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Stabilization of hydrodynamic flows by small viscosity variations
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Motivated by the large effect of turbulent drag reduction by minute concentrations of polymers, we study the
effects of a weakly space-dependent viscosity on the stability of hydrodynamic flows. In a receriRteyser
Rev. Lett.87, 174501,(2001)], we exposed the crucial role played by a localized region where the energy of
fluctuations is produced by interactions with the mean flthe “critical layer”). We showed that a layer of a
weakly space-dependent viscosity placed near the critical layer can have a very large stabilizing effect on
hydrodynamic fluctuations, retarding significantly the onset of turbulence. In this paper we extend these
observations in two directions: first we show that the strong stabilization of the primary instability is also
obtained when the viscosity profile is realisfinferred from simulations of turbulent flows with a small
concentration of polymefysSecond, we analyze the secondary instablityund the time-dependent primary
instability) and find similar strong stabilization. Since the secondary instability develops around a time-
dependent solution and is three dimensional, this brings us closer to the turbulent case. We reiterate that the
large effect isnot due to a modified dissipatiofas is assumed in some theories of drag redugtiout due to
reduced energy intake from the mean flow to the fluctuations. We propose that similar physics act in turbulent
drag reduction.
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I. INTRODUCTION “mixed” layer of width 0.10. The motivation behind these
numbers was the observation that the inferred effective vis-
This paper is motivated by the dramatic effects that arecosity in polymer drag reduction increases towards the center
observed with the addition of small amounts of polymers toby about 30% over about a 1/3 of the half charjrél With
hydrodynamic flows. While interesting effects were dis-our choice we have comparable viscosity gradients in the
cussed in the context of the transition to turbulence, vortexnixed layer.
formation, and turbulent transpdrt], the phenomenon that  In this model everything was explicitly calculatable. The
attracted the most attention was, for obvious reasons, th@ain point of our analysitsee Sec. Il for further detajlsvas
reduction of friction drag by up to 80% when very small that there exists a position in the channel where the velocity
concentrations of long-chain polymers were added to turbuof the mean flow is the same as the velocity of the most
lent flows[2,3]. In spite of the fact that the phenomenon is dangerous primary instability. Below we refer to the layer
robust and the effect huge, there exists no accepted theogfound this position as the “critical layef8]. If we placed
that can claim a quantitative agreement with the experimenthe mixed layer in the vicinity of the critical layer, we got a
tal facts. Moreover, it appears that there is no mechanistigiant effect of stabilization. Analyzing this phenomenon, we
explanation. In the current theory that is due to de Gennegemonstrated that nothing special happened to the dissipa-
[4,5], one expects the Kolmogorov cascade to be terminatetion. Rather, it was the energy intake from the mean flow to
at scales larger than Kolmogorov scale, leading somehow tthe unstable mode that was dramatically reduced, giving rise
an increased buffer layer thickness and reduced drag, bi® a large effect for a small cause. In this paper we extend
how this happens and what is the fate of the turbulent energihese observations in two directions. In Sec. Il, after review-
is not being made clear.

In a recent papd6], we proposed that the crucial issue is
in the productionof energy of hydrodynamic fluctuations by fluid 1
their interaction with the mean flow. For the sake of con- ‘.‘ . y
creteness we examined a Poiseuille laminar flow and its los: ;p [
of linear stability, and showed how small viscosity contrasts™ ™"""""7""""77777 77 mrmmmmTemm s > Teidz T
lead to an order of magnitude retardation in the onset of 7
instability of “dangerous” disturbances. Specifically, we
considered a flow in a channel of dimensionless width 2, in
which there are two fluids: one fluid of viscosity, flows
near the walls and the other fluid of viscosity flows at the FIG. 1. Schematic of the flow, the fluid near the walls has a

center, see Fig. 1. The viscosities differ slightly, for example yiscosity,, and that flowing at the center is of viscosiy. In the
we considered(in dimensionless unils u,=1 and M  mixed layer(of width q), the viscosity varies gradually betwegn
=pu1/mp=0.9. The main ingredient of the calculation was and u,. The parametep controls the position of the mixed layer.
that all the viscosity difference of 0.1 concentrated in aFor simplicity we neglect the down-stream growthagn
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ing the results of the simple model, we extend the analysis of 1¢°
the primary instability to a case in which the viscosity profile

is that inferred from direct numerical simulations of turbu-

lent channel flow of a dilute polymeric solutidi]. We will

see that very similar effects are found. In other words, one
does not need to put by hand the region of viscosity variation

in the vicinity of the critical layer. When we have a continu-

ous variation of the viscosity in the region near the wall, the __ 4
effect is the same, since it is only crucial that there will be & 10
somespace dependence of the viscosity in the critical layer,
which is usually not too far from the wall.

