
PHYSICAL REVIEW E 66, 036302 ~2002!
Clustering instability of the spatial distribution of inertial particles in turbulent flows
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A theory of clustering of inertial particles advected by a turbulent velocity field caused by an instability of
their spatial distribution is suggested. The reason for the clustering instability is a combined effect of the
particles inertia and a finite correlation time of the velocity field. The crucial parameter for the clustering
instability is the size of the particles. The critical size is estimated for a strong clustering~with a finite fraction
of particles in clusters! associated with the growth of the mean absolute value of the particles number density
and for a weak clustering associated with the growth of the second and higher moments. A new concept of
compressibility of the turbulent diffusion tensor caused by a finite correlation time of an incompressible
velocity field is introduced. In this model of the velocity field, the field of Lagrangian trajectories is not
divergence free. A mechanism of saturation of the clustering instability associated with the particles collisions
in the clusters is suggested. Applications of the analyzed effects to the dynamics of droplets in the turbulent
atmosphere are discussed. An estimated nonlinear level of the saturation of the droplets number density in
clouds exceeds by the orders of magnitude their mean number density. The critical size of cloud droplets
required for cluster formation is more than 20mm.
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I. INTRODUCTION

Formation and evolution of aerosols and droplets inhom
geneities~clusters! are of fundamental significance in man
areas of environmental sciences, physics of the atmosp
and meteorology~e.g., smog and fog formation, rain forma
tion!, transport and mixing in industrial turbulent flows~such
as spray drying, pulverized-coal-fired furnaces, cyclone d
separation, abrasive water-jet cutting! and in turbulent com-
bustion~see, e.g., Refs.@1–8#!. The reason is that the direc
hydrodynamic, diffusional, and thermal interactions of p
ticles in dense clusters strongly affect the character of
involved phenomena. Thus, e.g., enhanced binary collis
between cloud droplets in dense clusters can cause
broadening of droplet size spectrum and rain formation~see,
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e.g., Ref.@8#!. Another example is combustion of pulverize
coal or sprays whereby the reaction rate of a single part
or a droplet differs considerably from the reaction rate o
coal particle or a droplet in a cluster~see, e.g., Refs.@9,10#!.

Analysis of experimental data shows that spatial distrib
tions of droplets in clouds are strongly inhomogeneous~see,
e.g., Refs.@11–14#!. Small-scale inhomogeneities in partic
distribution were observed also in laboratory turbulent flo
@15–18#.

It is well known that the turbulence results in a relaxati
of inhomogeneities of concentration due to turbulent dif
sion, whereas the opposite process, e.g., a preferential
centration~clustering! of droplets and particles in turbulen
fluid flow still remains poorly understood.

In this study we suggest a theory of clustering of partic
and droplets in turbulent flows. The clusters of particles
formed due to an instability of their spatial distribution su
gested in Ref.@19# and caused by a combined effect of
particle inertia and a finite velocity correlation time. Particl
inside turbulent eddies are carried out to the boundary
gions between them by inertial forces. This mechanism
the preferential concentration acts in all scales of turbulen
increasing toward small scales. An opposite process, a re
ation of clusters is caused by a scale-dependent turbu
diffusion. The turbulent diffusion decreases towards sma
scales. Therefore, the clustering instability dominates in
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Kolmogorov inner scaleh, which separates inertial and vis
cous scales. Exponential growth of the number of particle
the clusters is saturated by their collisions.

In our previous study@19# we suggested and qualitative
analyzed an idea that inertia of particles may lead to th
clustering. Later this idea was questioned by our quantita
analysis@20,21# of the Kraichnan model of turbulent adve
tion of particles by thed-correlated in time random velocit
field. It was proved that the clustering of inertial particl
does not occur in the Kraichnan model. The latter result m
be considered as a counterexample.

The main quantitative result of the theory of clusteri
instability of inertial particles, suggested in this study, isthe
existence of this instabilityunder some conditions that w
determined. We showed that the inertia of the particles
only one of thenecessary conditionsfor particles clustering
in turbulent flow. In the present study we found asecond
necessary conditionfor the clustering instability: a finite cor
relation time of the fluid velocity field which in the sug
gested theory results in a nonzero divergence of the fiel
Lagrangian trajectories. This time is equal zero in the abo
mentioned Kraichnan model~see Ref.@22#!, which was the
reason for the disappearance of the instability in this part
lar model.

In this study we used a model of the turbulent veloc
field with a finite correlation time that drastically changes t
dynamics of inertial particles. In the framework of th
model of the velocity field, we rigorously derived thesuffi-
cient conditionsfor the clustering instability. We demon
strated the existence of the new phenomena ofstrong and
weakclustering of inertial particles in a turbulent flow. The
two types of the clustering instabilities have different phy
cal meanings and different physical consequences in var
phenomena. We computed also the instability thresholds
are different for the strong and weak clustering instabiliti

II. QUALITATIVE ANALYSIS OF STRONG AND WEAK
CLUSTERING

A. Basic equations in the continuous media approximation

In this study we used the equation for the number den
n(t,r) of particles advected by a turbulent velocity fie
u(t,r):

]n~ t,r!

]t
1“•@n~ t,r!v~ t,r!#5D Dn~ t,r!, ~1!

where D5kT/6pnra is the coefficient of molecula
~Brownian! diffusion, n is the fluid kinematic viscosity,r
andT are the fluid density and temperature, respectively,a is
the radius of a particle, andk is the Boltzmann’s constant
Due to the inertia of particles their velocityv(t,r)Þu(t,r),
e.g., the fieldv(t,r) is not divergence free even for divu
50 ~see Ref.@19#!. Equation~1! implies conservation of the
total number of particles in a closed volume. Consider

Q~ t,r!5n~ t,r!2n̄, ~2!
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the deviation ofn(t,r) from the uniform mean number den
sity of particlesn̄. Equation forQ(t,r) follows from Eq.~1!:

]Q~ t,r!

]t
1@v~ t,r!•“#Q~ t,r!

52Q~ t,r!div v~ t,r!1DDQ~ t,r!. ~3!

Here we assumed that the mean particle velocity is zero.
also neglected the term}n̄ div v describing a source of fluc
tuations of particles number density. This term does not
fect the growth rate of the instability. In the present study
investigate only the effect of self-excitation of the clusteri
instability, and we do not consider an effect of the sou
term on the dynamics of fluctuations. The source te
}n̄ div v is independent of fluctuations of particle numb
density and causes another type of fluctuations of part
number density which are not directly related to an insta
ity. A mechanism of generation of these fluctuations is
lated to perturbations of the mean number density of p
ticles by a random divergent velocity field. The magnitude
these fluctuations is much lower than that of fluctuations t
are caused by the clustering instability.

In our qualitative analysis of the problem we use Eq.~3!
written in a comoving with a cluster reference frame. F
mally, this may be done using the Belinicher-L’vov~BL!
representation~for details, see Refs.@23,24#!. Let jL(t0 ,ru t)
be a Lagrangian trajectory, andrL(t0 ,rut) be an increment of
the trajectory of the reference point~located atr at time t0),
i.e.,

rL~ t0 ,rut !5E
t0

t

v@t,jL~ t0 ,rut!#dt,

~4!
jL~ t0 ,rut ![r1rL~ t0 ,rut !.

By definition rL(t0 ,ru t0)50, j(t0 ,ru t0)5r and r0 is a po-
sition of a center of a cluster at the ‘‘initial’’ timet050 ~for
the brevity of notations hereafter we skip the labelt0). Con-
sider a ‘‘comoving’’ reference frame with the position of th
origin at j0(t)[j(r0u t). Then BL velocity field ṽ(r0ut,r)
and BL velocity differenceW(r0ut,r) are defined as

ṽ~r0ut,r![v@ t,r1rL~r0ut !#, ~5!

W~r0ut,r![ṽ~r0ut,r!2ṽ~r0ut,r0!. ~6!

Actually the BL representation is very similar to the L
grangian description of the velocity field. The difference b
tween the two representations is that in the Lagrangian
resentation one follows the trajectory of every fluid partic
r1rL(r,t0ut) ~located atr at time t5t0), whereas in the BL
representation there is a special initial pointr0 ~in our case
the initial position of the center of the cluster! whose trajec-
tory determines the new coordinate system~see Refs.
@23,24#!. With time the BL-fieldṽ(r0ut,r) becomes very dif-
ferent from the Lagrangian velocity field. It must be not
that the simultaneous correlators of both, the Lagrangian
the BL-velocity fields, are identical to the simultaneous c
2-2
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CLUSTERING INSTABILITY OF THE SPATIAL . . . PHYSICAL REVIEW E 66, 036302 ~2002!
relators of the Eulerian velocityv(r,t). The reason is that fo
stationary statistics the simultaneous correlators do not
pend ont, and, in particular, one can assumet5t0.

