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Clustering instability of the spatial distribution of inertial particles in turbulent flows

Tov Elperirf and Nathan Kleeorin
The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering,
Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel

Victor S. L'vov*
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

Igor Rogachevski
The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering,
Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel

Dmitry Sokoloff!
Department of Physics, Moscow State University, Moscow 117234, Russia
(Received 8 April 2002; published 13 September 2002

A theory of clustering of inertial particles advected by a turbulent velocity field caused by an instability of
their spatial distribution is suggested. The reason for the clustering instability is a combined effect of the
particles inertia and a finite correlation time of the velocity field. The crucial parameter for the clustering
instability is the size of the particles. The critical size is estimated for a strong clustesithga finite fraction
of particles in clustepsassociated with the growth of the mean absolute value of the particles number density
and for a weak clustering associated with the growth of the second and higher moments. A new concept of
compressibility of the turbulent diffusion tensor caused by a finite correlation time of an incompressible
velocity field is introduced. In this model of the velocity field, the field of Lagrangian trajectories is not
divergence free. A mechanism of saturation of the clustering instability associated with the particles collisions
in the clusters is suggested. Applications of the analyzed effects to the dynamics of droplets in the turbulent
atmosphere are discussed. An estimated nonlinear level of the saturation of the droplets nhumber density in
clouds exceeds by the orders of magnitude their mean number density. The critical size of cloud droplets
required for cluster formation is more than 20m.
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I. INTRODUCTION e.g., Ref[8]). Another example is combustion of pulverized
coal or sprays whereby the reaction rate of a single particle
Formation and evolution of aerosols and droplets inhomoeor a droplet differs considerably from the reaction rate of a
geneities(clusterg are of fundamental significance in many coal particle or a droplet in a clust&ee, e.g., Ref$9,10]).
areas of environmental sciences, physics of the atmosphere Analysis of experimental data shows that spatial distribu-
and meteorologye.g., smog and fog formation, rain forma- tions of droplets in clouds are strongly inhomogene@es,
tion), transport and mixing in industrial turbulent flosuch  e.g., Refs[11-14]). Small-scale inhomogeneities in particle
as spray drying, pulverized-coal-fired furnaces, cyclone dudfistribution were observed also in laboratory turbulent flows
separation, abrasive water-jet cuttirand in turbulent com- [15-1§.
bustion(see, e.g., Ref$1-8]). The reason is that the direct, It is well known that the turbulence results in a relaxation
hydrodynamic, diffusional, and thermal interactions of par-of inhomogeneities of concentration due to turbulent diffu-
ticles in dense clusters strongly affect the character of thgion, whereas the opposite process, e.g., a preferential con-
involved phenomena. Thus, e.g., enhanced binary collisionsentration(clustering of droplets and particles in turbulent
between cloud droplets in dense clusters can cause fafitid flow still remains poorly understood.
broadening of droplet size spectrum and rain formatsee, In this study we suggest a theory of clustering of particles
and droplets in turbulent flows. The clusters of particles are
formed due to an instability of their spatial distribution sug-
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Kolmogorov inner scaley, which separates inertial and vis- the deviation 0h(t r) from the uniform mean number den-

cous scales. Exponential growth of the number of particles ity of particlesn. Equation for®(t,r) follows from Eq.(1):
the clusters is saturated by their collisions.

In our previous study19] we suggested and qualitatively d0(t,r)
analyzed an idea that inertia of particles may lead to their at +o(tn)- VIOt
clustering. Later this idea was questioned by our quantitative
analysis[20,21] of the Kraichnan model of turbulent advec- =—-0(t,ndivo(t,r)+DAO(L,r). 3

tion of particles by thej-correlated in time random velocity . I
field. It was proved that the clustering of inertial particles H€reé we assumed that the mean particle velocity is zero. We

does not occur in the Kraichnan model. The latter result maylso neglected the termn ndive describing a source of fluc-
be considered as a counterexample. tuations of particles number density. This term does not af-

The main quantitative result of the theory of clusteringfect the growth rate of the instability. In the present study we
instability of inertial particles, suggested in this studytie  investigate only the effect of self-excitation of the clustering
existence of this instabilitynder some conditions that we instability, and we do not consider an effect of the source
determined. We showed that the inertia of the particles i¢erm on the dynamics of fluctuations. The source term
only one of thenecessary conditionr particles clustering «ndivv is independent of fluctuations of particle number
in turbulent flow. In the present study we foundsacond density and causes another type of fluctuations of particle
necessary conditiofor the clustering instability: a finite cor- number density which are not directly related to an instabil-
relation time of the fluid velocity field which in the sug- ity. A mechanism of generation of these fluctuations is re-
gested theory results in a nonzero divergence of the field dated to perturbations of the mean number density of par-
Lagrangian trajectories. This time is equal zero in the aboveticles by a random divergent velocity field. The magnitude of
mentioned Kraichnan modésee Ref[22]), which was the these fluctuations is much lower than that of fluctuations that
reason for the disappearance of the instability in this particuare caused by the clustering instability.
lar model. In our qualitative analysis of the problem we use E).

In this study we used a model of the turbulent velocitywritten in a comoving with a cluster reference frame. For-
field with a finite correlation time that drastically changes themally, this may be done using the Belinicher-L'vdiL)
dynamics of inertial particles. In the framework of this representatiorifor details, see Ref$23,24)). Let & (to,r|t)
model of the velocity field, we rigorously derived tiseffi-  be a Lagrangian trajectory, apg(ty,r|t) be an increment of
cient conditionsfor the clustering instability. We demon- the trajectory of the reference poifibcated at at timet,),
strated the existence of the new phenomenatamingand i.e.,
weakclustering of inertial particles in a turbulent flow. These
two types of the clustering instabilities have different physi- [t
cal meanings and different physical consequences in various pL(to,r[t)= ftov[ﬂ & (tg,r|7)]dr,
phenomena. We computed also the instability thresholds that (4
are different for the strong and weak clustering instabilities. & (to,r|t)y=r+p(to,r]t).

By definition p, (to,r| to) =0, &(to.r|tg)=r andrq is a po-
[I. QUALITATIVE ANALYSIS OF STRONG AND WEAK sition of a center of a cluster at the “initial” timg,=0 (for
CLUSTERING the brevity of notations hereafter we skip the lahgl Con-
sider a “comoving” reference frame with the position of the
origin at &(t)=£(ro|t). Then BL velocity fieldo(ro|t,r)
nd BL velocity differenceN(ro|t,r) are defined as

A. Basic equations in the continuous media approximation
In this study we used the equation for the number densit
n(t,r) of particles advected by a turbulent velocity field
u(t.n: B(rolt.n)=v[t,r+pL(rol1)], (5)
an(t,r)

- +V-[n(t,nov(t,r)]=D An(t,r), (1) W(rolt,r)=v(ro|t,r) —v(rolt,ro). (6)

Actually the BL representation is very similar to the La-
grangian description of the velocity field. The difference be-
tween the two representations is that in the Lagrangian rep-
resentation one follows the trajectory of every fluid particle
r+p.(r,tolt) (located atr at timet=t,), whereas in the BL
representation there is a special initial paigt(in our case

e.g., the fieldo(t,r) is not divergence free even for div the initial position of the center of the clustavhose trajec-

=0 (see Ref[19]). Equation(1) implies conservation of the tory determines the new coordinate systesee Refs.

total number of particles in a closed volume. Consider  [23,24). With time the BL-fieldv (ro|t,r) becomes very dif-
ferent from the Lagrangian velocity field. It must be noted

. that the simultaneous correlators of both, the Lagrangian and
O(t,r)=n(t,r)—n, (2) the BL-velocity fields, are identical to the simultaneous cor-

where D=kT/6mvpa is the coefficient of molecular
(Brownian diffusion, v is the fluid kinematic viscosityp
andT are the fluid density and temperature, respectively,
the radius of a particle, anklis the Boltzmann’s constant.
Due to the inertia of particles their velocip(t,r) #u(t,r),
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relators of the Eulerian velocity(r,t). The reason is that for
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1. Effect of turbulent diffusion

stationary statistics the simultaneous correlators do not de- The advective term on the left-hand sideHS) of Eq. (8)

pend ont, and, in particular, one can assuiret,.
Similar to Eq.(5), let us introduce BL representation for
o(t,n),

B (rolt,N=O[t,r+pL(ro|)]. Y]
In BL variables defined by Eq$5)—(7), Eq. (3) reads,
%ﬂwuoh,r)-vuroh.r)
= —O(ro|t,r) divW(ro|t,r) +D A O(rolt,r).  (8)

The difference between Eg&3) and (8) is that Eq.(8) in-
volves only velocity differencg6) in which the velocity

E(r0|t,r0) of the cluster center is subtracted.