A possible criticism of our results can be that the primary
instability is still too far from typical turbulent fluctuations.
This is, in particular, true since the most unstable primary
modes are two-dimensional, whereas typical turbulent fluc- N
tuations are three-dimensional. For these reasons we prese 10 0.0 0'2 o4 0.6 08 L0
in Sec. lll the analysis of the effect of small viscosity varia- . : : : : :
tions on the secondary instability, for which the most “dan- p
gerous” modes are three-dimensional. The tactics are similar g5 2 The dependence of the threshold Reynolds nuier
to those taken for the primary instability. First we discuss theyn the position of the viscosity stratified layer for=0.9. The
effects of a mixed layer put at the “right” place in the chan- gashed line pertains to the neat fluid. Note the huge increaRg, in

nel, and second we show that continuous viscosity profilegjithin a small range. This occurs when the stratified layer overlaps
do exactly the same. We find again the giant effect of stabithe critical layer.

lization for relatively small viscosity variations, lending fur-
ther support to our proposition that similar effects may very A. Mixed layer
well play a crucial role in turbulent drag reduction. In Sec.

road ahead. Ref.[6]. We examine a channel flow of two fluids with dif-

ferent viscositiegw; and w,, see Fig. 1.
The observation that we want to focus on is shown in Fig.
2: the threshold Reynolds number for the loss of stability of
It is well known that parallel Poiseuille flow loses linear the mode as in Eq1) depends crucially on the position of
stability at some threshold Reynolds number=A®,, (close  the mixed layer. When the latter hits the critical layer, the
to 5772. It is also well known that the instability is “con- threshold Reynolds number for the loss of stability reaches
vective,” with the most unstable mode having a phase velocas much as 88000. In other words, one can increase the
ity c,. Analytically it has the form threshold of instabilityfor a given model5 times, and by
making the mixed layer thinner one can reach even higher
. 1 ) threshold Reynolds values. In Rei6] we analyzed the
Pp(X,y, )= E{qﬁp(y)ex;{lkp(x—cpt)ﬂc.c.}exp( Ypl) physical origin of this huge sensitivity of the flow stability to
(1)  the profile of the viscosity.
The stability of this flow is governed by the modified
where c.c. stands for the complex conjugate, the subsgript Orr-Sommerfeld equatiofB]

stands for the primary instabilitys(x,y,t) is the disturbance | 2 5 — . o
stream function, and#(y) is the complex envelope of ikp[(D"p—kppp)(U—Cp—iyp) =D U ]

II. PRIMARY INSTABILITY OF POISEUILLE FLOW

&(x,y,t). We have chosen andy as the streamwise and 1 . . ) 5 )
wall-normal coordinates, respectively,as the streamwise :@[MD ¢pt2DuD ¢+ (D p—2ksu)D ¢y
wavenumber of the disturbance amcas time. y, is the

growth rate of the primary instability. What is not usually —2k3DuD ¢+ (K3D2u+ k) ¢y ], 2

emphasized is that the main interactions leading to the loss

of stability occur in a sharply defined region in the channel, _

i.e., at the critical layer whose distance from the wall is suchin which U(y) is the basic laminar velocity, the operafor
that the phase velocity is identical to the velocity of the stands for differentiation with respect to the normal coordi-
mean flow somewhere within this layer. It is thus worthwhile natey, andu is a function ofy. The boundary conditions are
to examine the effect on the stability of Poiseuille flow of a ¢p(+1)=D¢,(+1)=0. All quantities have been nondi-
viscosity gradient placed in the vicinity of the critical layer. mensionalized using the half-widtt of the channel and the
This will provide us with a very sharp understanding of thecenterline velocityU, as the length and velocity scales, re-
mechanism of the stabilization of the flow by viscosity varia-spectively. The Reynolds number is defined as Re
tions. In the following subsection we will examine the case=pUyH/u,, wherep is the density(equal for the two flu-

