlation function, which affects the scaling of gradie
correlations. This delicate point is addressed in [7].

The predictions read:

JnsRd ­ nCnJ2SnsRdy2S2sRd, r ¿ h , (9)

JnsRd ­ nC̃nJ2Sn11sRdyS3sRd, r ø h , (10)

whereCn and C̃n are R-independent dimensionless con
stants. The fusion rules do not rule out ann dependence
of these coefficients.J2 is equal to the mean dissipation
kj=usxdj2l, thus is expected to beR independent; its de-
pendence onr is easily estimated asJ2srd , S2srdyr2.
All higher orderJns depend onr in the same way.

Here we test these predictions using atmospheric tur
lence data obtained using a single hot-wire probe moun
at a height of 35 m on the meteorological tower at th
Brookhaven National Laboratory. The hot-wire was abo
0.7 mm in length and 6mm in diameter. It was operated
on a DISA 55M01 anemometer in constant temperatu
mode. The wind direction, measured independently by
vane anemometer, was approximately constant. The
quency response of the hot-wire was good up to 20 kH
The voltage from the anemometer was low-pass filtered
2 kHz and sampled at 5 kHz, and later converted to v
locity through an in situ calibration. The mean wind
speed was7.6 ms21 and the root-mean-square (rms) ve
locity was 1.3 ms21. Surrogating time for space (by
“Taylor’s hypothesis”), we obtain the Taylor microscal
Reynolds number to be 9540 and the Kolmogorov micr
scaleh to be 0.57 mm.

In Fig. 1 we present the structure functionsSnsRd
as a function ofR. They were computed using up to
40 million data samples. Here and in all figures, spat
separations have units of sampling times, and the veloc
is normalized by the rms velocity. In these units,h is
less than 1 sampling time. This figure shows that w
have almost three decades of inertial range (between,
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FIG. 1. Log-log plot of the structure functionsSnsRd as a
function of R for n ­ 2, 4, 6, 8 denoted by1, 3, p, and ±,
respectively.

10 and104 sampling units). The scales below 10 uni
appear to suffer from an unexplained bump. For no
therefore, we have not considered velocity increme
with smaller separation units and cannot test the the
for subdissipation scales. Structure functions of ord
n . 8 are less reliable and will not be considered.

While the fusion rules are formulated for differences
d-dimensional space, the surrogated data represent a
dimensional cut. This has implications for the choice
positioning of the coordinates. Ind-dimensional space
we can choose separations to fall within balls of si
R and r, respectively. In our case this ball collapse
onto a line, and best results are obtained when the p
of coordinates in the two groups coincide. As a simp
demonstration one may calculate explicitly the secon
order quantityF 2sx1, x0

1, x2, x0
2d ­ ksx1 2 x0

1d sx2 2 x0
2dl

with the two pairs of coordinates chosen, respective
to coincide; to be displaced byr; and to be displaced
by 2r. That is, we take (i)x1 ­ x0

1 ­ x, x2 ­ x0
2 ­ y,

r ­ jy 2 xj, (ii) jx1 2 x0
1j ­ jx2 2 x0

2j ­ r, x0
1 ­ x2,

and (iii) jx1 2 x0
1j ­ jx2 2 x0

2j ­ r, where x0
1 and x2

are also separated byr. Computing the correlation
functions one finds that all have the same power-l
dependence onr but with a reduction factor in cases (ii
and (iii) with respect to case (i) of2z221 2 1 ø 20.2
and s22z211 1 1 1 3z2 dy2 ø 20.05. We thus see that
there is a rapid decrease in amplitude when the distan
are not overlapping, and so all averaging is done us
maximally overlapped configurations [i.e., case (i)]. A
remarked above, in doing so, all the “unprimed” poin
not across velocity differencesare already fused. This
procedure does not affect predictions (5) and (6); see [

Explicitly, therefore, we examine the behavior of th
correlation function

F p1qsr , Rd ; kfusx 1 rd 2 usxdgpfusx 1 Rd 2 usxdgql
(11)

as a function of bothr and R for several values of the
powersp andq. From Eq. (5) one expects

F p1qsr , Rd , SpsrdSq1psRdySpsRd . (12)
3175
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FIG. 2. Log-log plot of F p1qsr , Rd as a function ofr at
fixed R for q ­ 2 and p ­ 2, 4, 6 denoted by1, 3, and p,
respectively, with dashed lines. Shown with dotted lines a
the same quantities divided bySpsrd.