Similar to Eq.~5!, let us introduce BL representation fo
Q(t,r),

Q̃~r0ut,r![Q@ t,r1rL~r0ut !#. ~7!

In BL variables defined by Eqs.~5!–~7!, Eq. ~3! reads,

]Q̃~r0ut,r!
]t

1@W~r0ut,r!•“#Q̃~r0ut,r!

52Q̃~r0ut,r! div W~r0ut,r!1D D Q̃~r0ut,r!. ~8!

The difference between Eqs.~3! and ~8! is that Eq.~8! in-
volves only velocity difference~6! in which the velocity

ṽ(r0ut,r0) of the cluster center is subtracted.

B. Rigid-cluster approximation

Consider qualitatively a time evolution of different stati
tical moments of the deviationQ(t,r) defined by

Mq~ t ![^uQ~ t,r!uq&v , ~9!

assuming that at the initial time,t50, the spatial distribution
of particles is almost homogeneous, all momentsMq(0) are
small, wherê •&v denotes the ensemble averaging over r
dom velocity field v. In order to eliminate the kinemati
effect of sweeping of the cluster as a whole we consider
~3! in the BL representation, Eq.~8!. Since the simultaneou
moments of any field variables in the Eulerian and in
BL-representations coincide, the momentsMq(t) can be
written as

Mq~ t !5^uQ̃~r0ut,r!uq&v . ~10!

Our conjecture is that on a qualitative level we can consi
the role of each term in the Eq.~8! separately, assumin
some reasonable, time-independent,frozenshapeu(x) of a

distributionQ̃(r0ut,r) inside a cluster:

Q̃~r0ut,r!5A~ t !uS ur2r0u
,cl

D . ~11!

HereA(t) is time-dependent amplitude of a cluster and,cl is
the characteristic width of the cluster. Shape functionu(x)
may be chosen with the maximum equal to 1 atx50 and
unit width. Real shapes of various clusters in the turbul
ensemble are determined by a competition of different te
in the evolution equation~8!. However, we believe that th
particular shapes affect only numerical factors in the exp
sion for the growth rate of clusters and do not affect th
functional dependence on the parameters of the problem
is considered in this section.
03630
e-

-

q.

e

r

t
s

s-
r
he

1. Effect of turbulent diffusion

The advective term on the left-hand side~LHS! of Eq. ~8!
results in turbulent diffusion inside the cluster. This effe
may be modeled by renormalization of the molecular dif
sion coefficientD on the right-hand side~RHS! of Eq. ~8! by
the effective turbulent diffusion coefficientDT with a usual
estimate ofDT :

D→D1DT , DT;,clvcl/3. ~12!

Hereaftervcl is the mean square velocity of particles at t
scale,cl . Instead of the full Eq.~8! consider now a mode
equation

]Q̃~r0ut,r!
]t

5DTDQ̃~r0ut,r!, ~13!

which accounts only for turbulent diffusion. Multiplying Eq

~13! by qQ̃q21(r0ut,r) and averaging over random velocit
field @see Eq.~10!# we obtain

]Mq~ t !/]t.q^uQ̃~r0ut,r!uq21DTDuQ̃~r0ut,r!u&w . ~14!

Substituting distribution~11! we estimate the Laplacian in
Eq. ~14! as21/,cl

2 . Equations~13! and ~14! imply that

]Mq~ t !/]t52qDTMq~ t !/,cl
2 . ~15!

The solution of Eq.~15! reads

Mq~ t !5Mq~0!exp@2gdif~q!t#,
~16!

gdif~q!;qDT /,cl
2 ,

wheregdif(q) denotes a contribution to the damping rate
Mq(t) caused by turbulent diffusion.

2. Effect of particles inertia

In this section we show that the term2Q̃ div W on the
RHS of Eq. ~8! can result in an exponential growth o
Mq(t)} exp@gin(q)t#, i.e., in the instability. We denoted
here the contribution to the growth rate ofMq(t), caused by
the inertia of particles, byg in(q). In order to evaluateg in(q)
we neglect now in Eq.~8! both, the convective term on th
LHS of this equation~i.e., the the turbulent velocity differ-
ence inside the cluster! and the molecular diffusion term. Th
resulting equation reads

]Q̃~r0ut,r!
]t

52Q̃~r0ut,r!div W~r0ut,r!. ~17!

The main contribution to the BL-velocity differenc
W(r0ut,r) in the RHS of this equation is due to the eddi
with size,cl , the characteristic size of the cluster which is
the order of the Kolmogorov length scale. In smaller leng
scales the velocity divergence correlation function is a
proximately constant. Denote byvcl the characteristic veloc
ity of these eddies and bytv;,cl /vcl the corresponding cor
relation time. In our qualitative analysis we neglect ther
2-3
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dependence of divW(r0ut,r) inside the cluster and conside
the divergence in Eq.~17! as a random processb(t) with a
correlation timetv ,

div W~r0ut,r!→b~ t !. ~18!

Together with the decomposition~11! this yields the follow-
ing equation for the cluster amplitudeA(t):

]A~ t !

]t
52A~ t !b~ t !. ~19!

The solution of Eq.~19! reads

A~ t !5A0 exp@2I ~ t !#, I ~ t ![E
0

t

b~t!dt. ~20!

Integral I (t) in Eq. ~20! can be rewritten as a sum of inte
grals I n over small time intervalstv ,

I ~ t !5 (
n51

t/tv

I n , I n~ t ![E
(n21)tv

ntv
b~t!dt.

In our qualitative analysis integralsI n may be considered a
independent random variables. Using the central limit th
rem we estimate the total integral

I ~ t !;A^I n
2&vANz, ^I n

2&v5^b2&vtv
2 ,

where^•••&v denotes averaging over turbulent velocity e
semble,z is a Gaussian random variable with zero mean a
unit variance,N5t/tv . Now we calculate

Mq~ t !5E QqP~z!dz, P~z!5~1/A2p!exp~2z2/2!.

Therefore,Mq(t)5J1 exp(q2S2N/2), whereS5tvA^b2&v,

J15~1/A2p!E exp@2~z2qSAN!2/2#dz;1.

Since the main contribution to the integralJ1 arises fromz
;qSAN, the parameterq cannot be large. In this approxima
tion theqth moment

Mq~ t !5Mq~0!exp@g in~q!t#

with g in(q) being the growth rate of theqth moment due to
the inertia of particles, which is given by

g in~q!;
1

2
^tv@div W~r0ut,r!#2&vq2. ~21!

3. Qualitative picture of the clustering instability

In the preceding sections we evaluated the contributi
to the growth rate ofMq(t) due to the turbulent diffusion
gdif(q), Eq. ~16!, and due to the particles inertiag in(q), Eq.
~21!. The total growth rate may be evaluated as a sum
these contributions:
03630
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Mq~ t !5Mq~0!exp~gqt !,

gq.gdif~q!1g in~q!, ~22!

gq;2qDT /,cl1
1

2
^tv@div W~r0ut,r!#2&vq2.

Clearly, the instability is caused by a nonzero value
^tv(div W)2&, i.e., by acompressibility of the particle veloc
ity field v(t,r).

Compressibility of fluid velocity itselfu(t,r) ~including
atmospheric turbulence! is often negligible, i.e., divu'0.
However, due to the effect of particles inertia their veloc
v(t,r) does not coincide withu(t,r) ~see, e.g., Refs.@25–
28#!, and“•vÞ0 ~see Refs.@19,29#!. Indeed, the velocity of
particlesv can be determined from the equation of moti
for a particle withrp@r ,

dv/dt5~u2v !/tp , ~23!

wheretp is the characteristic time of coupling between t
particle and surrounding fluid~Stokes time!,

tp5mp/6prna52rpa
2/9rn, ~24!

mp and rp are the mass and material density of particl
respectively. Consider incompressible turbulent flow“•u
50. A solution of the equation of motion for particles with
small Stokes time can be written in the form

v5u2tp~du/dt!1O~tp
2! ~25!

~see Ref.@25#!. Now we calculate the divergence of Eq.~25!:

“•v52tp“•@~u•“ !u#1O~tp
2!. ~26!

The Navier-Stokes equation for the fluid yield
“•@(u•“)u#52DP/r, whereP is the fluid pressure. The
latter equation and Eq.~26! yield “•v;tpDP/r ~see Refs.
@19,29#!.

A degree of compressibilitysv of the fieldv(t,r), is de-
fined as

sv[^@div v#2&/^u“3vu2&. ~27!