of continuous viscosity profiles. ids). The primes stand for derivative with respectytdAt y
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' ' ' T ] this profile even when the mixed layer is chosen to overlap a
typical critical layer. Accordingly, we need to look for the
N origin of the large effect of Fig. 2 in the energetics of the
) disturbances. To do so, recall that the streamwise and normal
u” - gomponents of the disturbance velociﬁyp(x,y,t) and
2 vp(X,y,t) may be expressed via stream function as usual:
~ Up(X,Y,t)=dé,/dy andv ,(X,y,t)=—d¢,/x. These func-
tions may be written in terms of complex envelopes similar
14 toEq.(D),
\ ~ .
0z | Up(X,y,1)= 3 {up(y)exiiky(X—Cyt) ]+ C.CHexXH ¥ph),
9
0.0 ‘ : : - -6 0 =1 ikp(X— .C) :
0.0 0.2 0.4 0.6 0.8 1.0 vp(x.Y,0)= 2 {vp(y)exiliky(x=cpb) ]+C.clexp %h)

y -
The pressure disturbangg is defined similarly.

FIG. 3. Profiles of the normalized viscosipy(y) and normal- Define now a disturbance of the density of the kinetic

ized velocityU(y) and the second derivatii@?U(y) for m=0.9  energy of the primary instability
(solid lineg andm= 1.0 (dashed lines The mixed layer is between
the vertical dashed lines. o ~ ~
Ep(%,Y.1) = 3 [Up(X,Y,D)2+v,(X,Y,1)2]. (10

=0, we use the even symmetry conditiogg0)=1 and ) o
D#(0)=0, as the even mode is always more unstable thai{/e €an express the medover x) density of the kinetic

the odd. energy as follows:
Since the flow is symmetric with respect to the channel R
centerline, we restrict our attention to the upper half channel. Ep(Y,)=(Ep(X,y,1))x=Ep(Y)exp2y,t),
Fluid 2 occupies the regionQy=<p. Fluid 1 lies between (11
a<v=<1. M= v=rp+ . . id.
p+qg=<y=<1. The regionp<sy=<p-+q contains mixed fluid Ey(y)= %(lup(y)|2+|vp(y)|2)-

The viscosity is described by a steady functionyptcaled

by the inner fluid viscosity., The physics of our phenomenon will be discussed in

w(y)=1 for 0O<y=p, (3) terms of the balance equation for the averaged disturbance
kinetic energy. Starting from the linearized Navier-Stokes
u(y)=1+(m-1)£[10-156+6£%], 0<é<1, (4)  equations foiu, ando,, dotting it with the disturbance ve-
locity vector, averaging over one cycle xnand using Egs.
p(y)=m for p+gsy=<1. (5)  (9-(11) leads to

Here é=(y—p)/q is the mixed layer coordinate. We have 2y,E0(Y) =V - 35(Y) + W, (Y) = W,_(y), (12)
assumed a fifth-order polynomial profile for the viscosity in

the mixed layer, whose coefficients maintain the viscosityyhere the energy flud,(y) in they direction, rates of en-
and its first two derivatives continuous across the m|xedergy production(energy taken up by the primary instability
layer. The exact form of the profile is unimportant. For a plotf,om the mean flowW, . (y) and energy dissipatiofby the

of the profilem=(L9, see Fig. 3. viscosity W, (y) are given by
The basic flowJ(y) is obtained by requiring the velocity
and all relevant derivatives to be continuous at the edges of [up(y)pi(y)+ccl 1
the mixed layef10]: Jp(y)= 4 + R—e,u(y)VEp(y), (13
U(y)=1-Gy%2 for y=p, (6)

1 —
Wp (Y)==2DU[Up(y)vp(y)tee], (14

y
u<y>=u<p>—efpdy yiu for p<y=p+a, (@)

— w (Y)EM 2K3E (y)+1[|DU (¥)|>+]Dup(y)]?]
U(y)=G(1-y?/2m for y=p+aq. (8) P Re peP 2 P P '
HereG is the streamwise pressure gradient. The superscript * denotes complex conjugate. To plot these

It can be seen, comparing the mean prdﬁ(ey) tothatof  functions we need to solve E(®) as an eigenvalue problem,
the neat fluid(cf. Fig. 3), that nothing dramatic happens to to obtainc,, y,, and¢,(y) at given Re and,. The value
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FIG. 4. Energy balance, productio,(y), solid line; dissipationW,_(y), dot-dashed line, Re5772. Left, m=1, I'p, =I",_
=0.0148. Rightm=0.9, p=0.3,I',, =0.0158,I",_=0.0148. In this figure and in the two subsequent figures the solid vertical lines show
the locationy, of the critical lines, whereas the region between the dotted lines is the mixed layer.

of ¢, determines the position of the critical layer. It is con- shows the energy balances at marginal stability—the picture
venient to compute and compare the space averaged produs-qualitatively the same here as at-R&/72 for the neat
tion and dissipation termE, . andI',_ defined by fluid.