In Fig. 2 we display the results forq ­ 2 with even
values ofp as a function ofr for r in the inertial range.
Only even values are displayed as the odd correlatio
fluctuate in sign. The large scaleR was fixed at the upper
end of the inertial range,R ­ 15 849 in the sampling
units of Fig. 1. The data show clean scaling in th
inertial range. Overlaid are the averages corrected by
prediction of the fusion rule (12). Here and in all othe
figures the averages themselves are connected with das
lines, whereas compensated results are shown dotted.
observes a change of behavior asr approachesR at the
upper limits and the average increases in size towa
the “fully fused” quantitySp1qsRd. Similarly convincing
results were obtained for other values ofp andq.

In Figure 3 we showF p1qsr , Rd as a function of the
large scaleR with the small separationr fixed atr ­ 16,

FIG. 3. As in Fig. 2 as a function ofR at fixed r, with
the dotted lines representing the quantities divided b
Sp1qsRdySpsRd.
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FIG. 4. Log-log plot of F 11qsr, Rd as a function ofR for
q ­ 1, 3, and 5 denoted by1, 3, andp, respectively. Shown
with dotted lines are the same quantities divided byS11qsRdyR.

together with the values corrected by (12). There is
clear trend towards zero slope in the corrected quantity
the upper inertial range.

We consider now the special case that a single pa
of points in a velocity difference approach one anothe
The prediction of Eq. (6) is tested forr ­ 16 and the
expected dependence onR is well verified in Fig. 4.
The results found by varyingr are not shown here: the
linear configuration of the measurement points leads to
competition between the leading and next-order scaling.

The function J2 was computed and found to be in-
dependent ofR in the inertial range and to scale as
S2srdyr2 (the r dependence of allJns was verified [8]
to scale asJ2). In Fig. 5, JnsRd is shown as a function
of nJ2SnsRdy2S2sRd for n ­ 2, 4, 6, 8 and inertial range
R. The finite difference Laplacian Eq. (8) was compute
with r ­ 10. The straight liney ­ x passing through the
data is not a fit.

FIG. 5. Log10fJnsRdg as a function of the fusion rule predic-
tion log10fJ2SnsRdyS2sRdg for n ­ 2, 4, 6, and 8 denoted by1,
3, p, and±, respectively. Inset: The coefficientCn with the
same notation.
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These results show that (9) is obeyed well withCn ­ 1.
The R independence ofCn is a direct confirmation of
the fusion rules for the fusion of two points. On th
other hand, thatCn is independent ofn is a surprise that
does not follow from fusion rules, and has interestin
implications for the statistical theory of turbulence. A
more sensitive check of the value ofCn is obtained by
dividing nJ2SnsRdyS2sRd by JnsRd for individual values
of n and R. This is displayed in the inset in Fig. 5.
Clearly, there are statistical fluctuations that increase w
increasingn, but the data show thatCn is approximately
constant inR andn, with a value of about unity.

An n-independentCn has surprising consequences fo
the conditional statistics of our field. RewriteJnsRd as

JnsRd ­
Z

dduRPfduRg k=̂2usxdjduRldun21
R . (13)

Here k=̂2usxdjduRl is the average of the finite difference
Laplacian conditioned on a value ofduR. The simplest
way to satisfy both (13) and (9) withCn that is indepen-
dent ofn andR is to assert that the conditional averag
which is in general a function ofduR andR, can be fac-
tored into a function ofR and a linear function ofduR:

k=̂2usxdjduRl ­
J2

2S2sRd
duR . (14)

Such linear laws have been discussed in the context
conditional statistics of passive scalar advection [9], a
were thought to be reasonable because of the linear na
of the advection-diffusion equation for the scalar. How
ever, linear laws for N-S turbulence are unexpected.
Fig. 6 we display a direct calculation of the conditiona
average of the surrogate Laplacian withr ­ 10, multi-
plied by 2S2sRdyJ2 as a function ofduR for four values
of R in the inertial range. For velocity increments that ar
not too large, the data appear to collapse on a straight l
with slope unity.

Unfortunately, we cannot test (10) with this data be
cause subdissipation scales are unresolved. The pre
tion implies that the nature of the conditional averag
changes qualitatively whenr decreases below the dissi
pative scale. Such changes have important consequen
for the ultraviolet properties of the statistical theory o
turbulence, and a rich variety of predictions are alrea
available [7]. Efforts to acquire subdissipation-scale da
are under way.
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FIG. 6. The conditional averages of the Laplacian, forR ­
50, 100, 200, and 1000, respectively, marked by1, 3, p, and
±. The large and rare velocity differences are insufficient
converged to determine whether linearity holds for the out
values.
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