Note that parametersv is independent of the scale of th
turbulent velocity field. It characterizes a compressible p
of the velocity field as a whole. The main contribution to th
parameter comes from the scales that are of the order o
Kolmogorov scaleh. The degree of compressibilitysv may
be of the order of unity@19,29,20#. The fluid flow parameters
are: Reynolds number Re5LuT /n, the dissipative scale o
turbulenceh5L Re23/4, the maximum scale of turbulen
motionsL, and the turbulent velocityuT in the scaleL. Now
we can estimatesv as

sv.~rp /r!2~a/h!4[~a/a* !4 ~28!

~see Ref.@20#!, wherea* is a characteristic radius of par
ticles. For a@a* the dependencesv(a) is more compli-
cated.
2-4



f

s

-

s

a

a
a

us
to

Th
o
la

w

c

re
o
rif
in
m
or
th
ns
ity
t i

o
us
t,

em
n-
is

nt
-

va-
ent
th

f a

of

t

n-

y
a-

e-
m-
hat
-

the

es
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For water droplets in the atmosphererp /r.103 and a*.h/30. For the typical value ofh.1 mm it yields a*.30 mm. On windy days whenh decreases, the value o
a* correspondingly becomes smaller.

Then we estimatê tv@div v#2& as 2sv /tv , because
^@rotv#2&;2tv

22 . Assuming that the cluster size,cl is of the
order of the inner scale of turbulenceh we have to identify
tv with a turnover time of eddies in the inner scaleh, tv
→th[h/vh5(L/uT)Re21/2,t2.tp. Thus, the growth rate
gq of the qth moment in Eq.~22! may be evaluated as

gq.gclq~q2qcr!, gcl;
sv

th
, qcr;

1

3sv
. ~29!

Clearly, the moments withq.qcr are unstable. Equation
~28! and ~29! imply that it happens whena.aq,cr where
aq,cr5a1,cr/q

1/4 is the value ofa at whichqcr5q. The largest
value of aq,cr corresponds to the instability of the first mo
ment ^uQu&: a1,cr;0.8a* , a2,cr'0.84a1,cr, a3,cr'0.76a1,cr,
a4,cr'0.71a1,cr, etc.

Note that if^uQu& grows in time then almost all particle
can be accumulated inside the clusters~if we neglect a non-
linear saturation of such growth!. We define this case as
strong clustering. On the other hand, ifqcr.1 the first mo-
ment ^uQu& does not grow, and the clusters contain a sm
fraction of the total number of particles. This does not me
that the instability of higher moments is not important. Th
e.g., the rate of binary particles collisions is proportional
the square of their number densitŷn2&5(n̄)21^uQu2&.
Therefore, the growth of the second moment^uQu2& ~which
we define as aweak clustering! results in that binary colli-
sions occur mainly between particles inside the cluster.
latter can be important in coagulation of droplets in atm
spheric clouds whereby the collisions between droplets p
a crucial role in the rain formation. The growth of theqth
moment^uQuq& results in the fact thatq-particles collisions
occur mainly between particles inside the cluster. The gro
of the negative moments of particles number density~possi-
bly associated with the formation of voids and cellular stru
tures! was discussed in Ref.@30# ~see also Refs.@31,32#!.

In the above qualitative analysis whereby we conside
only one-point correlation functions of the number density
particles, we missed an important effect of the effective d
velocity which reduces the growth rate of the clustering
stability. For the one-point correlation functions of the nu
ber density of particles the effective drift velocity is zero f
homogeneous and isotropic turbulence. However, in
equations for two-point and multi-point correlation functio
of the number density of particles, the effective drift veloc
is not zero and as we will see in the following section tha
increases a threshold for the clustering instability.

III. THE CLUSTERING INSTABILITY OF THE SECOND
MOMENT

A. Basic equations

In the previous section we estimated the growth rates
all momentŝ uQuq&. Here we present the results of a rigoro
analysis of the evolution of the two-point second momen
03630
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F~ t,R![^Q~ t,r!Q~ t,r1R!&. ~30!

In this analysis we used stochastic calculus@e.g., Wiener path
integral representation of the solution of the Cauchy probl
for Eq. ~1!, Feynman-Kac formula and Cameron-Marti
Girsanov theorem#. The comprehensive description of th
approach can be found in Refs.@21,33–36#.

We showed that a finite correlation time of a turbule
velocity plays a crucial role in the clustering instability. No
tably, an equation for the second momentF(t,R) of the
number density of inertial particles comprises spatial deri
tives of high orders due to the nonlocal nature of turbul
transport of inertial particles in a random velocity field wi
a finite correlation time~see Appendix A and Ref.@20#!.
However, we found that equation forF(t,R) is a second-
order partial differential equation at least for two models o
random velocity field:

Model I. The random velocity with Gaussian statistics
the integrals*0

t v(t8,j)dt8 and*0
t b(t8,j) dt8, see Appendix

B.
Model II. The Gaussian velocity field with a small ye

finite correlation time, see Appendix C.
In both models equation forF(t,R) has the same form,

]F/]t5L̂F~ t,R!,
~31!

L̂5B~R!12U~R!•“1D̂ab~R!¹a¹b ,

but with different expressions for its coefficients. The mea

ing of the coefficientsB(R), U(R), and D̂ab(R) is as fol-
lows:

FunctionB(R) is determined only by the compressibilit
of the velocity field and it causes the generation of fluctu
tions of the number density of inertial particles.

The vectorU(R) determines a scale-dependent drift v
locity which describes a transfer of fluctuations of the nu
ber density of inertial particles over the spectrum. Note t
U(R50)50 whereasB(R50)Þ0. For incompressible ve
locity field U(R)50, B(R)50.

The scale-dependent tensor of turbulent diffusionD̂ab(R)
is also affected by the compressibility.

In very small scales this tensor is equal to the tensor of
molecular~Brownian! diffusion, while in the vicinity of the
maximum scale of turbulent motions this tensor coincid

with the usual tensor of turbulent diffusion. TensorD̂ab(R)
may be written as

D̂ab~R!52Ddab1Dab
T ~R!,

~32!
Dab

T ~R!5D̃ab
T ~0!2D̃ab

T ~R!.

In Appendix B we found that for Model I,

B~R!'2E
0

`

^b@0,j~r1u0!#b@t,j~r2ut!#&dt,

U~R!'22E
0

`

^v@0,j~r1u0!#b@t,j~r2ut!#&dt, ~33!
2-5
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D̃ab
T ~R!'2E

0

`

^va@0,j~r1u0!#vb@t,j~r2ut!#&dt.

For thed-correlated in time random Gaussian compre

ible velocity field the operatorL̂ is replaced byL̂0 in the
equation for the second momentF(t,R), where

L̂0[B0~R!12U0~R!•“1D̂ab~R!¹a¹b ,

B0~R!5¹a¹bD̂ab~R!, ~34!

U0,a~R!5¹bD̂ab~R!

~for details see Refs.@20,21#!. In the d-correlated in time
velocity field the second momentF(t,R) can only decay in
spite of the compressibility of the velocity field. The reas

is that the differential operatorL̂0[¹a¹bD̂ab(R) is adjoint

to the operatorL̂0
†[D̂ab(R)¹a¹b and their eigenvalues ar

equal. The damping rate for the equation

]F/]t5L̂0
†F~ t,R! ~35!

has been found in Ref.@37# for a compressible isotropic ho
mogeneous turbulence in a dissipative range:

g252
~32sT!2

6th~11sT!~113sT!
. ~36!

Here sT is the degree of compressibility of the tens
Dab

T (R). For thed-correlated in time incompressible velo
ity field (sT50) Eq.~35! was derived in Ref.@22#. Thus, for
the Kraichnan model of turbulent advection~with a delta
correlated in time velocity field! the clustering instability of
the 2nd moment does not occur.

A general form of the turbulent diffusion tensor in a di
sipative range is given by

Dab
T ~R!5~C1R2dab1C2RaRb!/th ,

C152~21sT!/3~11sT!, ~37!

C252~2sT21!/3~11sT!.

The parametersT is defined by analogy with Eq.~27!:

sT[
“•DT•“

“3DT3“

5
¹a¹bDab

T ~R!

¹a¹bDa8b8
T

~R!eaa8gebb8g

, ~38!

whereeabg is the fully antisymmetric unit tensor. Equation
~27! and ~38! imply that sT5sv in the case ofd-correlated
in time compressible velocity field. Equations~33! show that
for a finite correlation time identities~34! are violated and

B~R!ÞB0~R!, U~R!ÞU0~R!.
03630
-

For a random incompressible velocity field with a fini
correlation time the tensor of turbulent diffusionDab(R)
5t21^ja(r1)jb(r2)& @see Eq.~C5!# and the degree of com
pressibility of this tensor is

sT5
^~“•j!2&

^~“3j!2&
, ~39!

where j(r1ut) is the Lagrangian displacement of a partic
trajectory which passes through pointr1 at t50. Note that
Taylor @38# obtained the coefficient of turbulent diffusion fo
the mean field in the form DT(R50)
5t21^ja(r1ut)ja(r1ut)&.