1 1 . L
FpiEJ Wpt(y)dy/ J' Ep(y)dy. (15) . B. The mechan.lsr.n of Stak.thzatIO.n. .
0 0 The main factor determining the instability is the energy

intake from the mean flow, which is driven by the phase

The local production of energy can be positive or negativechange caused by the viscosity stratification. The dissipation
indicative of energy transfer from the mean flow to the pri-on the other hand depends only on Reynolds number and
mary disturbance and vice versa, respectively. The produgloes not respond disproportionately to changes in viscosity.
tion in one region(where W, (y)>0) can be partly can- We will show below[cf. Egs.(19) and (20)] that in neat
celed out by a “counterproduction” in other regigwhere  fluids, the term containinB2U(y) in Eq. (2) is always much
W, (y)<0). smaller than the important terms that govern the equations in

The use of these measures can be exemplified by the nethie critical layer. However, with the introduction of a viscos-
fluid (m=1.0 herg. The laminar flow displays its first linear ity gradient within the critical layer, the gradients of the basic
instability at a threshold Reynolds number of (Re5772,  velocity profile will scale according to the mixed-layer coor-
which means that the total productidh,, across the layer
becomes equal to the total dissipatiby_ at this value of
Re. Examining Fig. 4, we can see that the disturbance kinetic
energy is produced predominantly within the critical layer, 0.10 | .
where the basic flow velocity is close to the phase speed o
the disturbance, while most of the dissipation is in the wall /
layer. The balance is not changed significantly when the vis- 0.05 '
cosity ratio is changed to 0.9 so long as the mixed layer isg

S

not close to the critical layer. There is a small region of ~& Z /
production and one of counter production within the mixed &~ 0.00 ————e AEd
layer, whose effects cancel out, leaving the system close tc
marginal stability. \/

We now turn our attention to Fig. 5, in which our main -0.05 .

point is demonstrated. The Reynolds number is the same a
before, but the mixed layer has been moved close to the

critical layer. It is immediately obvious that the earlier bal- -0.10
ance is destroyed. The counterproduction peak in the mixec

layer is much larger than before, making the flow more

stable. The wave number used is that at which the flow is FiG. 5. Energy balance, productiprr(y), solid line; dissipa-
least stable for the given Reynolds number at thiorm  tion W,_(y), dot-dashed line. Re5772, m=0.9, p=0.85, ',
=0.9, the threshold Reynolds number is 46 400. Figure 6=-0.0114,I';_=0.0122.

0.0 0.2 0.4 0.6 0.8 1.0
y
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which is the traditional lowest-order critical layer equation
for a parallel shear flo8]. The mechanism for the stabili-
zation now begins to be apparent: there are several new
terms which can upset the traditional balance between iner-
tial and viscous forces. In order to narrow down the search
further, we resort to numerical experimentation, because al-
though all terms in Eq(19) are estimated to be dd(1),

their numerical contributions are different. It transpires that
the second term on the left hand side of ELP) is particu-

larly responsible; first, it is straightforward to verify that it

originates from the term containingZU(y) in the modified
Orr-Sommerfeld equation. As testimony, note the dramatic

0.00 \ effect onD?U in Fig. 3. Second, this term dominates the

. \ . . energy intake from the mean flow to the disturbance. Any

0.0 0.2 04 0.6 03 1.0 reasonable viscosity gradient of the right sign is seen to pick
y up this term, leading to a vastly enhanced stability. On the

FIG. 6. Energy balance, productioi, , (y), solid line; dissipa- other hand all the terms on the rhs of Ef9) contribute only

tion W,,_(y), dot-dashed line. Re46400,m=0.9, p=0.85,T,, (0 dissipation. = o _
=I',_=0.0053. Indeed, in the light of this discussion, we can expect that

the large effect of retardation of the instability would even
dinate £. We show in the analysis that follows that fqr ~ increase if we make the mixed layer thinner. This is indeed
<O(Re 3, the term containingDZU is now among the Sso. Neverthelgss,_one cannot_conclude that_|nst_ab|llty can be
most dominant. Since most of the production of disturbancéef[arded at will, since other d|stur_bances,.d|ffer|ng from_ the
kinetic energy takes place within the critical layer, we returnP'Mary mode, become unstaple first, albeit at a much h'Qher
to Eq.(2) and isolate all lowest-order effects within the criti- Reynolds number than the primary mode; when we stabilize

