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Turbulent boundary layers exhibit a universal structure which nevertheless is rather complex, being com-
posed of a viscous sub-layer, a buffer zone, and a turbulent log-law region. In this letter we present a simple
analytic model of turbulent boundary layers which culminates in explicit formulae for the profiles of the mean
velocity, the kinetic energy and the Reynolds stress as a function of the distance from the wall. The resulting
profiles are in close quantitative agreement with measurements over the entire structure of the boundary layer,

without any need of re-fitting in the different zones.

PACS: 05.45.Df, 05.70.Fh, 61.43.Hv

Introduction. Theoretical physicists tend to con-
sider turbulence in the context of the idealized model of
isotropic and homogenous fluid flows at large Reynolds
numbers. In part this is due to the apparent existence of
universal, anomalous scaling exponents which character-
ize correlation and structure functions in fully developed
turbulent flows. It is also easier to disregard the effects
of walls which introduce essential anisotropies and inho-
mogeneities. Needless to say, all realistic turbulent flows
are neither homogeneous nor isotropic. A problem of
extreme interest for both technological applications and
from the point of view of basic science is “wall-bounded”
turbulence, with the theoretical model of a flat infinite
wall playing a key role. This problem presents also fas-
cinating universal features, see Fig.1, but traditionally it
was more popular in the engineering rather than in the
physics community. There are fascinating open prob-
lems in wall-bounded turbulence. The present Letter
attempts at finding a simple model that affords an an-
alytic calculation of the universal profiles of the mean
velocity, the turbulent energy and the Reynolds stress
as a function of the distance from the wall.

The theory that we construct begins with the equa-
tions of fluid mechanics and focuses on the momentum
and energy fluxes using the conservation laws for these
quantities as a guidance for developing an appropriate
model. In gross substance this approach is not new, and
indeed a number of ingredients are borrowed from the
literature. The model that we end up with is however
improved compared to previous results in the sense that
it provides analytic predictions for the above-mentioned
profiles in the entire boundary layer, without re-fitting
in the different zones. It should be stressed at this point
that one cannot expect a universal model to apply for
all turbulent boundary values problem. For instance,
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Fig.1. A sketch of the characteristic regions appearing in a
turbulent boundary layer. The continuous line represents
the mean velocity profile V1 (y™) [in the wall units, Eq. (4)]
taken from direct numerical simulation at Re, = 2320 [1].
The “viscous region” ends when the linear law V1= y*
begins to deviate from the continuous line at y™ ~ 6. The
“log-law region” ends approximately at 1/6 of the channel
hight, i.e. y*~ Re,/6. At this point and deeper towards
the channel cenerline the dimensionless momentum flux to
the wall, P™= 1 — y*/Re, (see Eq. (24)), deviates appre-
ciable from unity

the understanding of drag reduction by additives calls
for a slightly modified model that stresses the effects of
the additives. The present contribution offers what we
consider a simplest model that is constructed to best de-
scribe Newtonian wall-bounded turbulence with enough
richness to capture all the essential universal profiles of
the quantities of interest. One advantage of the model
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that will be demonstrated in future publications is that
it can be naturally generalized to describe stratified tur-
bulent boundary layers caused by, say, temperature gra-
dients, heavy particles, etc, with applications to interest-
ing problems like sand storms in deserts, snow falls in
windy days or water flows in heavily silt-laden rivers.

Equations and definitions. The starting point is
the Navier-Stokes equation for an incompressible fluid
velocity U(r, t),

a—U+(U-V)U:—2+VAU, vV-Uu=0, (1)

ot p
where p is the fluid density, p = p(r,t) — the pressure
and v is the kinematic viscosity. We follow the standard
strategy of Reynolds considering the velocity as a sum
of its average (over time) and a fluctuating part:

U(r,t) = V(r) +u(r,t), V({r)=(U(xt). (2)

We also introduce the conventional viscous scale £, and
friction velocity u,

P(0)/p,

where P(0) is the wall shear stress — the flux of the me-
chanical momentum at the wall. This quantity depends
on the type of turbulent boundary layer (pressure driven
or driven by the upper boundary, etc). The velocity and
the distance from the wall are then measured in wall
units