B. Clustering instability in Model I

Let us study the clustering instability for the model of th
random velocity with Gaussian statistics of the integrals

E
0

t

v~ t8,j!dt8, E
0

t

b~ t8,j!dt8,

see Appendix B. In this model Eq.~31! in a nondimensional
form reads

]F

] t̃
5

F9

m~r !
1F 1

m~r !
1~U2C2!r 2G 2F8

r
1BF,

~40!
1/m~r ![~C11C2!r 212/Sc,

where U[UR and Sc5n/D is the Schmidt number. Fo
small inertial particles advected by air flow Sc@1. The non-
dimensional variables in Eq.~40! arer[R/h and t̃ 5t/th , B
andU are measured in the unitsth

21 . Consider a solution of
Eq. ~40! in two spatial regions.

(a) Molecular diffusion region of scales.In this region
r !Sc21/2, and all terms}r 2 ~with C1 , C2, andU) may be
neglected. Then the solution of Eq.~40! is given by

F~r !5~12ar 2!exp~g2t !,

where

a5Sc~B2g2th!/12, B.g2th .

(b) Turbulent diffusion region of scales. In this region
Sc21/2!r !1, the molecular diffusion term}1/Sc is negli-
gible. Thus, the solution of Eq.~40! in this region is

F~r !5A1r 2l exp~g2t !,

where

l5~C12C212U6 iC3!/2~C11C2!,

C3
254~B2g2th!~C11C2!2~C12C212U !2.

Since the total number of particles in a closed volume
conserved,
2-6
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E
0

`

r 2F~r !dr50.

This implies thatC3
2.0, and thereforel is a complex num-

ber. Since the correlation functionF(r ) has a global maxi-
mum at r 50, C1.C222U. The latter condition for very
smallU yieldssT<3. Forr @1 the solution forF(r ) decays
sharply withr. The growth rateg2 of the second moment o
particles number density can be obtained by matching
correlation functionF(r ) and its first derivativeF8(r ) at the
boundaries of the above regions, i.e., at the pointsr
5Sc21/2 and r 51. The matching yieldsC3 /2(C11C2)
'2p/ ln Sc. Thus,

g25
1

th~113sT! F200sU~sT2sU!

3~11sU!
2

~32sT!2

6~11sT!

2
3p2~113sT!2

~11sT!ln2 Sc
G1

20~sB2sU!

th~11sB!~11sU!
, ~41!

where we introduced parameterssB andsU defined by

B520sB /~11sB!, U520sU /3~11sU!. ~42!

Note that the parameterssB'sU;sv . For thed-correlated
in time random compressible velocity fieldsB5sU5sT
5sv . Figure 1 shows the range of parameters (sv ,sT) for
sB5sU5sv in the case of Sc5103 ~curve c!, Sc5105

~curve b!, and Sc→` ~curve a!. The dashed linesv5sT
corresponds to thed-correlated in time random compressib
velocity field. This is a limiting line for the curve ‘‘a.’’ Figure
1 demonstrates that even a very small deviation from
d-correlated in time random compressible velocity field
sults in the instability of the second moment of the num
density of inertial particles. The minimum value ofsT re-
quired for the clustering instability issT'0.26 and a corre-

FIG. 1. The range of parameters (sv ,sT) for sB5sU5sv in
the case of Sc5103 ~curve c!, Sc5105 ~curve b!, and Sc→` ~curve
a!. The dashed linesv5sT corresponds to thed-correlated in time
random compressible velocity field.
03630
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sponding value ofsv'0.12~see Fig. 1!. For smaller value of
sv the clustering instability can occur, but it requires larg
values ofsT .

C. Clustering instability in Model II

In Model II of a random velocity field, i.e., the Gaussia
velocity field with a small yet finite correlation time~small
t̄ ren), the clustering instability occurs whensv.0.2 ~see Ap-
pendix C!. Indeed, the growth rateg2 of the second momen
of particles number density is determined by equation

g2~11 t̄ reng2!25F B̃~sv!Sr22
~32sv!2

6~11sv!~113sv!

2
8~113sv!

3~11sv! S p

ln S̃c
D 2G 1

t̃h

, ~43!

B̃~sv!512S b21
b3a1

4a2
2

2
b1

2a2
D , ~44!

where Sr5 t̄ ren/th is the Strouhal number, S˜c5Sc Sr@1,
t̃h5th /Sr and

a15
2~19sv13!

3~11sv!
, a25

2~3sv11!

3~11sv!
,

b152
1

27~11sv!2
~1221278sv23067sv

2!,

b25
850

9 S sv

11sv
D 2

,

b35
1

27~11sv!2
~361466sv12499sv

2!.

For the derivation of Eqs.~43! we assumed that the correla
tion function f ab(R)5^va(r1)vb(r2)&v for homogeneous,
isotropic, and compressible velocity field is given by

f ab~R!5
uh

2

3 F ~F1Fc!dab1
RF8

2
Pab1RFc8RabG ~45!

~see Ref.@37#!, and in scales 0,R<1 incompressibleF(R)
and compressibleFc(R) components of the random velocit
field are given by

F~R!5~12R2!/~11sv!, Fc~R!5svF~R!, ~46!

in scalesR>1 the functionsF5Fc50. HereR is measured
in the units ofh, Pab(R)5dab2Rab , Rab5RaRb /R2, and
F85dF/dR.

Figure 2 shows the range of parameters (Sr,sv) for S̃c
5103 ~curve c!, S̃c5105 ~curve b! and S̃c→` ~curve a!. It is
seen in Fig. 2 that forsv.0.2 the second-order correlatio
function of the number density of inertial particles can gro
2-7
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in time exponentially~i.e.,g2.0) even for very small Strou
hal numbers. For example, in the vicinity ofsv53, the
growth rateg2 of the clustering instability of the second
order correlation function is given by

g25F43103 Sr22
~32sv!2

240
2

20

3 S p

ln S̃c
D 2G 1

t̃h

. ~47!

The sufficient condition for the exponential growth of th
second moment of a number density of inertial particles
S̃c.S̃c(cr), where the critical number S˜c(cr) is given by
S̃c(cr)5S̃c(g250). The clustering instability occurs whe
the degree of compressibility of particles velocitysv.0.2,
i.e., for particles and droplets with the radiusa*
.25.4 mm. Equation~29! also yields a similar valuescr
;1/6 for the threshold of the instability of the second m
ment ~at qcr52). Note that Eq.~36! is written for Sc→`.

We assumed that the size of a cluster is of the order
Kolmogorov dissipation scale. The reason is that the te
B(R) that describes the generation of fluctuations of partic
number density is a positive constant in the dissipative ra
up to the Kolmogorov scale, andB(R) strongly decreases in
the inertial range. Thus the main contribution to the gene
tion of fluctuations of particles number density arises fro
the dissipative range. Therefore, it is plausible to suggest
the Kolmogorov dissipation scale is the only length scale t
determines the cluster size.

IV. NONLINEAR EFFECTS

The compressibility of the turbulent velocity field with
finite correlation time can cause the exponential growth
the moments of particles number density. This small-sc
instability results in the formation of strong inhomogeneit
~clusters! in the spatial distributions of particles. The line
analysis does not allow us to determine the mechanism
saturation of the clustering instability. As can be seen fr
Eq. ~41!, molecular diffusion only depletes the growth rat
of the clustering instability at the linear stage~contrary to the

FIG. 2. The range of parameters (Sr,sv) for S̃c5103 ~curve c!,

S̃c5105 ~curve b!, and S̃c→` ~curve a!. The line Sr50 corre-
sponds to thed-correlated in time random compressible veloc
field.
03630
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instability discussed in Ref.@30#!. The clustering instability
is saturated by nonlinear effects.

Now let us discuss the mechanism of the nonlinear sa
ration of the clustering instability by using the example
atmospheric turbulence with characteristic parametersh
;1 mm, th;0.1–0.01 s. A momentum coupling of pa
ticles and turbulent fluid is essential whenmpncl;r, i.e., the
mass loading parameterf5mpncl /r is of the order of 1~see,
e.g., Ref.@1#!. This condition implies that the kinetic energ
of fluid r^u2& is of the order of the particles kinetic energ
mpncl^v2&, whereuuu;uvu. This yields

ncl;a23~r/3rp!. ~48!