cal layer. The relevant normal coordinate in the critical layer® 9iven mode substantially, we should watch out for other
is preexisting and newly destabilized modes which may now be

the least stable.
Y—VYe¢ Finally, we connect our findings to the phenomenon of
=T (16) drag reduction in turbulent flows. Since the total dissipation
can be computed just from the knowledge of the velocity
wherey. is the critical point defined b¥(y;)=c, ande is  profile at the walls, any amount of drag reduction must be
the critical layer thickness, which is a small parameter ateflected by a corresponding reduction of the gradient at the
large Reynolds number. The basic channel flow velocity mayyalls. Concurrently, the energy intake by the fluctuations

0.10

W)

be expanded in the vicinity of the critical point as from the mean flow should reduce as well. Indeed, the latter
(y—yeo)? effect was measured in both experimeft4] and simula-
U(y)=c+(y—yDU(y.) + T|32U(yc)_|. - tions[12,13. The question is which is the chicken and which

is the egg. In our calculation we identified that the reduction
17 in production comes first. From Figs. 4 and 5 that are at the

: _ lue of Re, we see that the dissipation does not

We use Eq.(17), and redefineg,(y)=®(7) and u(y) Same va , _
=yp(&), to rewrite Eq.(2) within the critical layer. We obtain c_han_ge at all when the mixed layer moves, but the produc-
tion is strongly affected. Of course, at steady state, the ve-

e~ Re*1/3s(kpRe)*1/3, (18) locity gradient at the wall must adjust as shown in Fig. 6.

and the lowest-order equation in the critical layer,
C. Continuous viscosity profile
. du
I [
n dy

D2<I>—IG—;XDch>= yD4® +2yDvD3d One could think that the strong stabilization discussed in
c v the preceding subsection is only due to the precise position-
22 2 ing of the mixed layer at the critical layer. If so, the result
+x°D*vD D, (19 would have very little generic consequence. In this subsec-
tion we show that any reasonable viscosity profile achieves
the same effects. We do not attempt here to “optimize” the
viscosity profile to achieve larger stabilization. Our concern
is with the point of principle, i.e., thatnyviscosity profile in
the critical layer, in which the viscosity reduces towards the
D2®d=D*d, (200  wall would lead to stabilization. As a physical example, we
c consider the effective viscosity profile reported in R&.(in

wherex=¢€/q is O(1) for the mixed layer. In the absence of
a viscosity gradient in the critical layére., v=1), Eq.(19)
would reduce to

 du
Ind—y
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FIG. 7. Prescribed continuous viscosity proffla accordance
with that obtained in direct numerical simulations of polymeric

flow). The corresponding laminar velocity profmy) and its sec-

ond derivative are also shown.

their Fig. 5 which is obtained from simulations of a turbu-
lent channel flow with polymer additive. It may be pre-

scribed as

u(y)=1 for Osy=p,

_ 3
wn =1+ (m-1| LP

with g~0.4 andm~0.7, as shown in Fig. 7. The energy
balance for the least stable primary mode at=R&72 for

PHYSICAL REVIEW E 67, 026310 (2003

strong stabilization effect does not require careful placing of
the viscosity variation at a particular layer. It is sufficient that
there exists a viscosity variation in the region of the critical
layer (indicated as the vertical line in Fig) 8 achieve the
stabilization. The reader should note that in our example we
insert the viscosity profile by hand. This differs from other
stability studies of the full viscoelastic equations for a non-
Newtonian fluid where the viscoelastic profiles, if they exist,
should appear naturalfi4].

It comes as no surprise that this continuous viscosity pro-
file behaves very similarly to the thin mixed layer. If we
return to Eq.(19), we will see that all we have now done is
to increase botlD v (which is proportional tan—1) andq
threefold(the effectiveq here is closer to 0.3 than 0.4, as we
can see from Fig.)7 so the ratio remains the same.

