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Fusion Rules in Navier-Stokes Turbulence: First Experimental Tests
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We present the first experimental tests of the recently derived fusion rules for Navier-Stokes
turbulence. The fusion rules address the asymptotic properties of many-point correlation functions
as some of the coordinates coalesce, and form an important ingredient of the nonperturbative statistical
theory of turbulence. Here we test the fusion rules when the spatial separations lie within the inertial
range, and find good agreement between experiment and theory. For inertial-range separations and for
velocity increments which are not too large, a simple linear relation appears to exist for the Laplacian
of the velocity fluctuation conditioned on velocity increments. [S0031-9007(97)04425-6]

PACS numbers: 47.27.Gs, 05.40.+j, 47.27.Jv

In this Letter the predictions of the recently proposedchange of behavior, reflecting the role of the viscosity
fusion rules [1] are tested by analyzing a turbulentin the theory forS,(R). In developing a N-S based
velocity signal at high Reynolds number. We start with atheory in terms ofS,(R), one encounters the notorious
short theoretical summary. closure problem: one must balance terms arising from the

The theory focuses on two-point velocity differences convective termu - Vu and the dissipative'VZu term,

1 neither of which can be neglected. Hence determining

S.(R) requires information abouf,.;(R). All known

where u(x', 1) is the Eulerian velocity field accessible closures of this hierarchy of equations are arbitrary.
to experiment. One attempts to extract predictable angiowever, according to the theory of Refs. [1,4], the fully
computable results by considering the statistical propertiegnfusedF, does not suffer from this problem. When all

of w [2,3]. The most informative statistical quantities separations are in the inertial range, the viscous term may
are the equal-time rank-tensor correlation functions of pe neglected, and one obtains [4] homogeneous equations
velocity differences for F, in terms of F, only. Such homogeneous

Fuler, xls 20, x5, x1) = Wi, x))w(xa, xb) equations may exhibit new, anomalous scaling solutions

for the correlation functiongF,,.
WX, X)) (2) There are various possible configurations of coales-

where (-) denotes averaging, and all coordinates areeence. We will test only those in which the coalescing
distinct. We consider Navier-Stokes (N-S) turbulencePoints are those of velocity differences. One can also
for which the scaling exponents are presumed to bé&onsider the coalescence of points from different velocity
universal (i.e., they do not depend on the detailed form oflifferences, but they are experimentally more difficult to

forcing), and where the correlatios, are homogeneous Measure; we will “precoalesce” all such points here and
functions [2], namely comment on the effect of this [4]. The first set of fu-

sion rules that we examine concerffs, when p pairs of
FaAxy, Axq, ..., Ax;) = /\{"j:n(xl’xi’ X)), () coordinatesc;, x1, ... ,xp,x;,, (p <n)ofp vefosity dif-
,, being the homogeneity (or scaling) exponent. Thisferences coalesce, with typical separations between coor-
form applies when all distance; — x}| are in the dinateslx; — x;| ~ r for i = p, and all other separations
“‘inertial range:” between the outer scale and the of the order ofR, r < R < L. The fusion rules predict
dissipative scalen of the system. Our aim here is / / ~ / /
to dgscribe the gehavior ofysuch functions as pairs of nELXL X)) = F e xs a0
coordinates approach one another, or “fuse.” The fusion X \Ifn,p(xpﬂ,xﬁ,ﬂ; X X)),
rules, derived in [1,4], govern the analytical structure of (5)
the correlation functions under this coalescence. N
The statistical function that has been most commonlyvhere F, is a tensor of rankp associated with
studied [2,3,5,6] is the structure functiSp(R) the first p tensor in?ices TC;:‘fn(, and)it hES a ho-
_ mogeneity exponentZ,. e (n — p)-rank tensor
Sa(R) = (Iw(x, x)I"), R=x'—x. (4) W, Xy 1, Xt - ;x,:r,’z) is a homogeneous function
Clearly, the structure function is obtained from (2) by with a scaling exponens,, — ¢{,, and is associated with
the fusing of all coordinates; into one pointx, and all the othern — p indices of F,. In the special case
coordinates; intox’ = x + R. In doing so, one crosses p = 1, the leading order evaluation cancels by symmetry.
the viscous dissipation length scale. One then expects Bhe next-order result, for a randomly oriented set of pairs

wx,x',t) =ulx',t) — u(x,t),
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with separatiorr, is
Falxrxli. . ix,,%,) ~ (r/R)S4(R). (6)