For water dropletsrp /r;103. Thus, fora5a* ;30 mm we
obtain ncl;104 cm23 and the total number of particles i
the cluster of sizeh, Ncl.h3ncl;10. This value may be
considered as the lower estimate for the ‘‘two-way couplin
when the effect of fluid on particles has to be conside
together with the feedback effect of the particles on the c
rier fluid. However, it is plausible to expect that turbulen
modification by particles’ is governed by the ratio of th
particles energy andthe total energy of the suspension~rather
than the energy of the carrier fluid! and thus by paramete
f/(11f) ~rather then byf itself!. The latter paramete
saturates whenf→` and it cannot suppress the clusterin
instability. Thus we believe that the two-way coupling c
only mitigate but not suppress the clustering instability. On
direct collisions between inertial particles cause an incre
of the kinematic viscosity of the mixture and damp the clu
tering instability.

Indeed, a mechanism of the nonlinear saturation of
clustering instability is ‘‘four way coupling’’ when the
particle-particle interaction is also important. In this situati
the particles collisions result in an effective particle press
that prevents further increase in concentration. Particles
lisions play essential role when during the lifetime of a clu
ter the total number of collisions is of the order of number
particles in the cluster. The rate of collisionsJ;ncl /th can
be estimated asJ;4pa2ncl

2 uv relu. The relative velocityv rel

of colliding particles with different but comparable sizes c
be estimated as

uv relu;tpu~u•“ !uu;tpuh
2/h. ~49!

Indeed, the velocity of an inertial particle with radiusa for
the small Stokes timetp is given by

v~a!5u2tp~a!~u•“ !u1O„tp
2~a!….

The relative velocityv rel of colliding particles with different
but comparable sizesa1 anda2 is given by

uv relu[uv~a1!2v~a2!u5utp~a1!2tp~a2!uu~u•“ !uu.

Assuming that utp(a1)2tp(a2)u;tp(a1) we obtain Eq.
~26!. Thus the collisions in clusters may be essential for

ncl;a23~h/a!~r/3rp!, ,s;a~3arp /hr!1/3, ~50!
2-8
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CLUSTERING INSTABILITY OF THE SPATIAL . . . PHYSICAL REVIEW E 66, 036302 ~2002!
where,s is a mean separation of particles in the cluster. F
the above parameters (a530 mm) ncl;33105 cm23, ,s
;5a'150 mm, andNcl;300. Note that the mean numbe
density of droplets in cloudsn̄ is about 102–103 cm23.
Therefore theclustering instability of droplets in the cloud
increases their concentrations in the clusters by the order
magnitude.

In all our analyses we have neglected the effect of se
mentation of particles in the gravity field which is essent
for particles of the radiusa.100 mm. Taking ,cl.h we
assumed implicitly thattp,th . This is valid~for the atmo-
spheric conditions! if a<60 mm. Otherwise the cluster siz
can be estimated as,cl.h(tp /th)3/2.

Our estimates support the conjecture thatthe clustering
instability serves as a preliminary stage for the coagulati
of water droplets in clouds leading to the rain formation.

V. DISCUSSION

In this study we investigated the clustering instability
the spatial distribution of inertial particles advected by a t
bulent velocity field. The instability results in the formatio
of clusters, i.e., small-scale inhomogeneities of aerosols
droplets. The clustering instability is caused by a combin
effect of the particle inertia and finite correlation time of t
velocity field. The finite correlation time of the turbulen
velocity field causes the compressibility of the field of L
grangian trajectories. The latter implies that the number
particles flowing into a small control volume in a Lagrangi
frame does not equal the number of particles flowing ou
this control volume during a correlation time. This can res
in the depletion of turbulent diffusion.

The role of the compressibility of the velocity field is a
follows. The divergence of the velocity field of the inerti
particles is given by divv5tpDP/r. The inertia of particles
results in the fact that particles inside the turbulent eddies
carried out to the boundary regions between the eddies
inertial forces~i.e., regions with low vorticity and high strain
rate!. For a small molecular diffusivity divv}2dn/dt @see
Eq. ~1!#. Therefore,dn/dt}2tpDP/r. Thus there is accu
mulation of inertial particles~i.e., dn/dt.0) in regions with
DP,0. Similarly, there is an outflow of inertial particle
from the regions withDP.0. This mechanism acts in
wide range of scales of a turbulent fluid flow. Turbulent d
fusion results in the relaxation of fluctuations of particle co
centration in large scales. However, in small scales wh
turbulent diffusion is small, the relaxation of fluctuations
particle concentration is very weak. Therefore the fluct
tions of particle concentration are localized in the sm
scales.

This phenomenon is considered for the case when den
of fluid is much less than the material densityrp of particles
(r!rp). When r>rp the results coincide with those ob
tained for the caser!rp except for the transformationtp
→b* tp , where

b* 52S 11
r

rp
D S rp2r

2rp1r D .
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For r>rp the valuedn/dt}2b* tpDP/r. Thus there is ac-
cumulation of inertial particles~i.e., dn/dt.0) in regions
with the minimum pressure of a turbulent fluid sinceb*
,0. In the caser>rp we used the equation of motion o
particles in fluid flow which takes into account contributio
due to the pressure gradient in the fluid surrounding the p
ticle ~caused by acceleration of the fluid! and the virtual
~‘‘added’’! mass of the particles relative to the ambient flu
@39#.

The particle inertia causes compressibility of particles
locity field. However, ad-correlated velocity field canno
induce the exponential growth of the second moment of
number density of inertial particles. The reason is tha
d-correlated in time velocity field has a zero memory tim
Since the lifetime of eddies in ad-correlated in time velocity
field is infinitely small, the particles do not have enough tim
to be carried out to the boundaries between eddies. The e
of particle clustering is determined by three competitive p
cesses: the carrying-out of particles to the boundaries
tween eddies by inertial force@described byB(R)-term in

Eq. ~31!#, the scale-dependent turbulent diffusionD̂ab(R)
and the scale-dependent drift velocityU(R) ~which describes
the transfer of fluctuations of the number density of partic
over the spectrum!. In a d-correlated in time velocity field
there is a certain relation or constraint@see Eq.~34!# between
these processes. A finite correlation time of velocity fie
violates such symmetry, in particular the finite correlati
time affects these three processes in a different manne
that the final effect can cause the exponential growth of
second moment of the number density of particles. In
d-correlated in time velocity field, there can be only rela
ation of the second moment of the number density of p
ticles or a zero damping rate.

The exponential growth of the second moment of a nu
ber density of inertial particles due to the small-scale ins
bility can be saturated by the nonlinear effects~see Sec. IV!.
The excitation of the second moment of a number density
particles requires two kinds of compressibilities: compre
ibility of the velocity field and compressibility of the field o
Lagrangian trajectories. The finite correlation time of velo
ity field causes compressibility of Lagrangian trajector
even for the incompressible velocity field. Definitely, a com
pressible velocity field contributes to the compressibility
Lagrangian trajectories. However, the most important eff
for the exponential growth of the second moment of a nu
ber density of inertial particles is a finite correlation time th
violates the symmetry induced by ad-correlated in time ve-
locity field.

Remarkably, the compressibility of the field of Lagran
ian trajectories determines the coefficient of turbulent dif
sion @i.e., the coefficientDab(R) of the second-order spatia
derivative of the second moment of a number density
inertial particles in Eq.~31!#. The compressibility of the field
of Lagrangian trajectories causes depletion of turbulent
fusion in small scales even forsv50. On the other hand, the
compressibility of the velocity field determines a coefficie
B(R) of the second moment of a number density of inert
2-9
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TOV ELPERIN et al. PHYSICAL REVIEW E 66, 036302 ~2002!
particles in Eq.~31!. This term is responsible for the expo
nential growth of the second moment of a number density
particles.

In this study we considered two models of turbulent v
locity field: the random velocity with Gaussian statistics
the Lagrangian trajectories~Model I! and the Gaussian ve
locity field with a small yet finite correlation time~Model II!.
These models can be considered as ‘‘closure assumpti
and they are not really expected to be exactly satisfied
most of the industrial and atmospheric flows. Remarka
these two models yield very similar quantitative results
the clustering instability. This allows us to suggest that
clustering is not strongly dependent on the details of
models and statistics. The most important observation is
in these two models a random velocity field has a finite c
relation time.

VI. SUMMARY

We showed that the physical reason for theclustering
instability in spatial distribution of particles in turbulen
flows is a combined effect of the inertia of particles leadi
to the compressibility of the particle velocity fieldv(t,r) and
the finite velocity correlation time.

The clustering instability can result in astrong clustering
whereby a finite fraction of particles is accumulated in t
clusters, and in aweak clusteringwhen a finite fraction of
particle collisions occurs in the clusters.

The crucial parameter for the clustering instability is
radius of the particlesa. The instability criterion isa.acr

'a* for which ^(div v)2&5^urotvu2&. For the droplets in the
atmospherea* .30 mm. The growth rate of the clusterin
instability gcl;th

21(a/a* )4, whereth is the turnover time in
the viscous scales of turbulence.