IIl. SECONDARY INSTABILITIES

A laminar flow through a channel is linearly unstable at
Re=5772. In all except the cleanest experiments, however,
the flow becomes turbulent at much lower Reynolds num-
bers, as low as 100[15,16]. This is because the linear sta-
bility analysis is carried out on a steady laminar velocity
profile, whereas a real flow, except under carefully designed
clean conditions, consists in addition of small but finite dis-
turbances(most of whom will decay at long timgsThe
stability behavior of the real flow is quite different from that
of the steady profile: the actual flow is unstable to new
modes, often referred to as secondary modes. The secondary

(21)
modes are often three dimensional, and their signature is
prominent in fully developed turbulence. As described be-
(22 low, the secondary instabilities are studied by a Floquet

analysis of the periodic primary flow we obtained earlier.
As usual in the analysis of secondary instabilifi#g,18,
we begin by splitting the flow into a periodic component

this case(Fig. 8) shows a large counter production of distur- (Consisting of the mean laminar profile in addition to the
bance kinetic energy, which is in fact more pronounced thafPfimary wave and a secondary disturbance, e.g.,

what we obtained with a mixed laydFig. 5. Thus the

T
!
010 | 4
!
!
!
0.05 | i
c )
% — '/
B 000 ——mem et r
-0.05 |- .
_0.10 1 1 1 1
0.0 0.2 0.4 0.6 08 1

y

FIG. 8. Energy balance, productiti, . (y), solid line; dissipa-
tion W,_(y), dot-dashed line. Re5772, m=0.7, p=0.6, ¢

=0.4,T,,=-0.0345,_=0.0138.

0

Utotal(xiyvzit):U(vait)—’_us(xvyizit)a (23)
where
U(x,y,1) = U (y)x+ A up(y)X+v,(y)Y]
xexgik,(x—cpt)]+c.c). (29

Herex andy are unit vectors irx (steamwisgandy (wall
norma) directions. The amplitudé,, of the primary distur-
bance changes very slowly with time, add,,/dt may be
neglected during one time period. The spatial and temporal
dependence of the secondary disturbance is written in the
form

us(y,r ,t)=Re{us, (y)exdi(ky -1, —w.t)]

+tus_(y)exdi(k--r, —o_t)]}, (25

where rLEx>A<+zi, and k. =k, x=* kzi. We substitute the
above ansatz into the Navier-Stokes and continuity equa-
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tions, and retain linear terms in the secondary disturbance 0.02
On averaging ovex, z, andt, only the resonant modes sur-
vive, which are related by

- Ky
K, +k_=kpx, therefore k.==*q+ ?px, (26)

for any vectorg, and Y

w,=wtiy and o_=(w,—w)+iy. (27 0

Eliminating the disturbance pressure and streamwise compa
nent of the velocity, we get the equations for the secondary
disturbances vs and wg. Using the notation f.
=—iws- /k,, the equations read 9]

[i(w,—k,U)+v(D?>*—k%—k2)+(Dv)D] K.

5 o ] Apky FIG. 9. Dependence of growth rate on spanwise wave number.
X[(k&+ky)f—Du +]_|k+DUU+_T{[|k+UpD Solid line, varying viscosity f=0.8q=0.1m=0.9); dashed line,
- constant viscosityro=1). k,=1,A,=0.005,Re=6000.
+v,D?+ik_DuyJo* +[(kZ—k_k,)v,D

ik, (K2 +k2)u,]F* 1 =0 28) A. Mixed layer
The velocity and viscosity profiles here are as given in
and Fig. 3, and the primary instability is that presented in Sec.
IIA. Since the subharmonick(, =k_=k,/2) is the least
[I((w;—k,U)+ V(DZ—ki—k§)+(Dy)D](Df+—v+) stable mode, we present this case alone. In gig typical
dependence of the growth rate of the secondary mode on the
+[~ ik, (DU)+(D?»)D+(Dv)(D*~ k% —K2)]f spanwise wave number is shown. We can see that the viscos-
Ao+ k) v ity variation damps the secondary mode significantly, but it is
S L i iup(v’i+Df’i)— —Lpy* still unstable. However, there is a crucial difference in the
2 - primary instabilities of the two: the primary is unstable for a
A, kpkf _ constant viscosity flow, but very stable in the mixed-layer
+? vp( % +D? —ik_(Dup) f*=0, (29 case. Therefore at long times, the secondary mode, which