B. Rigid-cluster approximation
Consider qualitatively a time evolution of different statis-
tical moments of the deviatio® (t,r) defined by

Mg(O=(0(t,n][),, 9

assuming that at the initial timés=0, the spatial distribution
of particles is almost homogeneous, all momehtg(0) are

small, where(-), denotes the ensemble averaging over ran-

dom velocity fieldv. In order to eliminate the kinematic

effect of sweeping of the cluster as a whole we consider Eq.

(3) in the BL representation, E@8). Since the simultaneous

results in turbulent diffusion inside the cluster. This effect
may be modeled by renormalization of the molecular diffu-
sion coefficienD on the right-hand sidéRHS) of Eq. (8) by
the effective turbulent diffusion coefficiem with a usual
estimate ofD:

D—D+Dy, Dy~{qua/3. (12)

Hereafterv is the mean square velocity of particles at the
scalef . Instead of the full Eq(8) consider now a model
equation

90 (rolt,r)

ot =DTA(:)(r0|t,r),

(13

which accounts only for turbulent diffusion. Multiplying Eq.

(13) by q@qfl(roh,r) and averaging over random velocity
field [see Eq.(10)] we obtain

IM(t)] t=q(|O (ro|t,r)|9ID1A[O(ro[t, 1))y, (14)

Substituting distribution(11) we estimate the Laplacian in
Eq. (14) as — 1/¢2. Equationg(13) and (14) imply that

IMq(t)]t=— DMy (1) €3, (15)
The solution of Eq(15) reads
My(t) = My(0)exd — ygir(a)t],
(16)

yair(4)~ D1 /€,

moments of any field variables in the Eulerian and in thewhere ygi(q) denotes a contribution to the damping rate of

BL-representations coincide, the momentd,(t) can be
written as

Mq()=(|O(rolt, )|, . (10

Mq(t) caused by turbulent diffusion.

2. Effect of particles inertia

In this section we show that the term® divW on the
RHS of Eq.(8) can result in an exponential growth of

Our conjecture is that on a qualitative level we can considef*1a(t)* exlyin(a)t], i.e., in the instability. We denoted

the role of each term in the Ed8) separately, assuming
some reasonable, time-independdrizenshapeéd(x) of a

distribution@(ro|t,r) inside a cluster:

Ir—rol)
€c| .

HereA(t) is time-dependent amplitude of a cluster d@hdis
the characteristic width of the cluster. Shape functi§i)
may be chosen with the maximum equal to 1xat0 and

(?)(r0|t,r)=A(t)a< (12)

here the contribution to the growth rate d,(t), caused by
the inertia of particles, by;,(q). In order to evaluate;,(q)
we neglect now in Eq(8) both, the convective term on the
LHS of this equation(i.e., the the turbulent velocity differ-
ence inside the clusteand the molecular diffusion term. The
resulting equation reads

90 (rg|t,1)
it

(r0|t,r)divW(r0|t,r).

17

The main contribution to the BL-velocity difference

unit width. Real shapes of various clusters in the turbulentV(rolt,r) in the RHS of this equation is due to the eddies
ensemble are determined by a competition of different termsvith size{,, the characteristic size of the cluster which is of
in the evolution equatiori8). However, we believe that the the order of the Kolmogorov length scale. In smaller length
particular shapes affect only numerical factors in the expresscales the velocity divergence correlation function is ap-
sion for the growth rate of clusters and do not affect theirproximately constant. Denote hy, the characteristic veloc-
functional dependence on the parameters of the problem thity of these eddies and by, ~ ¢ /v the corresponding cor-
is considered in this section. relation time. In our qualitative analysis we neglect the
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dependence of diW(ry|t,r) inside the cluster and consider My(t) = My(0)exp(yqt),

the divergence in Eq17) as a random procedxt) with a

correlation timer, Y= Ydif(A) + ¥in(A), (22
div W(ro|t,r)—b(t). (18

1 .
7q~ - qDT/€C|+ E(Tv[dlvw(rO“!r)]Z)qu'
Together with the decompositidiil) this yields the follow-

ing equation for the cluster amplitud(t): Clearly, the instability is caused by a nonzero value of
IA(t) (7,(divW)?), i.e., by acompressibility of the particle veloc-
— - =—A(b(t). (19 lyfieldo(tn. . . -
ot Compressibility of fluid velocity itselfu(t,r) (including

atmospheric turbulenges often negligible, i.e., diu=~0.
However, due to the effect of particles inertia their velocity
¢ v(t,r) does not coincide withu(t,r) (see, e.g., Refd.25—
At)=Agexd —1(1)], I(t)Ej b(7)dr. (20) 28]), andV - v #0 (see Refs[19,29). Indeed, the velocity of

0 particlesv can be determined from the equation of motion
for a particle withp,>p ,

The solution of Eq(19) reads

Integral I (t) in Eq. (20) can be rewritten as a sum of inte-

gralsl, over small time intervals, , dv/dt=(u—v)/ 7, (23
U, nT, where 7, is the characteristic time of coupling between the
|(t)=n§=:l lhy  In(D)= f(nl)T b(r)dr. particle and surrounding fluitStokes timég
T,=My/6mpra= 2ppa2/9pv, (24

In our qualitative analysis integralg may be considered as
independent random variables. Using the central limit theomp and p,, are the mass and material density of particles,

rem we estimate the total integral respectively. Consider incompressible turbulent fl&vu
=0. A solution of the equation of motion for particles with a
[712 2\ _/Rh2 2
()~ <|ﬂ>v\/ﬁg’ (In)o=(b%, 7, small Stokes time can be written in the form
where(- - -}, denotes averaging over turbulent velocity en- v =Uu— r,(du/dt) + O(72) (25)
semble is a Gaussian random variable with zero mean and P P
unit varianceN=t/7,. Now we calculate (see Ref[25]). Now we calculate the divergence of Eg5):
= — . . 2
Mq<t>=f OIP(H)dL,  P({)=(LINZmexp— {%12). Vo=V LU VU O(r). 29

The Navier-Stokes equation for the fluid yields

Therefore M(t) = J; exp@®SN/2), whereS=7,(b?),, V-[(u-V)u]=—AP/p, whereP is the fluid pressure. The
latter equation and Ed26) yield V-v~ 7,AP/p (see Refs.
- o 2 [19,29).
Jl‘(llvz”)J exil — (£—qSVN)?/2]d¢~1. A degree of compressibility, of the fieldo(t,r), is de-
fined as

Since the main contribution to the integkhl arises from¢ _
~qSyN, the parameteq cannot be large. In this approxima- o, =([divo]?)/{|V xv|?). (27)

tion the gth moment o
Note that parametes, is independent of the scale of the

M()=Mq(0)exf yin(q)t] turbulent velocity field. It characterizes a compressible part
of the velocity field as a whole. The main contribution to this
with y,,(q) being the growth rate of theth moment due to parameter comes from the scales that are of the order of the
the inertia of particles, which is given by Kolmogorov scalen. The degree of compressibility, may
be of the order of unity19,29,2Q. The fluid flow parameters

1 are: Reynolds number Re_ut/v, the dissipative scale of
. — H 2 2 . TV
Yin() 2<Tu[dIVW(rO|t!r)] )od” @D trbulence n=L Re ¥4 the maximum scale of turbulent
motionsL, and the turbulent velocity in the scalel. Now
3. Qualitative picture of the clustering instability we can estimater, as
In the preceding sections we evaluated the contributions UU:(pp/p)Z(a/n)4E(a/a*)4 (28)

to the growth rate ofM(t) due to the turbulent diffusion

v4i(q), Eg. (16), and due to the particles inertig,(q), Eq.  (see Ref[20]), wherea, is a characteristic radius of par-
(21). The total growth rate may be evaluated as a sum oficles. Fora>a, the dependence,(a) is more compli-
these contributions: cated.
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For water droplets in the atmospheyrg/pzlo3 anda,
=p/30. For the typical value ofp=1 mm it yields a,
=30 um. On windy days whern; decreases, the value of
a, correspondingly becomes smaller.