We introduced a new concept of compressibility of t
turbulent diffusion tensor caused by a finite correlation ti
of an incompressible velocity field. For this model of th
velocity field, the field of Lagrangian trajectories is not d
vergence free.

We suggested a mechanism of saturation of the cluste
instability—particle collisions in the clusters. An evaluated
nonlinear level of the saturation of the droplets number d
sity in clouds exceeds by the orders of magnitude their m
number density.
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APPENDIX A: BASIC EQUATIONS IN THE MODEL
WITH A RANDOM RENEWAL TIME

In this appendix we derive Eq.~A20! for the simultaneous
second-order correlation functionF(t,r), which serves as a
basis for further analysis in Appendixes B and C under so
simplifying model assumptions about the statistics of the
locity field.

1. Exact solution of dynamical equations for a given velocity
field

a. Simple case without molecular diffusion

Consider first Eq.~1! for the number density of particle
n(t,r) in the caseD50:

]n~ t,r!

]t
1“•@n~ t,r!v~ t,r!#50, ~A1!

when all particles are transported only by advection. Solut
of Eq. ~A1! with the initial conditionn(s,r) is given by

n~ t,r!5G~ t,r!n@s,jL~ t,rus!#, ~A2!

wherejL(t,rus) is the Lagrangian trajectory of the partic
which is located at coordinater at time t. Here we label the
particles atpresentmoment of timet and consider acurrent
time s,t as moments in the past. This differs from a usu
approach, see Eqs.~4!, when particles are labeled at theini-
tial time t0, and a current timet.t0. Therefore in the equa
tions below it is more convenient to redefine Lagrang
displacementrL(t,r us)→r̃L(t,r us)52rL(t,r us). Now Eqs.
~4! can be written as

r̃L~ t,rus!5E
s

t

v@t,jL~ t,rut!#dt, ~A3!

jL~ t,rus![r2r̃L~ t,rus!. ~A4!

The Green function is the functional ofjL(t,rus):

G~ t,r,s!5expH 2E
s

t

b@t,jL~ t,rut!#dtJ , ~A5!

b~ t,r![“•v~ t,r!.

Introduce theshift operator

exp@2r̃L•“#512r̃L•“1
1

2!
@2r̃L•“#22•••, ~A6!

which acts as follows:

exp@2r̃L•“#n~ t,r!5n~ t,r2r̃L!. ~A7!

One can validate relation~A7! by Taylor series expansion o
the functionn(t,r2r̃L). Now Eq. ~A2! can be rewritten as
follows:

n~ t,r!5G~ t,r,s!exp@2r̃L~ t,rus!•“#n~s,r!. ~A8!
2-10
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b. Molecular diffusion as a Wiener process

Consider now the full Eq.~1! with DÞ0 whereby par-
ticles are transported by both, fluid advection and molecu
diffusion. It was found by Wiener~see, e.g., Ref.@33#! that
Brownian motion~molecular diffusion! can be described by
the Wienerrandom processw(t) with the following proper-
ties:

^w~ t !&w50, ^wi~ t1t!wj~ t !&w5td i j . ~A9!

Here ^•••&w denotes the mathematical expectation over
statistics of the Wiener process. Introduce the Wiener tra
tory jW(t,rus) ~which usually is called theWiener path! and
the Wiener displacementrW(t,rus) as follows:

jw~ t,rus![r2rW~ t,rus!,
~A10!

rW~ t,rus!5E
s

t

v@t,jw~ t,rut!#dt1A2Dw~ t2s!.

Comparison of this formula with Eqs.~A3! shows that in the
limit D→0, jW(t,rus)→jL(t,rus) andrW(t,rus)→rL(t,rus).

In Refs. @35,36# it was shown that solution of Eq.~1!
~with DÞ0) can be written as solution~A8! of Eq. ~A1!

~with D50) by replacementr̃L(t,rus)→r̃W(t,rus) and then
averaging over the statistics of the Wiener processes~A9!:

n~ t,r!5^G~ t,r,s!exp@2rW~ t,rus!•“#&wn~s,r!.
~A11!

2. Two-step averaging over velocity statistics

a. Model of a random velocity field

Note that Eq.~A11! is a solution of Eq.~1! at a given
realization of the random velocity field. Our next goal is
determine the simultaneous correlation functions

n̄~ t !5Š^n~ t,r!&‹v , ~A12!

F~ t,r22r1!5Š^n~ t,r1!n~ t,r2!&‹v2n̄2~ t !,

averaged over the stationary, space homogeneous statist
turbulent velocity field, whereŠ^•••&‹v denotes this averag
ing. Since the initial distributionn(t0 ,r) is assumed to be
homogeneous in space,n̄(t) is independent of spatial coor
dinate, andF(t,r22r1) depends only on the differenceR
5r22r1.

In order to simplify the averaging procedure~A12! we
consider a model of random velocity field that fully los
memory at some instants of renewalt j . For t1 andt2 inside
a renewal interval@t j,t1 ,t2,t j 11# the velocity pair corre-
lation function is defined as

F ab~ t22t1 ,r22r1![^va~ t1 ,r1!vb~ t2 ,r2!&v , ~A13!

where^•••&v denotes averaging over ‘‘intrinsic statistics’’ o
the velocity field. In our model the velocity fields before a
after renewals are statistically independent. The interval
tween the renewal instantst j may be the same or random
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distributed, say with the Poisson statistics. In the latter c
the full averagingŠ^•••&‹v may be considered as a two-sta
procedure. First one calculates^•••&v and then average
over the statistics of the renewal timet ren, which is denoted
as ^•••& ren,

Š^•••&‹v[Š^•••&v‹ren. ~A14!

For the Poisson statistics oft j ,

Fab~ t22t1 ,r22r1![Š^va~ t1 ,r1!vb~ t2 ,r2!&‹v

5F ab~ t22t1 ,r22r1!

3exp~2ut22t1u/ t̄ ren!, ~A15!

where t̄ ren is the mean renewal time. It would be useful
define the correlation time of the functionF ab as follows

tv~R!5E F ab~t,R!dt/F ab~0,R!. ~A16!

Certainly this model of the random velocity field cannot
considered as universal. However, it reproduces impor
features of some flows~see, e.g., Ref.@40#!.

b. Averaging procedure

Our model involves three random processes:~1! The
Wiener random process that describes Brownian~molecular!
diffusion, ~2! Poisson process for a random renewal tim
and ~3! the random velocity field between the renewals.

Equation~A11! presentsn(t,r) after the first step, i.e., it
describes the number density at agiven realization of a ve-
locity field. Using Eq.~A11! we obtain

n~ t,r1!n~ t,r2!5^G~r1!G~r2!exp@j8~r1!•“1

1j8~r2!•“2#n~s,r1!n~s,r2!&ww,

~A17!

where“15]/]r1 and“25]/]r2 and ^ &ww denotes averag
ing over two independent Wiener processes determining
Wiener paths. Hereafter for simplicity we use the followin
notations:G(r)[G(t,r,s) andj8(r)[2rW(t,rus).

Now we average Eq.~A17! over a random velocity field
for a given realization of a Poisson process:

F̃~ t,r22r1!5^n~ t,r1!n~ t,r2!&v2~ n̄!2

5Š^G~r1!G~r2!exp@j8~r1!•“1

1j8~r2!•“2#&ww‹v3F̃~ t0 ,r12r2!.

~A18!

Here the timet0 is the last renewal time before timet and
t85t2t0 is a random variable. Now we omit the source te

@Š^G(r1)G(r2)&ww‹v21#n̄2 in Eq. ~A18! ~which is caused by
the mean number density of particles in a divergent veloc
field! and we use the relation that is valid for homogeneo
turbulence, “1n̄25“2n̄250. The reason is that in the
2-11
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present study we investigate only the effect of self-excitat
of the clustering instability, and we do not consider an eff
of the source term on the dynamics of fluctuations. T
source term is independent of fluctuations of particle num
density and causes another type of fluctuation of part
number density which is not directly related to an instabili
A mechanism of the generation of these fluctuations is
lated to perturbations of the mean number density of p
ticles by a random divergent velocity field. The magnitude
these fluctuations is much smaller than that of fluctuati
that are caused by the clustering instability.

Thus, averaging of the functions

G~r1!G~r2!exp@j8~r1!•“11j8~r2!•“2#

and F̃(t0 ,r12r2) is decoupled into two time intervals be
cause the first function is determined by the velocity fie

after the renewal while the second functionF̃(t0 ,r12r2) is
determined by the velocity field before renewal. Now w
take into account that for the Poisson process any instant
be chosen as the initial instant so that the time for the n
renewal is distributed exponentially. We average Eq.~A18!
over the random renewal time. The probability densityp(t)
of a random renewal time is given by

p~ t !5 t̄ ren
21 exp~2t/ t̄ ren!. ~A19!