feeds on the primary for its existence, dies down in the latter
case. To compute the time dependence of the amplitude of
the secondary mode, we computed the growth saty ne-
glecting the time dependence of the amplitude of the primary
modes. As a result we obtain the growth rafeA,(t)], in
) ) . which A,(t) can be an exponentially growing or a decaying
Equationg28) and(29), along with two corresponding equa- fynction of time. Having this growth rate we can present the
tions inv* andf* , describe an eigenvalue problem for the tjme dependence of the amplitude of the secondary mode,
secondary instability. The four equations are solved by a&ee Fig. 10. Without the viscosity contrast, the amplitude of
Chebychev collocation SpeCtral methOd, details of the Soluthe Secondary mode increasmsentia”y exponentia“y
tion procedure are available in R¢19]. The computations wjth the viscosity contrast the amplitude decays in time.
have been conducted on a half channel on grounds of sym- \we now observe the balances of energy initially and at a
metry. Both varicose and sinuous modes have been tried, angker time in Figs. 11 and 12, respectively. The initial balance
the more unstable of the two, i.e., the modes varicose,in  of energy is not so different from the constant viscosity case.
andv _ have been used. Simulations on a full channel ShOV\At the later time, however, the production of Secondary ki-
that the most unstable modes could haveandv _ different netic energy is significantly lower. The |0cati% of the
at the centerline. However, the difference with present reSUltéritica| point is seen from the figures to be close to the |ayer
of the growth rates would be small. of stratified viscosity. If the two were well separated, the
The most unstable secondary mode in our case is found @ratification would do nothing to the secondary mode.
be the subharmonic, for whicty=k,z. The production and A lowest-order analysis of the secondary stability equa-
dissipation are computed as before. tions is not as straightforward as for the primary mode, since
We survey in turn the thin mixed-layer profile, and the the secondary is highly dependent on the amplitude of the
continuous viscosity profile to see what the viscosity varia-primary [19]. We may, however, make the following obser-
tion does to the secondary instability. vations from a critical layer analysis of Eq®8) and (29)

The boundary conditions are

us=0 at y==x1. (30

026310-7
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FIG. 10. Amplitude of the secondary mode in logarithmic scale ~ FIG. 12. ProductiorWs, and dissipationWs_ of the kinetic
as a function of time. Dashed line, constant viscosity; 1. Here ~ energy of the secondary disturbance at #m@. Solid line,
y,=0.0003, and the primary mode is unstable. Solid line, varyingWs+ ,m=0.9; dot-dashed lineWs_,m=0.9,A,=0.002 15; long
viscosity; herey,=—0.0206, the primary mode is stable. All con- dashesWs, ,m=1; dotted line,Ws_,m=1, A,=0.005 06.

ditions are like in Fig. 9, in particulaf,(t=0)=0.005. nolds number of 6000 and primary wave numbekg# 1,

for a neat fluid, all secondary modes are damped\f

< 0.002, while for the continuous viscosity profile, all sec-

. ) . a&’]dary modes continue to be damped even for larger primary
mode is completely_ driven by the primary. Whek, disturbances, up té,=0.005. When the Reynolds number
~O(e), both the basic terms and the nonlinear terms COMis reduced to 2000, the threshold amplitudes are 0.012 and

tribute at the lowest order. It may be numencally.determ|ned0_016 for the neat and viscosity-stratified fluids respectively.
however, that the secondary is slaved to the primary here as

well. WhenA,=o0(¢), the lowest-order theory for the sec-
ondary is(not surprisingly exactly that given by Eq.19) for
the primary. The velocity and viscosity profiles here are as given in
A direct estimate of the effect of the viscosity stratifica- Fig. 7, and the primary instability is that presented in Sec.
tion on the secondary mode is obtained from the thresholdl C. The counterparts for the continuous viscosity profile of
amplitude Ay, of the primary for the instability. At a Rey- Figs. 9—-12 are presented in Figs. 13-16, respectively. It is
clear that nothing has changed qualitatively.

and their counterparts. Whe¥,> e, [cf. Eq. (18)] only the
nonlinear terms appear at the lowest order, and the second

B. Continuous viscosity profile

- - - - Figure 17 shows the dependence of the growth rate of the
0.15 - secondary mode on the amplitude of the primary disturbance.
0.02
01}
= 001
= 005 | Y
0
0
0 0.2 04 0.6 0.8 1
y -0.01 -
0 2 3

FIG. 11. ProductiorW, and dissipationW,_ of the kinetic
energy of the secondary disturbance at tinfe Solid line,

W, ,m=0.9;

dot-dashed

line, W,_ ,m=0.9;
W, ,m=1; dotted line,W;_ ,m=1. The vertical lines show,
(the critical point locatiopfor m=0.9 (solid) andm=1 (dotted.

long dashes,
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FIG. 13. Dependence of growth rate on spanwise wave number.
Solid line, varying viscosityfaccording to Eq(22)]; dashed line,
constant viscosity. Wave numbers and Re as in Fig. 9.
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FIG. 16. Production and dissipation at timé0. Solid line,
varying viscosity, A,=0.001 84; dashed line, constant viscosity,
A,=0.005 06.