One can also consider correlation functions under the
operation of gradients. One such set of functions, denoted
J,(R), has particular significance. It arises from the dis-
sipative term when one obtains a statistical balance from
the N-S equations. For comparison with experiments we
defineJ,(R) in terms of the longitudinal velocity differ-
encedugr = w(x,x + R) - R/R as

logio Sa(R)

Ja(R) = (V) [our] ). ™ S
The Laplacian operator in (7) is interpreted as a finite Bi0 _
difference of longitudinal components of the velocity FIG. 1. Log-log plot of the structure functions,(R) as a

R function of R for n = 2,4,6,8 denoted by+, X, *, and o,

Vu(x) = [wx,x + p) — wx,x — p)]- p/p>. (8) respectively.
The predictions of the fusion rules are different for
p above and below the scalg. This is due to the
fact that the scale at which correlation functions reac
the dissipative regime depends on the ordeof the
correlation function, which affects the scaling of gradient
correlations. This delicate point is addressed in [7].

The predictions read:

10 and10* sampling units). The scales below 10 units
ppear to suffer from an unexplained bump. For now,
herefore, we have not considered velocity increments
with smaller separation units and cannot test the theory
for subdissipation scales. Structure functions of orders
n > 8 are less reliable and will not be considered.
While the fusion rules are formulated for differences in
Ja(R) = nCpJ2S,(R)/282(R),  p>m, (9  d-dimensional space, the surrogated data represent a one-
- dimensional cut. This has implications for the choice of
Jn(R) = nCpJ2S,+1(R)/S3(R),  p <m, (10)  positioning of the coordinates. ld-dimensional space
whereC,, and C, are R-independent dimensionless con- we can choose separations to fall within balls of size
stants. The fusion rules do not rule outamlependence R and r, respectively. In our case this ball collapses
of these coefficients./, is equal to the mean dissipation onto a line, and best results are obtained when the pairs
(IVu(x)|?), thus is expected to bR independent; its de- of coordinates in the two groups coincide. As a simple
pendence o is easily estimated a&(p) ~ S»(p)/p>.  demonstration one may calculate explicitly the second-
All higher orderJ, s depend o in the same way. order quantity F»(x1, x1,x2,x3) = {(x; — x}) (x2 — x5))
Here we test these predictions using atmospheric turbwith the two pairs of coordinates chosen, respectively,
lence data obtained using a single hot-wire probe mountet coincide; to be displaced by; and to be displaced
at a height of 35 m on the meteorological tower at theby 2r. That is, we take (ix; = x; = x, x2 = x3 =,
Brookhaven National Laboratory. The hot-wire was aboutr = |y — x|, (i) |lx; — x{| = |x, — x| = r, x| = x2,
0.7 mm in length and G&m in diameter. It was operated and (iii)) |x; — x{| = |x, — x3| = r, where x{ and x,
on a DISA 55M01 anemometer in constant temperatur@re also separated by. Computing the correlation
mode. The wind direction, measured independently by dunctions one finds that all have the same power-law
vane anemometer, was approximately constant. The frelependence on but with a reduction factor in cases (ii)
quency response of the hot-wire was good up to 20 kHzand (iii) with respect to case (i) ot¢~! — 1 = —0.2
The voltage from the anemometer was low-pass filtered and (—2&%1 + 1 4+ 32)/2 = —0.05. We thus see that
2 kHz and sampled at 5 kHz, and later converted to vethere is a rapid decrease in amplitude when the distances
locity through anin situ calibration. The mean wind are not overlapping, and so all averaging is done using
speed wag.6 ms ! and the root-mean-square (rms) ve-maximally overlapped configurations [i.e., case (i)]. As
locity was 1.3 ms™'. Surrogating time for space (by remarked above, in doing so, all the “unprimed” points
“Taylor's hypothesis”), we obtain the Taylor microscale not across velocity differencesre already fused. This
Reynolds number to be 9540 and the Kolmogorov microprocedure does not affect predictions (5) and (6); see [4].
scalern to be 0.57 mm. Explicitly, therefore, we examine the behavior of the
In Fig. 1 we present the structure functiol§(R)  correlation function
as a function ofR. They were computed using up to Fprgr,R) = [ulx + r) — u()Plu(x + R) — u(x)])
40 million data samples. Here and in all figures, spatial (11)
separations have units of sampling times, and the velocity )
is normalized by the rms velocity. In these uniis,is 25 @ function of both- and R for several values of the
less than 1 sampling time. This figure shows that we?oWersp andg. From Eg. (5) one expects
have almost three decades of inertial range (between, say, Fpiq(r,R) ~ Sp(r)Sg+,(R)/Sp(R). (12)
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FIG. 2. Log-log plot of F,.,(r,R) as a function ofr at  FIG. 4. Log-log plot of F.,(r,R) as a function ofR for
fixed R for ¢ =2 and p = 2,4,6 denoted by+, X, and *, g = 1,3, and 5 denoted by-, X, and*, respectively. Shown
respectively, with dashed lines. Shown with dotted lines arewith dotted lines are the same quantities dividedSpy, (R)/R.
the same quantities divided Iy, (r).