Thus the resulting averaged equation for ‘‘fully’’ averag

correlation functionF(t,R)5^F̃(t,R)& ren, defined by Eq.
~A12!, assumes the following form:

F~ t,R!5 t̄ ren
21E

0

t

P̂~t,R!F~ t2t,R!exp~2t/ t̄ ren!dt

1exp~2t/ t̄ ren!P̂~ t,R!F0~R!. ~A20!

The first term in Eq.~A20! describes the case where there
at least one renewal of the velocity field during the timet
~i.e., the Poisson event!, whereas the second term describ
the case where there is no renewal during the timet. Here
F0(R)5F(t50,R) and

P̂~ t,R!5Š^G~r1!G~r2!exp@j8~r1!•“11j8~r2!•“2#&ww‹v

5expŠ^g~r1!1g~r2!1j8~r1!•“11j8~r2!•“2&ww‹v ,

~A21!

whereG(r)5exp@g(r)#. Equation~A20! is simplified in Ap-
pendixes B and C under the additional assumptions abou
velocity field statistics.

c. Properties of the function G„r …

Averaging Eq.~A11! over a random velocity field, we
obtain equation for the mean number density of particles
k space for a homogeneous turbulence, this equation is g
by

n̄~ t,k!5P~ t2s,2k!n̄~s,k!, ~A22!
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where

P~ t2s,2k!5Š^exp@ ik•j8~r!#G~r!&w‹v . ~A23!

Equations~A22! and ~A23! were derived in Ref.@35# @see
Eqs.~17! and~18! in Ref. @35##. The operatorP(t2s,2k) is
independent ofr due to the assumption about the homog
neous turbulence. Note thatn̄(t,k50)5(2p)23* n̄(t,r)dr
[N is the total number of particles that are conserved i
closed volume. Thus, the total number of particles is giv
by

n̄~ t,k50!5n̄~s,k50!5N. ~A24!

On the other hand,

P~ t2s,k50!5Š^G~r!&w‹v ~A25!

@see Eq.~A23!#. Thus, Eqs.~A22!, ~A24!, and~A25! yield

Š^G~r!&w‹v51. ~A26!

APPENDIX B: VELOCITY FIELD WITH GAUSSIAN
LAGRANGIAN TRAJECTORIES

Consider the model of a random velocity field where L
grangian trajectories, i.e., the integrals*v(m,j)dm and
*b(m,j)dm have Gaussian statistics. Now we use an iden

^exp@g~r!#&g5exp@G~r!#, ~B1!

G~r!5
1

2
Š^g̃2&w‹v1ḡ, ~B2!

whereg5ḡ1g̃ is a Gaussian random variable with a me
value ḡ[Š^g&w‹v . Here, for simplicity of notations, we
omitted arguments in the functionsG andg. Since

Š^exp~g!&w‹v[Š^G&w‹v51, ~B3!

we obtain exp@G(r)#51, i.e., G(r)50 @see Eqs.~B1!–~B3!
and ~A26!#.

Now we calculate P̂(m,R)5expŠ^g(r1)1g(r2)
1j8(r1)•“11j8(r2)•“2&ww‹v in Eq. ~A21!, using identity
~B1!. The result is given by

P̂~m,R!5exp@G~r1!1G~r2!1mL̂#, ~B4!

where

L̂5B~R!12Ua~R!¹a1D̂ab~R!¹a¹b ,

mB~R!5Š^g~r1!g~r2!&ww‹v ,

mUa~R!52Š^ja8 ~r1!g~r2!&ww‹v , ~B5!

D̂ab~R!5Dab~0!2Dab~R!,
2-12



tra

a

oc
om
a-
-

-

h a

in

CLUSTERING INSTABILITY OF THE SPATIAL . . . PHYSICAL REVIEW E 66, 036302 ~2002!
mDab~R!5Š^ja8 ~r1!jb8 ~r2!&ww‹v .

SinceG(r1)5G(r2)50, Eq. ~B4! does not have terms like
Š^g2(r1)&w‹v . Thus,

P̂~m,R!5exp@mL̂#. ~B6!

When correlation timetv(R), Eq. ~A16!, is much less than
the current timet andt̄ ren, the correlation functions~B5! are
given by

B~R!52E
0

`

Š^b@0,j~r1!#b@m8,j~r2!#&ww‹vdm8,

Ua~R!522E
0

`

Š^va@0,j~r1!#b@m8,j~r2!#&ww‹vdm8, ~B7!

Dab~R!52E
0

`

Š^va@0,j~r1!#vb@m8,j~r2!#&ww‹vdm8,

where we used a relation

K K E0

m

aa~m8,r1!dm8E
0

m

cb~m9,r2!dm9L
w
L

v

.2mE
0

`

Š^aa~0,r1!cb~m8,r2!&w‹vdm8.

In Eq. ~B7! for B(R), the functionb@t,j(rut)# is the diver-
gence of the Eulerian velocity calculated at Lagrangian
jectory, i.e.,

b@t,j~rut!#5S ]v i

]r i
D

r5j(rut)

. ~B8!

The functionb@t,j(rut)# is different from the divergence
bL@t,j(rut)# of the Lagrangian velocity, i.e.,

bL@t,j~rut!#5
]v i

]j j

]j j

]r i
. ~B9!

In a d-correlated in time velocity fieldb@t,j(rut)#
5bL@t,j(rut)# whereas for a random velocity field with
finite correlation timeb@t,j(rut)#ÞbL@t,j(rut)#. The iner-
tia of particles causes compressibility of the Eulerian vel
ity. On the other hand, the finite correlation time of a rand
velocity field causes a compressibility of the field of L
grangian trajectories~which determine the turbulent diffu
sion tensor! even for incompressible velocity field. Eq.~B6!
allows to rewrite Equation~A20! as

F~ t,R!5
1

t̄ ren
F E

0

t

exp~mL̂1!dmGF~ t,R!1exp~ tL̂1!F~ t,R!,

~B10!

where
03630
-

-

L̂15L̂2
]

]t
2

1

t̄ ren

. ~B11!

To derive Eq.~B10! we used the following identity

F~ t2m,R!5expS 2m
]

]t DF~ t,R!, ~B12!

which follows from the Taylor expansion

f ~ t1t!5 (
m51

` S t
]

]t D
m f ~ t !

m!
5expS t

]

]t D f ~ t !. ~B13!

In particular,

F0~R!5F~ t2t,R!5expS 2t
]

]t DF~ t,R!.

Evaluating the integral in Eq.~B10! we obtain

@exp~ tL̂1!21#~L̂11 t̄ ren
21!F~ t,R!50. ~B14!

Here we used the commutativity relation

L̂1 exp~ tL̂1!5exp~ tL̂1!L̂1 .

Thus, finally

]F

]t
5@B~R!12U~R!•“1D̂ab~R!¹a¹b#F~ t,R!.

~B15!

Note that in the limitt̄ ren→`, Eq. ~B15! describes the evo
lution of F(t,R) in the model of the random velocity field
without renewals.

APPENDIX C: GAUSSIAN VELOCITY FIELD WITH
A SMALL YET FINITE CORRELATION TIME

Here we consider a random Gaussian velocity field wit
small t̄ ren. Using Eq.~B12! we rewrite Eq.~A20! in the form

H 1

t̄ ren
E

0

t

P̂~t,R!expS 2
t

t̄ ren

M̂ D dt21J F~ t,R!50,

~C1!

whereM̂511 t̄ ren(]/]t) and we neglected the last term
Eq. ~A20! sincet@ t̄ ren. Expanding the functionP̂(t,R) in
Taylor series in the vicinity oft50 we obtain

H (
k50

`

t̄ ren
k F ]kP̂~t,R!

]tk G
t50

M̂ 2(k11)21J F~ t,R!50,

~C2!

where we used the following formula:

E
0

t

tk expS 2
t

t̄ ren

M̂ D dt5k! t̄ ren
k11M̂ 2(k11).
2-13
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Neglecting the terms;O( t̄ ren
5 ) in Eq. ~C2! we obtain

M̂2
]F~ t,R!

]t
5 t̄ renF S ]2P̂~t,R!

]t2 D
t50

1 t̄ ren
2 S ]4P̂~t,R!

]t4 D
t50

GF~ t,R!, ~C3!

since the expansion of the operatorP̂(t,R) into Taylor series
~for small t) for a random Gaussian velocity field has on
even powers oft. Thus, the equation for the correlatio
function F(t,R) is given by

M̂2
]F~ t,R!

]t
5@B~R!12U~R!•“1D̂ab~R!¹a¹b#F,

~C4!

where

D̂ab~R!5
1

2t̄ ren

Š^j̃aj̃bG~r1!G~r2!&ww‹v , ~C5!