FIG. 14. Variation of the amplitude of the secondary instability
mode with time. Solid line, varying viscosityy,=—0.0244;
dashed line, constant viscosity,=0.0003. Wave numbers and Re
as in Fig. 10.

IV. CONCLUDING REMARKS

Itis clear that the instability is reduced by the stratification of ~We addressed the primary and secondary instability of
viscosity, but there is no dramatic effect in the secondarygimple channel flows, and examined the effects of small vis-
instability alone. We may conclude that the large effectCosity variations. We find dramatic effects of stabilization
comes from the complete reliance of the secondary disturvhen the viscosity variations exist in the vicinity of the criti-
bance on the primary. To make this point clearer, we inves¢@l layers, in which the speed of propagation of the modes
tigated a situation in which the primary disturbance is stablecoincided with the mean velocity of the basic flow. With
This is the case for example, wh&s=3000. The results for 2Pout 10% viscosity changes we can have very large in-

this Reynolds number are shown in Figs. 18 and 19 Thes&reases in the threshold Reynolds numbers for instability. In

all cases we find that the main mechanism for the large ef-

are similar to Figs. 13 and 14 above, except that the primar¥ ; : .
. . . . fects is the reduction of the intake of energy from the mean
disturbance is stable for both constant and varying viscosi;

. . . . . flow to the putative unstable modes, which therefore become
ties. Accordmgly, the dlsturbanc_:es d'_e outat Ic_mg tlmes_. NOteStable. For the same Reynolds numbers in Newtonian fluids
that in the case of a constant viscosity, there is more time fo{here is no such mechanism for stabilization, and these flows

nonlinearities to act, and the transition to turbulence is MOrill become turbulent. We would like to propose that similar
likely. '

0.04 . T . T
0.15 [ 0.02 |
0.1 Y 0
=
B 005 | -0.02 |
-0.04 1 ' : ' :
0 0 0.002 0004 0006 0008 001
- A,
0 0.2 0.4 0.6 0.8 1
y FIG. 17. Dependence of growth rate of the secondary mode on

the amplitude of the primary disturbance. Solid line, stratified vis-
FIG. 15. Production and dissipation at tim@. Solid line, vary-  cosity; dashed line, constant viscosiky=1, k, =0.5,k,=1, Re
ing viscosity; dashed line, constant viscosity,=0.005 for both. =6000.
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FIG. 18. Dependence of growth rate on spanwise wave number. FIG. 19. Amplitude of the secondary mode as a function of
time. Solid line, varying viscosity, dashed line, constant viscosity;

Solid line, varying viscosity, dashed line, constant viscoshty.
=1, A,=0.02, Re=3000. all conditions are like Fig. 18, in particula®,(t=0)=0.02.
) . We have demonstrated that the exact form of the viscosity
effects should be examined in the case of turbulent drag r&sqfile is immaterial; a continuous profile of viscosity in the
duction by polymer additives. critical region behaves exactly like a thin mixed layer. We
We recognize that in a turbulent flow there are many morg,5ye shown that the secondary three-dimensional modes of
modes that interact, but we propose that as here, it is thigiapility are “slaved” to the primary linear mode of insta-
energy budgetspecifically the energy intake from the mean jjir- the mechanism which stabilizes the primary mode in-
flow) of the energy containing modes that will change due tQyirectly ensures that the secondary is damped out quickly.
the existence of a space-dependent effective viscosity. In' gina|ly we note that a linear disturbance can rear its head
faqt, this view is born out by recent.d|rect numerical Simu-gither in the form of the fastest growir(gr slowest decay-
lations of the FENE-P model equations, cf. REF0]. The  j o) mode as considered here: or in a nonmodal form with a
adva'm'tage of the pre;:ent calculation is that we can considef,nsient growth followed by long-term decdgl]. The
explicitly all the putative unstable modes, and conclude thagomer sjtuation will correspond to relatively high Reynolds
with & viscosity gradient similar to that seen in polymeric n,mhers, or cleaner setups. We expect similar conclusions in
turbulent flows the linear threshold Rgoes up five times  hea |atter situation as well.
(to 31000. We note in passing that this effect had not been
put to an experimental test, and it would be exciting to have ACKNOWLEDGMENTS
a confirmation of our predictions by future experiments. For
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