Then we estimate(r,[divv]?) as 2r,/7,, because
([rotv]?)~27, 2. Assuming that the cluster siZg, is of the
order of the inner scale of turbulenegwe have to identify
7, with a turnover time of eddies in the inner scaje 7,
—7,=nlv,=(L/u)Re Y2 m,>7,. Thus, the growth rate
¥q of the gth moment in Eq(22) may be evaluated as

Yq= Yad(d—der), (29

g, 1
Yel T v Qer 30,
Clearly, the moments witlg>q,, are unstable. Equations
(28) and (29) imply that it happens whema>a, ., where
aq.o=a1¢/q"*is the value of at whichqg,=g. The largest
value ofa, ¢, corresponds to the instability of the first mo-
ment(|©|): a1~ 0.8a, , ay¢,~0.848) o, A30~0.76 ¢,
ay ~0.71a, , etc.

Note that if(|®|) grows in time then almost all particles
can be accumulated inside the clustéfsve neglect a non-
linear saturation of such growthWe define this case as a
strong clustering On the other hand, ifl,>1 the first mo-

ment(|®|) does not grow, and the clusters contain a small
fraction of the total number of particles. This does not mean
that the instability of higher moments is not important. Thus,

PHYSICAL REVIEW E 66, 036302 (2002

®(t,R)=(O(t,NO(t,r +R)). (30)

In this analysis we used stochastic calcykig)., Wiener path
integral representation of the solution of the Cauchy problem
for Eg. (1), Feynman-Kac formula and Cameron-Martin-
Girsanov theorer The comprehensive description of this
approach can be found in Ref®1,33—34.

We showed that a finite correlation time of a turbulent
velocity plays a crucial role in the clustering instability. No-
tably, an equation for the second momeh(t,R) of the
number density of inertial particles comprises spatial deriva-
tives of high orders due to the nonlocal nature of turbulent
transport of inertial particles in a random velocity field with
a finite correlation time(see Appendix A and Ref.20)).
However, we found that equation fap(t,R) is a second-
order partial differential equation at least for two models of a
random velocity field:

Model I. The random velocity with Gaussian statistics of
the integralsftv(t',£)dt’ and [{b(t’,&) dt’, see Appendix
B

Model Il. The Gaussian velocity field with a small yet
finite correlation time, see Appendix C.
In both models equation fab (t,R) has the same form,

o®/gt=LD(t,R),
. . (31)
L=B(R)+2U(R)-V+D 4RV, Vs,

e.g., the rate of binary particles collisions is proportional to

the square of their number densitn?)=(n)2+(|®|?).
Therefore, the growth of the second momé@|?) (which
we define as aveak clustering results in that binary colli-

but with different expressions for its coefficients. The mean-

ing of the coefficient8B(R), U(R), and I5QB(R) is as fol-
lows:

sions occur mainly between particles inside the cluster. The FunctionB(R) is determined only by the compressibility
latter can be important in coagulation of droplets in atmo-of the velocity field and it causes the generation of fluctua-
spheric clouds whereby the collisions between droplets playions of the number density of inertial particles.

a crucial role in the rain formation. The growth of tig¢h
moment(|®|9) results in the fact thag-particles collisions

The vectorU(R) determines a scale-dependent drift ve-
locity which describes a transfer of fluctuations of the num-

occur mainly between particles inside the cluster. The growttber density of inertial particles over the spectrum. Note that

of the negative moments of particles number dengbssi-

U(R=0)=0 whereaB(R=0)+#0. For incompressible ve-

bly associated with the formation of voids and cellular struc-locity field U(R)=0, B(R)=0.

tureg was discussed in Ref30] (see also Refd.31,32).

In the above qualitative analysis whereby we considereg
only one-point correlation functions of the number density of
particles, we missed an important effect of the effective drift
velocity which reduces the growth rate of the clustering in-

The scale-dependent tensor of turbulent diffuding(R)

also affected by the compressibility.

In very small scales this tensor is equal to the tensor of the
molecular(Brownian diffusion, while in the vicinity of the
maximum scale of turbulent motions this tensor coincides

stability. For the one-point correlation functions of the num- e -
ber density of particles the effective drift velocity is zero for With the usual tensor of turbulent diffusion. Tensoy5(R)
homogeneous and isotropic turbulence. However, in th&h@y be written as

equations for two-point and multi-point correlation functions
of the number density of particles, the effective drift velocity
is not zero and as we will see in the following section that it

D op(R)=2D 8,5+ D 4(R),
(32)

increases a threshold for the clustering instability.

Ill. THE CLUSTERING INSTABILITY OF THE SECOND
MOMENT

A. Basic equations

DIs(R)=D}40)-D4R).

In Appendix B we found that for Model |,

B(R)~2f:<b[0,§(r1|0)]b[7,§(f2|T)])df,

In the previous section we estimated the growth rates of

all momentg|®|%. Here we present the results of a rigorous

analysis of the evolution of the two-point second moment,

U(R)~ —2f;(v[oé(rllo)]b[T,f(fz|T)])dT, (33
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~1 o For a random incompressible velocity field with a finite
Da;;(R)NZJO (v[0,E(r1|0)Jv gl 7,&(ro| ) ])dT. correlation time the tensor of turbulent diffusidd, (R)
=7 Y& (ry) &5(r2)) [see Eq(CH)] and the degree of com-

For the §-correlated in time random Gaussian compress—presgbIIIty of this tensor is

ible velocity field the operatoi’ is replaced byﬁo in the ((V-§)3?)

equation for the second mome#((t,R), where UT_<(VX§)2> , (39
Lo= BO(R)+2UO(R)'V+E)a,B(R)VaVBI where £(r4|t) is the Lagrangian displacement of a particle
trajectory which passes through pomtat t=0. Note that
Bo(R) =V, V4D 4(R), (34)  Taylor[38] obtained the coefficient of turbulent diffusion for

the mean field in the form D+(R=0)

D =7 N & (rft) Ea(re]1)).
Uo(R)=VsD ,4(R) T Ea(reft) E4(ra|))

. . B. Clustering instability in Model |
(for details see Refd.20,21]). In the S-correlated in time ustering e

velocity field the second momedi(t,R) can only decay in Let us stud_y the_ Clustering instab_ilit_y for the model of the
spite of the compressibility of the velocity field. The reasonrandom velocity with Gaussian statistics of the integrals

is that the differential operato&oEVaVBf)aﬁ(R) is adjoint t t
to the operatorz‘,gzDaﬁ(R)VaVB and their eigenvalues are fov(t £dt’, fob(t £dt’,
equal. The damping rate for the equation
see Appendix B. In this model E¢31) in a nondimensional

ID/at=LID(1,R) (35)  form reads
has been found in Ref37] for a compressible isotropic ho- b D" 1 ,| 20’
mogeneous turbulence in a dissipative range: 5 m(r) + m(r) +HU=Cyr r +B®,
g2 (40)
(3—ay) 36 1/m(r)=(C,+C,)r2+2/Sc,

72" s (1t o) (1+307)°

where U=UR and Sev/D is the Schmidt number. For
Here o7 is the degree of compressibility of the tensor small inertial particles advected by air flowss&. The non-
DZB(R). For the 5-correlated in time incompressible veloc- dimensional variables in E§40) arer=R/7» and~t=t/7,], B
ity field (or=0) Eq.(35) was derived in Ref22]. Thus, for  andU are measured in the units,*. Consider a solution of
the Kraichnan model of turbulent advectigwith a delta  Eq. (40) in two spatial regions.
correlated in time velocity fieldthe clustering instability of (a) Molecular diffusion region of scalesn this region
the 2nd moment does not occur. r<Sc 2 and all terms<r? (with C;, C,, andU) may be