Ua~R!52
1

t̄ ren

Š^g8~r2!ja8 ~r1!&ww‹v

1
1

2t̄ ren

Š^g8~r1!g8~r2!j̃a&ww‹v , ~C6!

B~R!5
1

t̄ ren

Š^g8~r1!g8~r1!&ww‹v . ~C7!

Here, for the homogeneous turbulent velocity field@21#,

j̃5j8~r2!2j8~r1!, “5]/]R, G5Ḡ1g8,

Š^g8&ww‹v50, Ḡ5Š^G&ww‹v51.

Using the expansion ofj( t̄ ren,r) andg8@ t̄ ren,j(r)# into Tay-
lor series of a small timet̄ ren after the lengthy algebra, w
obtain

D̂ab~R!52Ddab12t̄ ren@ f̃ ab~R!1Sr2Qab~R!#, ~C8!

Qab~R!53@~¹n f mb!~¹m f an!2 f̃ mn¹n¹m f ab#124AaAb

112~Am¹m f ab2 f̃ ab¹mAm!220f̃ am¹mAb ,

~C9!

Ua~R!522t̄ ren$Aa2Sr2@~¹nAm!~¹m f an!110Am¹mAa

112Aa¹mAm#%, ~C10!

B~R!522t̄ ren$¹mAm1Sr2@~¹nAm!~¹mAn!26~¹mAm!2#%,

~C11!

Aa5¹b f ab , f̃ ab5 f ab~0!2 f ab~R!,

f ab~R!5^va~r1!vb~r2!&v ,
03630
and Sr5 t̄ ren/th is the Strouhal number. In these calculatio
we neglected the small terms;O(Sr2 R3¹3). Our analysis
showed that the neglected small terms do not affect
growth rate of the clustering instability. In Eqs.~C9!–~C11!
we assumed that the correlation functionf ab for homoge-
neous, isotropic, and compressible velocity field is given
Eq. ~45!, and in scales 0,R!1 incompressibleF(R) and
compressibleFc(R) components of the random velocity fiel
are given by

F~R!5~12R2!/~11sv!, Fc~R!5svF~R!,

in scalesR>1 the functionsF5Fc50. HereR is measured
in the units ofh. Turbulent diffusion tensorDab(R) is de-
termined by the field of Lagrangian trajectoriesj @see Eq.
~C5!#. Due to the finite correlation time of the random velo
ity, the field of Lagrangian trajectoriesj is compressible
even if the velocity field is incompressible (sv50). Indeed,
for sv50 we obtain

Š^~“•j!2&w‹v5
20

3
Sr4.

Using Eqs. ~C8!–~C11!,~45! we calculated the functions

D̂ab(R), Ua(R) andB(R):

D̂ab~R!5@2D̃1R2~a31Sr2b6!#dab

1R2~a41Sr2b4!Rab , ~C12!

Ua~R!52Ra~a51Sr2b5!, ~C13!

B5a61Sr2b2 , ~C14!

whereb252 51
47 b5 , D̃5D/( t̄ renuh

2), and

a552
20sv

3~11sv!
52

a2

3
, a35

2sv14

3~11sv!
,

a45
4sv22

3~11sv!
, b552

2350

27 S sv

11sv
D 2

,

b65
121872sv1433sv

2

27~11sv!2
,

b45
2~122203sv11033sv

2!

27~11sv!2
.

We will show here that the combined effect of the inertia
particles (svÞ0) and finite correlation time of the particles
velocity field (SrÞ0) results in the excitation of the cluste
ing instability whereby under certain conditions there is
self-excitation of the second moment of the number den
2-14
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CLUSTERING INSTABILITY OF THE SPATIAL . . . PHYSICAL REVIEW E 66, 036302 ~2002!
of inertial particles. This instability causes the formation
small-scale inhomogeneities in the spatial distribution of
ertial particles.

The equation for the second-order correlation function
the number density of inertial particles reads

M̂2
]F~ t,R!

]t
5

F9

m~R!
1l̃~R!F81BF ~C15!

@see Eqs.~C14!#, where the timet is measured in units o
t̃h5th /Sr, and

F85
]F

]R
, F95

]2F

]R2
,

1

m
5

2~11X2!

S̃c
,

l̃5
2@21X2~112C!#

R S̃c
, C5

a11Sr2b1

4b
,

b5
a21Sr2b3

2
, X~R!5A S̃cb R, R5ur22r1u,

a15
2~19sv13!

3~11sv!
, a25

2~3sv11!

3~11sv!
,

b152
1

27~11sv!2
~1221278sv23067sv

2!,

b35
1

27~11sv!2
~361466sv12499sv

2!,

where S̃c5Sc Sr@1. In order to obtain a solution of Eq
~C15!, we use a separation of variables, i.e., we seek fo
solution in the following form:

F~ t,R!5F̂~R!exp~g2t !,

wherebyg2 is a free parameter that is determined using
boundary conditions

F̂~R50!51, F̂~R→`!50.

Here g2 is measured in units of 1/t̃h . Since the function
F(t,R) is a two-point correlation function, it has a glob
maximum atR50 and therefore it satisfies the conditions

F̂8~R50!50, F̂9~R50!,0,

F̂~R50!.uF̂~R.0!u.

Then Eq.~C15! yields

GF̂~R!5
1

m~R!
F̂91l̃~R!F̂81BF̂, ~C16!

whereG5g2(11Sr2g2)2 . Equation~C16! has an exact so
lution for 0<R,1:
03630
f
-

r

a

e

F̂~X!5S~X!X~11X2!m/2, ~C17!

S~X!5Re$A1Pz
m~ iX !1A2Qz

m~ iX !%,

wherePz
m(Z) andQz

m(Z) are the Legendre functions with th
imaginary argument

Z5 iX, m5C2
3

2
, z52 1

2 6AC22k, k5
B2G

2b
.

Solution of Eq.~C15! can be analyzed using asymptoti
of the exact solution~C17!. This asymptotic analysis is base
on the separation of scales~see, e.g., Refs.@34,37#!. In par-
ticular, the solution of Eq.~C15! has different regions where

the form of the functionsm(R) and l̃(R) are different. The

functions F̂(R) and F̂8(R) in these different regions ar
matched at their boundaries in order to obtain continu
solution for the correlation function. Note that the most im
portant part of the solution is localized in small scales~i.e.,
R!1). Using the asymptotic analysis of the exact soluti
for X@1 allowed us to obtain the necessary conditions fo
small-scale instability of the second moment of a num
density of inertial particles. The results obtained by th
asymptotic analysis are presented below.

The solution~C17! has the following asymptotics: forX

!1 ~i.e., in the scales 0<R!1/A S̃c) the solution for the

second momentF̂ is given by

F̂~X!5$12~k/6!@X21O~X4!#%. ~C18!

For X@1 ~i.e., in the scales 1/A S̃c!R,1) the functionF̂
is given by

F̂~X!5Re$AX2C6AC22k%. ~C19!

For C22k,0 the second-order correlation function for

number density of inertial particlesF̂ is given by

F̂~R!5A3R2C cos~n I ln R1w!, n I5Ak2C2,

whereC.0 andw is the argument of the complex consta
A. For R>1 the second-order correlation function for th
number density of inertial particles is given by

F̂~R!5~A4 /R!exp~2RA3G/2!, ~C20!

whereG.0. Since the total number of particles in a clos
volume is conserved, i.e., particles can only be redistribu
in the volume,

E
0

`

R2F̂~R!dR5F̂~k50!50.

The latter yieldsw52p/2 for ln S̃c@1 and G!1. When
C22k.0, the solution~C19! cannot be matched with solu
tions ~C18! and ~C20!. Thus, the conditionC22k,0 is the
necessary condition for the existence of the solution for
2-15
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correlation function. The conditionC.0 provides the exis-
tence of the global maximum of the correlation function
R50.

Matching the functionsF̂ andF̂8 at the boundaries of the
above-mentioned regions yields coefficientsAk and g2. In
particular, the growth rate of the clustering instabilityg2 is
determined by Eq.~43!.

In Models I and II of a random velocity field the correla
tion functions of incompressibleF(R) and compressible
Fc(R) components are proportional to 12R2 up to the scale
l-
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t
h @see, e.g., Eq.~45!#. We showed also that in the dissipativ
rangeB.0 ~which implies the generation of passive sca
fluctuations! and B(R) sharply decreases in the inerti
range. Therefore, it is plausible to suggest that the Kolm
orov dissipation scale is the only length scale that determ
the clustering instability scale. On the other hand, the tur
lent diffusion time in Model II of a random velocity field is
t̃h5h2/( t̄ renuh

2)5th /Sr. Thus, in Model II of a random ve

locity field, the timet̃h is the characteristic time of the clus
tering instability.
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