together with the values corrected by (12). There is a
In Fig. 2 we display the results fay = 2 with even  clear trend towards zero slope in the corrected quantity in
values ofp as a function ofr for r in the inertial range. the upper inertial range.
Only even values are displayed as the odd correlations We consider now the special case that a single pair
fluctuate in sign. The large scakewas fixed at the upper of points in a velocity difference approach one another.
end of the inertial rangeR = 15849 in the sampling The prediction of Eq. (6) is tested for = 16 and the
units of Fig. 1. The data show clean scaling in theexpected dependence ot is well verified in Fig. 4.
inertial range. Overlaid are the averages corrected by thehe results found by varying are not shown here: the
prediction of the fusion rule (12). Here and in all otherlinear configuration of the measurement points leads to a
figures the averages themselves are connected with dashesipetition between the leading and next-order scaling.
lines, whereas compensated results are shown dotted. OneThe functionJ, was computed and found to be in-
observes a change of behavior aspproaches at the dependent ofR in the inertial range and to scale as
upper limits and the average increases in size towards,(p)/p? (the p dependence of all,s was verified [8]
the “fully fused” quantityS,+,(R). Similarly convincing to scale as/,). In Fig. 5, J,(R) is shown as a function
results were obtained for other valuespofindg. of nJ>S,(R)/2S,(R) for n = 2,4,6,8 and inertial range
In Figure 3 we showf ,+,(r,R) as a function of the R. The finite difference Laplacian Eq. (8) was computed
large scaleR with the small separation fixed atr = 16, with p = 10. The straight liney = x passing through the
data is not a fit.
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FIG. 5. Logo[/.(R)] as a function of the fusion rule predic-
FIG. 3. As in Fig. 2 as a function oR at fixed r, with tion log,y[/25,(R)/S2(R)] for n = 2,4,6, and 8 denoted by,
the dotted lines representing the quantities divided byX, *, and o, respectively. Inset: The coefficiedt, with the
Sp+q(R)/S,(R). same notation.
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These results show that (9) is obeyed well with = 1.
The R independence o€, is a direct confirmation of
the fusion rules for the fusion of two points. On the
other hand, thaC, is independent of: is a surprise that
does not follow from fusion rules, and has interesting <
implications for the statistical theory of turbulence. A —
more sensitive check of the value 6f, is obtained by [~
dividing nJ,S,(R)/S>2(R) by J,(R) for individual values ‘\>,
of n and R. This is displayed in the inset in Fig. 5.
Clearly, there are statistical fluctuations that increase with®s,
increasingn, but the data show that, is approximately o3’ _4 [
constant inR andn, with a value of about unity. o L

An n-independent, has surprising consequences for SE— —
the conditional statistics of our field. Rewrifge(R) as -6 -4 =2 0 2 4 6
dug

)
—_

~
AN

[2<]

vl N

N o N~ OO @

_ 2 n—1
In(R) f ddugPLour](Vu(x)|dur)duy . (13) FIG. 6. The conditional averages of the Laplacian, for=

2 . - . 50, 100, 200, and 1000, respectively, marked-by X, *, and
Here (V2u(x)|6ug) is the average of the finite difference ' The large and rare velocity differences are insufficiently

Laplacian conditioned on a value éf«z. The simplest converged to determine whether linearity holds for the outer
way to satisfy both (13) and (9) witli,, that is indepen- values.
dent ofn andR is to assert that the conditional average,
which is in general a function ofuz andR, can be fac- and the Naftali and Anna Backenroth-Bronicki Fund
tored into a function oR and a linear function 08 uy: for Research in Chaos and Complexity. We thank the
7 Brookhaven National Laboratory for permission to use
—— —Oug. (14) their faciliies and Mr. Victor Cassella for his help in
252(R) setting up the experiment.
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(V2u(x)| Sug) =
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