A general form of the turbulent diffusion tensor in a dis- neglected. Then the solution of E@0) is given by
sipative range is given by
D(r)=(1—ar?)exp y,t),
DI s(R)=(C1R?3,5+C,R,Rp)/ 7,

where
C1=2(2+ on)l3(1+ov), S a=SaB—y,7,)12, B>y,r,.
C2=2(207r—1)3(1+o7). (b) Turbulent diffusion region of scalesn this region
Sc Y?<r<1, the molecular diffusion termx1/Sc is negli-
The parameteos; is defined by analogy with Eq27): gible. Thus, the solution of Eq40) in this region is
V.D;-V V,VsD14(R) - D(r)=Ar " exp(yat),
1= = T y 38
VXDTXV VaVﬁDa’ﬁ’(R)Eaa’yeﬁﬁ’y where
wheree, g, is the fully antisymmetric unit tensor. Equations AN=(C;—Cy,+2U=xiC3)/2(C;+Cy),
(27) and(38) imply that o+= o, in the case of5-correlated
in time compressible velocity field. Equatio(®3) show that C§=4(B— ¥27,)(C1+Cp) —(C1—Cyt 2U)2.

for a finite correlation time identitie€34) are violated and
Since the total number of particles in a closed volume is
B(R)#By(R), U(R)#Uy(R). conserved,
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v
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T

FIG. 1. The range of parameters (,07) for og=0oy=0, in
the case of Se 10° (curve 9, Sc=10° (curve B, and Se> (curve
a). The dashed liner,= o1 corresponds to thé-correlated in time
random compressible velocity field.

fwrZCD(r)drzo.
0

This implies thatC3>0, and therefora is a complex num-
ber. Since the correlation functich(r) has a global maxi-
mum atr=0, C;>C,—2U. The latter condition for very
smallU yieldso=<3. Forr>1 the solution ford(r) decays

sharply withr. The growth ratey, of the second moment of
particles number density can be obtained by matching the

correlation functionP (r) and its first derivativeb’(r) at the

boundaries of the above regions, i.e., at the points

=Sc Y2 and r=1. The matching yieldsC3/2(C;+C,)
~2m/In Sc. Thus,

1
Y277 (1+307)

2000y(or—oy)
3(1+oy)

(3—0p)?
~6(1+oq)

3m?(1+307)?
(1+07)In?>Sc

20(og—oy)
7,(1+0g)(1+oy)’

(41)

where we introduced parameterg and oy defined by

B=200g/(1+0g), U=200y/3(1+0y). (42

Note that the parametergs~ oy~ o, . For thes-correlated
in time random compressible velocity fieldg=oy=07
=0, . Figure 1 shows the range of parametess (o1) for

og=o0y=0, in the case of Se10® (curve 9, Sc=10°
(curve b, and Se»« (curve 3. The dashed liner,= o5

corresponds to thé-correlated in time random compressible

velocity field. This is a limiting line for the curve “a.” Figure

1 demonstrates that even a very small deviation from th
S-correlated in time random compressible velocity field re-
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sponding value ofr,~0.12(see Fig. 1. For smaller value of
o, the clustering instability can occur, but it requires larger
values ofoy.

C. Clustering instability in Model Il
In Model Il of a random velocity field, i.e., the Gaussian
velocity field with a small yet finite correlation timgmall

Tren)» the clustering instability occurs when,>0.2 (see Ap-
pendix Q. Indeed, the growth ratg, of the second moment
of particles number density is determined by equation

(3-0,)?
(1+0,)(1+30,)

Yo(1+ Treny2) 2=

”B(au)s,rz—6

8(1+30,)( = 2
3(1+07,) | InSc

B(o,)=12 b,+ (44)

4a3
where Sk 1,,,/7, is the Strouhal number,cS ScSe-1,

'r,=T1,/Sr and

7

2(190,+3)

| 2(30,+1)
M7 3110,

2731+ 0,

1
by=— ———— (12— 1278r,— 306702),
27(1+0,)?
5850 o 2
279 1+o,/ "’
by=-—————(36+ 4660, + 249%7).
3 27(1+0_U)2( v v

For the derivation of Eq943) we assumed that the correla-
tion function f,5(R)=(v(r1)vg(rz)), for homogeneous,
isotropic, and compressible velocity field is given by

2 RF’

u
fop(R)= g” (F+Fo) 8o+ ——Pagt RF.R,z| (45

(see Ref[37]), and in scales & R<1 incompressiblé-(R)
and compressibl&(R) components of the random velocity
field are given by
F(R)=(1-R%/(1+0,), F(R)=0,F(R), (46)
in scalesR=1 the functiond==F_.=0. HereR is measured
in the units ofy, P,4(R)= 8,3~ R.s, Ryp=R.Rs/R? and

é:’=dF/dR.

Figure 2 shows the range of parameters ¢Sy, for Sc

sults in the instability of the second moment of the number=10® (curve 0, Sc=10° (curve b and — (curve 3. Itis

density of inertial particles. The minimum value of; re-
quired for the clustering instability isT~0.26 and a corre-

seen in Fig. 2 that forr,>0.2 the second-order correlation
function of the number density of inertial particles can grow
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Sr ' ' ' ' ' ' instability discussed in Ref30]). The clustering instability
0.3} 1 is saturated by nonlinear effects.
Now let us discuss the mechanism of the nonlinear satu-
0.25} 1 ration of the clustering instability by using the example of
Instability atmospheric turbulence with characteristic parameters:

02r 1 ~1 mm, 7,~0.1-0.01 s. A momentum coupling of par-
0151 ticles and turbulent fluid is essential whemng~p, i.e., the

: mass loading parametei=mgn/p is of the order of Xsee,
o4l e.g., Ref[1]). This condition implies that the kinetic energy

' of fluid p{u?) is of the order of the particles kinetic energy
0.05- mpne(v?), where|u|~|v|. This yields

05 1 15 2 2.5 30 Na~a”*(pl3pp). 48

v

For water droplet$wp/p~103. Thus, fora=a, ~30 um we

. — _3 . .

Z=10° (curve b, and @ (curve a. The line SE0 corre- obtain ny~10* cm and thg total numk_)er of particles in

o . . the cluster of sizep, Ny=7°n,~10. This value may be
sponds to thes-correlated in time random compressible velocity . ! . -
field. considered as the Iowe_r estimate for the “two-way couplmg
when the effect of fluid on particles has to be considered
together with the feedback effect of the particles on the car-
rier fluid. However, it is plausible to expect that turbulence
modification by particles’ is governed by the ratio of the
particles energy anthe total energy of the suspensigather
than the energy of the carrier flgidnd thus by parameter

FIG. 2. The range of parameters (&) for Sc=10® (curve 9,

in time exponentially(i.e., y,>0) even for very small Strou-
hal numbers. For example, in the vicinity eof,=3, the
growth ratey, of the clustering instability of the second-
order correlation function is given by

(3-0,)2 20/ = 214 @l (1+ ¢) (rather then bye¢ itself). The latter parameter
vo=|4x10°SP— R L _<_~) —. (47 saturates wherp— o and it cannot suppress the clustering
240 3\InS) |7, instability. Thus we believe that the two-way coupling can

only mitigate but not suppress the clustering instability. Only

The sufficient condition for the exponential growth of the girect collisions between inertial particles cause an increase
second moment of a number density of inertial particles isf the kinematic viscosity of the mixture and damp the clus-
Sc>Sc(), where the critical number &" is given by tering instability.
Sl =S¢(y,=0). The clustering instability occurs when  Indeed, a mechanism of the nonlinear saturation of the
the degree of compressibility of particles velocity>0.2, ~ clustering instability is “four way coupling” when the
i.e., for particles and droplets with the radiua, particle-particle interaction is also important. In this situation
>25.4 um. Equation(29) also yields a similar valuer, ~ the particles collisions result in an effective particle pressure
~1/6 for the threshold of the instability of the second mo-that prevents further increase in concentration. Particles col-
ment(at g.,=2). Note that Eq(36) is written for Se-. lisions play essential role when during the lifetime of a clus-

We assumed that the size of a cluster is of the order of ' the total number of collisions is of the order of number of
Kolmogorov dissipation scale. The reason is that the ternParticles in the cluster. The rate of collisiods-ng/7, can
B(R) that describes the generation of fluctuations of particle®€ estimated ad~4ma’ng|v o|. The relative velocity
number density is a positive constant in the dissipative rangf colliding particles with different but comparable sizes can
up to the Kolmogorov scale, arg(R) strongly decreases in be estimated as
the inertial range. Thus the main contribution to the genera- )
tion of fluctuations of particles number density arises from |0 rel ~ 7ol (U- VYU~ 7pu3/ 7. (49)
the dissipative range. Therefore, it is plausible to suggest that
the Kolmogorov dissipation scale is the only length scale thatndeed, the velocity of an inertial particle with radiasfor
determines the cluster size. the small Stokes time,, is given by

IV. NONLINEAR EFFECTS v(@)=u—7y(a)(u- V)u+O(ry(a).

The compressibility of the turbulent velocity field with a The relative velocity . of colliding particles with different
finite correlation time can cause the exponential growth obut comparable sizes, anda, is given by
the moments of particles number density. This small-scale
instability results in the formation of strong inhomogeneities  |v|=|v(a;1) —v(ay)|=|my(as) — 7p(a)||(u- V)ul.
(clusters in the spatial distributions of particles. The linear
analysis does not allow us to determine the mechanism ohssuming that|,(a;) — 75(a,)|~75(a;) we obtain Eq.
saturation of the clustering instability. As can be seen from(26). Thus the collisions in clusters may be essential for
Eq. (41), molecular diffusion only depletes the growth rates
of the clustering instability at the linear sta@®ntrary to the ng~a 3(nla)(pl3p,), €s~a(3ap,/np)*3  (50)
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where{ is a mean separation of particles in the cluster. Fo
the above parameters£30 um) ng~3Xx10° cm 3, €,
~5a~150 um, andN.~300. Note that the mean number
density of droplets in clouds is about 18-10° cm 3.
Therefore theclustering instability of droplets in the clouds

PHYSICAL REVIEW E 66, 036302 (2002

iFor p=p,, the valuedn/dt=— g, 7,AP/p. Thus there is ac-
cumulation of inertial particlesi.e., dn/dt>0) in regions
with the minimum pressure of a turbulent fluid singg
<0. In the casep=p, we used the equation of motion of
particles in fluid flow which takes into account contributions

increases their concentrations in the clusters by the orders oflue to the pressure gradient in the fluid surrounding the par-

magnitude

ticle (caused by acceleration of the fluidnd the virtual

In all our analyses we have neglected the effect of sedit*added”) mass of the particles relative to the ambient fluid

mentation of particles in the gravity field which is essential
for particles of the radiu®>100 pm. Taking € ,=7n we
assumed implicitly that,<7, . This is valid(for the atmo-
spheric conditionsif a<60 pm. Otherwise the cluster size
can be estimated a&= 5(7,/7,)%?

Our estimates support the conjecture ttia clustering
instability serves as a preliminary stage for the coagulation
of water droplets in clouds leading to the rain formation

V. DISCUSSION

In this study we investigated the clustering instability of
the spatial distribution of inertial particles advected by a tur
bulent velocity field. The instability results in the formation

[39].

The particle inertia causes compressibility of particles ve-
locity field. However, ad-correlated velocity field cannot
induce the exponential growth of the second moment of the
number density of inertial particles. The reason is that a
S-correlated in time velocity field has a zero memory time.
Since the lifetime of eddies in &correlated in time velocity
field is infinitely small, the particles do not have enough time
to be carried out to the boundaries between eddies. The effect
of particle clustering is determined by three competitive pro-
cesses: the carrying-out of particles to the boundaries be-
tween eddies by inertial forcplescribed byB(R)-term in

Eqg. (31)], the scale-dependent turbulent diﬁusimﬁ(R)

of clusters, i.e., small-scale inhomogeneities of aerosols an@nd the scale-dependent drift velodidyR) (which describes
droplets. The clustering instability is caused by a combinedhe transfer of fluctuations of the number density of particles

effect of the particle inertia and finite correlation time of the
velocity field. The finite correlation time of the turbulent
velocity field causes the compressibility of the field of La-
grangian trajectories. The latter implies that the number o

over the spectruin In a §-correlated in time velocity field
there is a certain relation or constrajsee Eq(34)] between
these processes. A finite correlation time of velocity field
fiiolates such symmetry, in particular the finite correlation

particles flowing into a small control volume in a Lagrangiantime affects these three processes in a different manner so
frame does not equal the number of particles flowing out othat the final effect can cause the exponential growth of the
this control volume during a correlation time. This can resultsecond moment of the number density of particles. In a

in the depletion of turbulent diffusion.

The role of the compressibility of the velocity field is as
follows. The divergence of the velocity field of the inertial
particles is given by diw = 7,AP/p. The inertia of particles

S-correlated in time velocity field, there can be only relax-
ation of the second moment of the number density of par-
ticles or a zero damping rate.

The exponential growth of the second moment of a num-

results in the fact that particles inside the turbulent eddies argg, density of inertial particles due to the small-scale insta-

carried out to the boundary regions between the eddies
inertial forces(i.e., regions with low vorticity and high strain
rate. For a small molecular diffusivity divec—dn/dt [see
Eq. (1]. Therefore,dn/dt=— 7,AP/p. Thus there is accu-
mulation of inertial particlesi.e.,dn/dt>0) in regions with
AP<O0. Similarly, there is an outflow of inertial particles
from the regions withAP>0. This mechanism acts in a
wide range of scales of a turbulent fluid flow. Turbulent dif-
fusion results in the relaxation of fluctuations of particle con-
centration in large scales. However, in small scales wher
turbulent diffusion is small, the relaxation of fluctuations of
particle concentration is very weak. Therefore the fluctua
tions of particle concentration are localized in the small
scales.

ility can be saturated by the nonlinear effe@se Sec. IV.
The excitation of the second moment of a number density of
particles requires two kinds of compressibilities: compress-
ibility of the velocity field and compressibility of the field of
Lagrangian trajectories. The finite correlation time of veloc-
ity field causes compressibility of Lagrangian trajectories
even for the incompressible velocity field. Definitely, a com-
pressible velocity field contributes to the compressibility of
éagrangian trajectories. However, the most important effect
for the exponential growth of the second moment of a num-
ber density of inertial particles is a finite correlation time that
violates the symmetry induced bydacorrelated in time ve-
locity field.

This phenomenon is considered for the case when density Reémarkably, the compressibility of the field of Lagrang-

of fluid is much less than the material density of particles
(p<pp). When p=p, the results coincide with those ob-
tained for the cas@<p, except for the transformation,

— B, Tp, Where

p

Pp

Pp— P
2pptp

B*=2(1+

ian trajectories determines the coefficient of turbulent diffu-
sion[i.e., the coefficienD ,4(R) of the second-order spatial
derivative of the second moment of a number density of
inertial particles in Eq(31)]. The compressibility of the field
of Lagrangian trajectories causes depletion of turbulent dif-
fusion in small scales even for,=0. On the other hand, the
compressibility of the velocity field determines a coefficient
B(R) of the second moment of a number density of inertial
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particles in Eq.(31). This term is responsible for the expo- APPENDIX A: BASIC EQUATIONS IN THE MODEL
nential growth of the second moment of a number density of WITH A RANDOM RENEWAL TIME

particles. In this a . . .
; . ppendix we derive EgA20) for the simultaneous
[n th's s.tudy we conS|dere_d tW(,) models ,Of turbu_lept V€-second-order correlation functich(t,r), which serves as a
locity field: the random velocity with Gaussian statistics of 4 is for further analysis in Appendixes B and C under some

the Lagrangian trajectoriedodel |) and the Gaussian ve- gimplifying model assumptions about the statistics of the ve-
locity field with a small yet finite correlation tim@odel Il). |ocity field.

These models can be considered as “closure assumptions”
and they are not really expected to be exactly satisfied iny gyact solution of dynamical equations for a given velocity

most of the industrial and atmospheric flows. Remarkably, field
these two models yield very similar quantitative results for _ ) o
the clustering instability. This allows us to suggest that the a. Simple case without molecular diffusion

clustering is not strongly dependent on the details of the Consider first Eq(1) for the number density of particles
models and statistics. The most important observation is thai(t,r) in the caseD=0:
in these two models a random velocity field has a finite cor-

) . an(t,r
relation time. f?t )+V~[n(t,r)v(t,r)]=0, (A1)
V1. SUMMARY when all particles are transported only by advection. Solution

of Eq. (A1) with the initial conditionn(s,r) is given by
We showed that the physical reason for ttlastering
instability in spatial distribution of particles in turbulent n(t,N=G(t.nn[s,&(t.rs)], (A2)
flows is a combined effect of the inertia of particles leading
to the compressibility of the particle velocity fiedldt,r) and

the finite vequty .correlgt'lon time. . . particles afpresentmoment of timet and consider aurrent
The clustering instability can result insrong clustering time s<t as moments in the past. This differs from a usual

whereby a finite fraction of particles is accumulated in theapproach see Eqél), when particles are labeled at the-
clusters, and in aveak clusteringvhen a finite fraction of (i3 time t,, and a current timé>t,. Therefore in the equa-
particle collisions occurs in the clusters. tions below it is more convenient to redefine Lagrangian

The crucial parameter for the clustering instability is aj; ~ _
. : . - N isplacemenip, (t,r|s t,r|s)=—p.(t,r|s). Now Egs.
radius of the particles. The instability criterion isa>a,, @) F::an be w?i)tLtfan LS)_)pL( s) pu(trls) d

~a, for which{(divwv)?)={|rotv|?). For the droplets in the

where & (t,r|s) is the Lagrangian trajectory of the particle
which is located at coordinateat timet. Here we label the

atmosphere, =30 wm. The growth rate of the clustering ~ t
instability v~ 7, (a/a,)*, wherer,, is the turnover time in put.r]s)= Lv[T’gL(t'”T)]dT' (A3)
the viscous scales of turbulence.

We introduced a new concept of compressibility of the E(trls)=r—pL(t.r]s). (Ad)

turbulent diffusion tensor caused by a finite correlation time
of an incompressible velocity field. For this model of the The Green function is the functional &f (t,r|s):
velocity field, the field of Lagrangian trajectories is not di-
vergence free.

We suggested a mechanism of saturation of the clustering
instability—particle collisions in the clustersAn evaluated

G(t,r,s)=exp{—J:b[r,gl_(t,rh-)]dr], (A5)

nonlinear level of the saturation of the droplets number den- b(t,r)=V-v(t,r).
sity in clouds exceeds by the orders of magnitude their mean
number density. Introduce theshift operator
~ ~ 1 -
eXF{_PL'V]:1_PL'V+§[_PL'V]Z_ <+, (AB)
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b. Molecular diffusion as a Wiener process distributed, say with the Poisson statistics. In the latter case
Consider now the full Eq(1) with D0 whereby par- the full averaging{- - - }), may be considered as a two-stage

ticles are transported by both, fluid advection and moleculaProcedure. First one calculatgs- -), and then averages
diffusion. It was found by Wienefsee, e.g., Ref:33]) that  OVer the statistics of the renewal timg,,, which is denoted
Brownian motion(molecular diffusion can be described by as(: - rens

the Wienerrandom process/(t) with the following proper-
ties: P ( ) 9 prop « ’ >>vE(< ’ '>v)ren- (A14)
For the Poisson statistics ef,
(W)=0, (Wi(t+IW,(D)u=78;.  (A9) f
af _ _ =
Here(- - -), denotes the mathematical expectation over the F (= 1) = (vt r)vs(ta, r2))s
statistics of the Wiener process. Introduce the Wiener trajec- =FB(ty—ty,r,—1q)
tory &y (t,r|s) (which usually is called th&Viener path and -
the Wiener displacemen,(t,r|s) as follows: Xexp —|to—ti|/Ten),  (AL5)
&t r[s)=r—py(trls), where 7., is the mean renewal time. It would be useful to

(A10) define the correlation time of the functighi*? as follows

pW(t,r|S)=Jtv[r,gw(t,rh)]dr-l— J2Dw(t—s).
s 7,(R)= f FeP(r,R)d7I F*P(OR). (A16)

Comparison of this formula with Eq§A3) shows that in the

limit D—0, &y(t,r|s)— £ (t,r|s) andpy(t,r|s)—p.(t,r]s).  Certainly this model of the random velocity field cannot be
In Refs.[35,36 it was shown that solution of Eql) considered as universal. However, it reproduces important

(with D#0) can be written as solutiofA8) of Eq. (A1)  features of some flowtsee, e.g., Ref40)).

(with D=0) by replacemen}')L(t,r|s)H",3W(t,r|s) and then

. . . LA i
averaging over the statistics of the Wiener proce$883: b. Averaging procedure

Our model involves three random processé€d: The
n(t,r)=(G(t,r,s)exg — pw(t,r|s)- V1)un(s,r). Wiener random process that describes Browrtianleculay
(A1l)  diffusion, (2) Poisson process for a random renewal time,
and(3) the random velocity field between the renewals.
2. Two-step averaging over velocity statistics Equation(A1l) presentsn(t,r) after the first step, i.e., it
o describes the number density agi@enrealization of a ve-
a. Model of a random velocity field locity field. Using Eq.(A11) we obtain
Note that Eq.(Al1l) is a solution of Eq.(1) at agiven
realization of the random velocity field. Our next goal is to n(t,r)n(t,ry) =(G(ry)G(ro)exd §'(ry)- vy
determine the simultaneous correlation functions +E (1)) VIN(8,F)N(S12) Yo

n(t)=¢(n(t,nN)),, (A12) (A17)

o = whereV ;= d/dr; andV,=d/dr, and( ), denotes averag-

P(t,r=r1) ={n(t.r)n(t.r2))), —n(0), ing over two independent Wiener processes determining two

averaged over the stationary, space homogeneous statistics ‘Gfener paths. Hereafter for simplicity we use the following
g Y, 5P g notations:G(r)=G(t,r,s) and & (r)=—pw(t,r|s).

turbulent velocity field, wheré(- - - )), denotes this averag- .
ing. Since the initial distributiom(ty,r) is assumed to be Now we average EqALY) over a random velocity field
— for a given realization of a Poisson process:

homogeneous in space(t) is independent of spatial coor-

dinate, and®(t,r,—r;) depends only on the differende 53(t,r2—rl)=<n(t,r1)n(t,r2))v—(ﬁ)2

=r—rq.

In order to simplify the averaging procedu(al2) we =((G(r))G(ry)exg & (ry)-V,
consider a model of random velocity field that fully loses _
memory at some instants of renewal Fort, andt, inside +& (1) Vo uwde X P (tg,r1—12).

a renewal interva] 7;<<t;,t,<7;, 1] the velocity pair corre-

lation function is defined as (A18)

Here the timet, is the last renewal time before tinteand
aB(y — —r)= 0
Ftem =) =(altir)vg(ta r2)e, (AL t’=t—t, is a random variable. Now we omit the source term

where(- - -), denotes averaging over “intrinsic statistics” of [{(G(r1)G(r2))ww, — 11n*in Eq. (A18) (which is caused by
the velocity field. In our model the velocity fields before andthe mean number density of particles in a divergent velocity
after renewals are statistically independent. The interval befield) and we use the relation that is valid for homogeneous
tween the renewal instants may be the same or randomly turbulence, V.n?=V,n?=0. The reason is that in the
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present study we investigate only the effect of self-excitatiorwhere
of the clustering instability, and we do not consider an effect L
of the source term on the dynamics of fluctuations. The P(t—s,—k)={(exdik- & (N]G(r)w)- (A23)

source term is independent of fluctuations of particle numbe . . .
. . . rEquations(A22) and (A23) were derived in Ref[35] [see
density and causes another type of fluctuation of parhcleEqs.(N) and(18) in Ref. [35]]. The operato(i—s, —K) is

number density which is not directly related to an instability. . .
A mechanism {)f the generation o%/ these fluctuations is r};l_ndependent of due to the assumption about th_e homoge-
lated to perturbations of the mean number density of pari€ous turbulence. Note thai(t,k=0)=(2) */n(t,r)dr
ticles by a random divergent velocity field. The magnitude of=N is the total number of particles that are conserved in a
these fluctuations is much smaller than that of fluctuation§losed volume. Thus, the total number of particles is given
that are caused by the clustering instability. by

Thus, averaging of the functions

G(ry)G(rp)exd &' (ry)-Vi+&'(rp)- V]

n(t,k=0)=n(s,k=0)=N. (A24)
On the other hand,

and ®(ty,r,—r,) is decoupled into two time intervals be- P(t—s,k=0)={(G(r)w (A25)
cause the first function is determined by the velocity field Y

after the renewal while the second functidrty,r,—r,) is  [S€€ EA(A23)]. Thus, Eqs(A22), (A24), and(A25) yield
determined by the velocity field before renewal. Now we

take into account that for the Poisson process any instant can (G(r)whp=1. (A26)
be chosen as the initial instant so that the time for the next

renewal is distributed exponentially. We average EL8) APPENDIX B: VELOCITY FIELD WITH GAUSSIAN

over the random renewal time. The probability dengi(y) LAGRANGIAN TRAJECTORIES

of a random renewal time is given by Consider the model of a random velocity field where La-

grangian trajectories, i.e., the integraJo(u,£du and

_1 —
P(1) = Tren €XP(—t/ 7rep). (A19)  Th(u #Hdu have Gaussian statistics. Now we use an identity

Thus the resulting averaged equation for “fully” averaged

correlation function@(t,R)=(<5(t,R)),en, defined by Eq. (exg(N)g=exdd(n], (B1)
(A12), assumes the following form:

1 - _
[t _ (N =59+ 9, (82)
(I)(t,R)=TrenJOP(T,R)(D(t—T,R)eXK—'r/'rren)dT

. Whereg=§+§ is a Gaussian random variable with a mean
+ eXp( — t/ Tier) P(1,R)Po(R). (A20)  value g=((g),),. Here, for simplicity of notations, we

omitted arguments in the functiol® andg. Since
The first term in Eq(A20) describes the case where there is g ¢

at least one renewal of the velocity field during the tiine B
(i.e., the Poisson eventwhereas the second term describes (exp(@)why={(C)uds=1, (B3)

ge(;?ieq)vzlthjroeéyzrfdls no renewal during the timdere we obtain expg(r)]=1, i.e.,G(r)=0 [see Eqs(B1)—(B3)
0 : and(A26)].

B _ ’ ] Yoy Now we calculate I5(,u,R)=exp(<g(r )+g(r,)
P(t,R)=((G(r)G(ra)exd &' (r1)- Vit &' (r2)- Val)udo (1)) Vot £(12) - Varuod in Eq. (A21). sing identity

=exp{{g(ry) +g(ra) +&(ry) - Vi+ & () Vo) » (B1). The result is given by
A21 A -
A2D) P(u,R)=exd G(rq) +G(ry)+uLl], (B4)

whereG(r)=exdg(r)]. Equation(A20) is simplified in Ap- h

pendixes B and C under the additional assumptions about thnere

velocity field statistics.

L=B(R)+2U ,(R)V,+D ,4(R)V, Vs,
c. Properties of the function @r)

Ayeraging_ Eq.(A1l) over a random vel_ocity fielq, we 1B(R)=(g(r)9(r2) hunde
obtain equation for the mean number density of particles. In
k space for a homogeneous turbulence, this equation is given ,
by pU(R)= = ((£,(r1)9(r2) ) wwdo » (B5)
n(t,k)=P(t—s,~k)n(s,k), (A22) Dop(R)=D 15(0) =D (R,
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D ap( R):«f;(rl)gb(rz»ww)v :

Since G(r,) =G(r,)=0, Eq. (B4) does not have terms like
(g?(r1))wy - Thus,

P(u,R)=exd uL]. (B6)

When correlation timer,(R), Eqg. (A16), is much less than

the current time and?ren, the correlation functionéB5) are
given by

B(R)=ZJOw(<b[0,§(r1)]b[M’,§(rz)]>ww>vd,u’,

U (R)=— 2f:(<va[0,§(rl)]b[ﬂ’ (1) Dwndodi’, (B7)

D (R)=2 | (L& gl i’ e s’

where we used a relation

J'”a( /r)d rfuc( Hr)d ”
Oalu“ilIuOBIu121u“W

=2Mfox<<aa(0,r1)(:ﬁ(,u, yr2)>w>vd/‘l’, .

v

In Eq. (B7) for B(R), the functionb[ 7,&(r|7)] is the diver-

PHYSICAL REVIEW E 66, 036302 (2002

Li=L— ———=— B11
! at Tren ( :
To derive Eq.(B10) we used the following identity
J
QJ(t—M,R):eXD(—ME)‘D(t,R), (B12)

which follows from the Taylor expansion

- a\mf(t a
f(t+7)=m§=‘,l (TE %zexp{ rﬁ>f(t). (B13)
In particular,
dDO(R):@(t—t,R):exp(—t%)@(t,R).

Evaluating the integral in E(B10) we obtain
[eXH(tLy) —1](L1+ Ten) ®(LR)=0.  (B14)
Here we used the commutativity relation
‘Z:l eXF(tZ:l) =exﬂtzl)21
Thus, finally
odb R
E:[B(R)+2U(R)~V+Daﬁ(R)VaVﬁ]d)(t,R).
(B15)

gence of the Eulerian velocity calculated at Lagrangian traNote that in the limitr,o,— =, Eq. (B15) describes the evo-

jectory, i.e.,

av;

ar, (B8)

b[ﬂf(flf)]=( )
r=(17)

The functionb[ 7,&(r|7)] is different from the divergence
b [ 7,&(r|7)] of the Lagrangian velocity, i.e.,

(9l)i (9§J

b &rl7)1= 5 5 (89)

In a o-correlated in time velocity fieldb[ r,&(r|7)]
=b,[7,&r|7)] whereas for a random velocity field with a
finite correlation timeb[ 7, &(r| 7)1# b, [ 7,&(r| 7)]. The iner-

lution of ®(t,R) in the model of the random velocity field

without renewals.

APPENDIX C: GAUSSIAN VELOCITY FIELD WITH
A SMALL YET FINITE CORRELATION TIME

Here we consider a random Gaussian velocity field with a

small 7,0,. Using Eq.(B12) we rewrite Eq(A20) in the form

1 (t.
{rfoP(T,R)exp<

Tren

T -~
—_—M

Tren

dr—1{d(t,R)=0,

(CD

where M =1+ 7,.{(d/3t) and we neglected the last term in

tia of particles causes compressibility of the Eulerian velocgq, (A20) sincets 7,o,. Expanding the functio®(r,R) in
ity. On the other hand, the finite correlation time of a random-|-ay|Or series in the vicinity of~=0 we obtain

velocity field causes a compressibility of the field of La-

grangian trajectorieswhich determine the turbulent diffu-
sion tensor even for incompressible velocity field. E@6)
allows to rewrite EquatioiiA20) as

®(t,R) +exp(tLy)d(t,R),
(B10)

1

Tren

t ~
foexlﬂ(ﬂﬁl)dﬂ

where

JP(r,R)

M —(k+1)_q
T

®(t,R)=0,

where we used the following formula:

t
f TkeX
0

7=0
(C2

[y TR+ 13— (k
— =M |dr=k! rightM kD),

Tren

036302-13
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Neglecting the terms- O(??er) in Eq. (C2) we obtain
IR — '{(aZﬁ(T,R))
=0

=~ Tre

ot ar?
—, [ #*P(7,R)
Tren .4 (I)(ta R)1 (C3)
aT =0

since the expansion of the operafdrr, R) into Taylor series

(for small 7) for a random Gaussian velocity field has only
even powers ofr. Thus, the equation for the correlation

function ®(t,R) is given by

- dO(LR) .
M T—[B(R)+2U(R)~V+Daﬁ(R)VaVB]<I>,
(CH
where
~ 1 ~ ~
D,s(R)= ?«&aiﬁG(fl)G(rz))ww)v, (CH
1
Ua(R):_?_<<g’(r2)§;(rl)>ww>v
1 -
+ —=(9'(r)g" (r2) €a)wmdo » (Co)
2Tren
1
B(R)=?—(<g'(f1)g'(u))ww>v- (C7

Here, for the homogeneous turbulent velocity figdd],

E=£(r)—€(r), V=0dlR, G=G+g',
{9 awe=0, G=(G)yo=1.

Using the expansion @(7en,) andg'[ ren, &(r)] into Tay-

lor series of a small time-, after the lengthy algebra, we

obtain
Dos(R)=2D 8,5+ 27,6 fos(R) +SPQ,4(R)], (C8
Qup(RI=3[(V,f5) (V) = F Y,V f 5]+ 24A A4

+12(A,V,f 05— FugV,A,) — 20f .V, A,

ap Y p
(C9)

Uo(R) = =27 Ay — SPL(V,A,)(V,f,,) + 104, V,A,
+12A,V,A, 1}, (C10

B(R)=—27ed VA, +SPL(V,A,)(V,A,)—6(V,A,)]},
(C11

faﬁ:faﬁ(o)_ faﬁ(R)y
fap(R)=(va(r)vp(ra))y,

Aa:Vﬁfa,B'
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and Sr= 7/ 7, is the Strouhal number. In these calculations
we neglected the small termsO(SP R®V?). Our analysis
showed that the neglected small terms do not affect the
growth rate of the clustering instability. In Eq€9)—(C11)
we assumed that the correlation functibgy, for homoge-
neous, isotropic, and compressible velocity field is given by
Eqg. (45), and in scales € R<1 incompressiblé-(R) and
compressiblé-.(R) components of the random velocity field
are given by
F(R=(1-R%/(1+0,), F(R)=0,F(R),
in scalesR=1 the functiond==F_.=0. HereR is measured
in the units of . Turbulent diffusion tensobD ,4(R) is de-
termined by the field of Lagrangian trajectoriédsee Eq.
(C5)]. Due to the finite correlation time of the random veloc-
ity, the field of Lagrangian trajectorie§ is compressible
even if the velocity field is incompressible(=0). Indeed,
for o,=0 we obtain

20
((V-9Huy=7St"

Using Egs. (C8—(C11),(45 we calculated the functions
D.s(R), U,(R) andB(R):

D,s(R)=[2D +R%(a5+SPbe) 15,

+R%(a,+SPby)R, 4, (C12
U, (R)=—R,(as+ Srbs), (C13
B=ag+Srb,, (C14

whereb,= — $bs, D=D/(7u?), and

200-0 a2 20’U+4

%= 73140, 3’ 31+,

2

4o,—2 2350/ o,
a4:—, b5:__ y
3(1+ay,) 27 \1+o,

12+ 8720, + 43302
bez >
27(1+0,)

2(12—2030,+103%2)
- 27(1+ )2

4

We will show here that the combined effect of the inertia of
particles ¢, #0) and finite correlation time of the particles’
velocity field (Sk£ 0) results in the excitation of the cluster-
ing instability whereby under certain conditions there is a
self-excitation of the second moment of the number density
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of inertial particles. This instability causes the formation of
small-scale inhomogeneities in the spatial distribution of in-
ertial particles.

The equation for the second-order correlation function for

the number density of inertial particles reads whereP#(Z) andQ#(Z) are the Legendre functions with the

D(X)=S(X)X(1+X2)H2, (C17)

S(X)=Re[A;PE(IX) + AQ4(1X)},

L LID(LR) o +X(R)q>' o 15 imaginary argument
a  mR) _ 3 _— B-T
Z=iX, ,U.ZC—E, {=—53%xJC"—k, K=2—.
[see Eqs(C14)], where the timet is measured in units of B
T,= T,/Sr, and Solution of Eq.(C15 can be analyzed using asymptotics
5 ) of the exact solutioiC17). This asymptotic analysis is based
®' = P o7 g7 1 2(1+X9) on the separation of scalésee, e.g., Ref§34,37). In par-
- IR’ CR2 m 3 ticular, the solution of Eq(C15) has different regions where
the form of the functionsn(R) and\(R) are different. The
S 2[2+X*(1+2C)] co a; +Srb, functions ®(R) and ®'(R) in these different regions are
o R e ' o 48 ! matched at their boundaries in order to obtain continuous
solution for the correlation function. Note that the most im-
a,+ Srb, _ portant part of the solution is localized in small scales.,

A — X(R)=V ScBR, R=|r,—rq|, R<1). Using the asymptotic analysis of the exact solution
for X>1 allowed us to obtain the necessary conditions for a
small-scale instability of the second moment of a number

lzw, ZZM, density of inertial particles. The results obtained by this
3(1+a,) 3(1+toy,) asymptotic analysis are presented below.
The solution(C17) has the following asymptotics: foX
by=— 2(12_ 12780,;306705), <1 (i.e., in theAscaIes gR<1/Y §c) the solution for the
27(1+0,) second momen® is given by
- —1_ 2 4
by=———— (36 4660, + 249%2), D(X)={1—(x/6)[ X3+ O(XH]}. (C19
27(1+0,)?

For X>1 (i.e., in the scales 3y Sc<R<1) the functiond
where $=ScSe-1. In order to obtain a solution of Eq. is given by
(C15, we use a separation of variables, i.e., we seek for a

solution in the following form: d(X)=Re{AX C* VCZ*"}. (C19
(I)(t,R)zi)(R)exp( yot), For C2— k<0 the second-order correlation function for a

] . ) . number density of inertial particle@ is given by
wherebyy, is a free parameter that is determined using the

boundary conditions ®(R)=AzR Ccogr INR+¢), »=1k—CZ

®(R=0)=1, P(R—x»)=0. whereC>0 and¢ is the argument of the complex constant
A. For R=1 the second-order correlation function for the

Here vy, is measured in units of 1—47. Since the function number density of inertial particles is given by
®(t,R) is a two-point correlation function, it has a global

maximum atR=0 and therefore it satisfies the conditions CiD(R)=(A4/R)exp(—R\/3F/2), (C20

&)f(Rzo):o, ciyf(Rzo)<o, wherel’>0. Since the total number of particles in a closed

volume is conserved, i.e., particles can only be redistributed
&(R=0)>|d(R>0)|. in the volume,
Then Eq.(C15) yields FRZ&(R)d R=d(k=0)=0.
0
- 1 .~ ~ . -
Ie(R)= m(R)(D +A(R)®'+BD, (C18 The latter yieldse=— /2 for INSc>1 andT'<1. When

C2— k>0, the solution(C19 cannot be matched with solu-
wherel’ = y,(1+ SPy,)? . Equation(C16) has an exact so- tions (C18 and(C20). Thus, the conditiorC?— k<0 is the
lution for O=<R<1: necessary condition for the existence of the solution for the
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correlation function. The conditio@>0 provides the exis- 7 [see, e.g., Eq45)]. We showed also that in the dissipative
tence of the global maximum of the correlation function atrangeB>0 (which implies the generation of passive scalar
R=0. fluctuationg and B(R) sharply decreases in the inertial

Matching the function® and®’ at the boundaries of the ange. Therefore, it is plausible to suggest that the Kolmog-
above-mentioned regions yields coefficiets and . In orov dissipation scale is the only length scale that determines
particular, the growth rate of the clustering instabiligy is the clgstering ?nstapility scale. On the other hanq, the tu.rbu-
determined by Eq(43) lent diffusion time in Model Il of a random velocity field is

In Models 1 and Il of a random velocity field the correla- 7= 7/(Treid3) = 7,,/Sr. Thus, in Model Il of a random ve-

tion functions of incompressiblé&(R) and compressible locity field, the timer, is the characteristic time of the clus-

n
F.(R) components are proportional to-R? up to the scale tering instability.
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