L =viu,, (3)

Uy =

Ut=U/u,, yT'=y/t, , pT=p/(pu?), V=L, V.
4)

In wall units the Navier-Stokes equation is now dimen-
sionless, and the stationary version takes the form

(Ut.vhHUut = -vipt + ATUT. (5)
The averaged equation for the mean velocity looks like

(V+ . V+)v+ = ATVt — <u+ . V+u+> _ V+<p+)_
(6)

Besides the mean velocity one needs to consider cor-
relation functions. It turns out that important features
of wall bounded turbulence, like the mean velocity pro-
file, thermal conductivity, turbulent transport of matter,
etc., are determined by velocity fluctuations on relatively
large scales, and the statistics of the latter do not deviate
too much from Gaussian statistics. Thus an economic
description of these features can be reached on a level
of second order correlation functions. Therefore, in ad-
dition to the mean velocity profile, we will be interested

in the detailed description of two additional quantities,
the turbulent energy and the Reynolds stress tensor:
Kt =(ut?)/2, Wi =(ufu]) (7)
Balance equations for the Reynolds stress.
Subtracting Eq. (6) from Eq. (5), multiplying by a fluc-
tuating velocity component uj and averaging, results in
the equation satisfied by the Reynolds stress:

(VI - VW =PF + RE — el + T, (9

where the tensors of the energy production, Pf;, of the
pressure-rate-of-strain, ’R;’; and of the Reynolds-stress
dissipation ¢}, are

Pl = -WioV;t + WiV,
R;; = <f)+(ajuj_ + 3,uj')> s (9)

52; = Z(Bkuj 6ku;“),
and p = p — (p) denotes the pressure fluctuations. The
last term T;]fk presents spatial energy fluxes. We will
neglect it throughout the turbulent boundary layer; it is
indeed small in the log-layer, but comparable to other
terms in the buffer and viscous sub-layers. The model
will be constructed such as to compensate for this neglect
in those regions where the term is significant. The bonus
of neglecting this term is enormous since this keeps the
theory local, without partial derivatives.

The modeling of the various terms appearing in
Eq. (8) has attracted considerable attention over the
years, and we only briefly summarize how this is done.
The Poisson’s equation for the fluctuating pressure fol-
lows from the equation for the fluctuating part of the ve-
locity field, u, which is obtained by subtracting Eq. (6)
from (5):

Atpt = —Vzer(uzruj — (u:ruj) + V;ru;!r + Vfu:r)
(10a)

The homogeneous solution of this equation is responsi-
ble for sound, a phenomenon of very little consequence
for turbulent dynamics at low Mach numbers. The inho-
mogeneous solution includes two parts, p+ =B}, + D, :

=+ + oty ot o Vgt
Puy X U; U —<uiu]->, P, xV; Uj +V;— u; .

(10b)

Correspondingly the pressure-rate-of-strain tensor (9)
consists of two terms:

RE = R+ RET (11a)
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The first of these is known as the “Return-to-Isotropy”
tensor, R%IJF, that depends on the tripple-velocity corre-
lator (u;ujug). Its evaluation in terms of the objects of
the theory calls for a closure, and following time-honored
tradition [2] we adopt for it the simple Rota form

REH ~ —riBW —-Wt), Wt= Tf{Wz}L )
(11b)

in which gy is some characteristic nonlinear frequency
that will be specified later. The tensor R%-IJF is trace-
less and therefore the frequency yrr must be the same
for all diagonal components of RE". There is no rea-
son however to assume that off-diagonal terms have the
same frequency. Therefore, following [3], we assert that

RE ~ 35uWij, i#J, (11c)
with, generally speaking, Yr1 7# Yri-

The traceless “Isotropization-of-Production” tensor,
Rg’+ has a structure that is very similar to the pro-
duction tensor P;Jr- , Eq. (9), and thus traditionally it is
modeled in terms of P} [2]:

R%§’+ ~ —Cp(3P;; — P*dy), PT =Te {P}. (11d)

The dissipation tensor a;';- is estimated differently far
from the wall and near it. Far from the wall and for
large Reynolds numbers the turbulent flow can be con-
sidered approximately isotropic. Therefore, the tensor
EZ;- should be approximately diagonal,

EZ;- = ’)’+ W+ (5,']'. (12&)
Under stationary conditions the rate of turbulent kinetic
energy dissipation is equal to the energy input at the
outer scale, estimated as (u;ujug)/¢ where the outer
scale of turbulence /£ is estimated as the distance to the
wall y. Therefore, the natural estimate of v+ involves
the tripple-velocity correlator,

+ VI
UV CLUARNNSSP AL AN
y(uu)t yt

(12b)

Similarly, we can estimate the Return-to-Isotropy fre-
quencies g and 74 in Egs. (11b) and (11c). Having
in mind that the precise structure (tensorial contraction,
etc.) of the equation for y* is different from that of the
equations for v; and ¥g;, we should involve different
numerical prefactors:

Yer = bIVWH /YT, A = b VWYt (13)

Close to the wall, in the viscous sub-layer y= < 30, the
estimates change due to the direct viscous contribution
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of the the largest eddies at that distance, which is of the
order of the distance yt itself. For these eddies we can
estimate V2 operator as (a/y)?, where a is a new fitting
constant. For simplicity we account for this contribu-
tion only in off-diagonal terms, which do not include the
nonlinear part (see (12a)). In this way we will have:
e, =TYW, i#j, (14a)
with Tt = (@/y)?. Here we have to recall that we ne-
glected the spatial energy transfer term, which played
an important role in the viscous sublayer, essentially
compensating viscous damping. In order to account for
this effect on a qualitative level we suppress the direct
viscous damping by a factor W/W, (here W, is the as-
ymptotical value of W in the lag-low region) in some

power (:
I+ = (afy )2/ WH /Wi

Our choice ¢ = 1 is dictated by the simplicity of the an-

alytical treatment of resulting algebraical model. Pos-
teriorly, our idea of implicit accounting for the energy
flux (with ¢ = 1) in (14b) is supported by a good agree-
ment of the model prediction for the energy profile in
the viscous and buffer layers with the DNS data without
additional fitting parameters, see the insert on Fig.3.

Plane geometry and the balance of momen-
tum. For plane geometry the mean velocity is oriented
in the (stream-wise) X direction and depends only on
the vertical (wall-normal) coordinate y: V = V(y)X.
For such flows all the averages are functions of y* only.
An interesting special example is a channel flow of height
2L and infinite extent in the span-wise direction. Due
to the symmetry in the span-wise direction z — —z,
W) = W} = 0. From Eq. (6) for V (integrated
over y*) one gets the exact balance equation for the
mechanical-momentum

(14b)

Pt(yt) =St - Wi

zy)
avt yt Lu,
S+(y)5w, P+(y+)51_§, ReTE .
(15)

The flat geometry also simplifies the production term
defined in Eq. (9):

Pl = —ST W 0+ Wsa). (16

Final set of equations. Substituting everything
into Eq. (8) we get the following set of model equations:
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3 Wah = (vt — YW —2(1 - 2C1p)STW,, (17a)
3 Wy = (i —yHWH —2CwSTWS,  (17b)
VWit = (v —yHWH —2CwSTW,  (17¢)
0= T+ +375) W5 + (1 -3Cwp)STW;,.  (17d)

Summing up Egs. (17a), (17b) and (17c¢) [or, equiva-
lently, taking the trace of Eq. (8)] one gets

3ytwt = -25tw . (18)

Choice of the log-law parameters b, bg; and
ERI. At this point we can fit three b-parameters respon-
sible for the solution in the asymptotical log-law region
30 < y* < Re, /6 for sufficiently large Reynolds num-
bers. In this region Tt can be neglected, and solution
of Egs. (17) takes the form

(1 — 201p)b+ br1 w+

+ 1
Wae b+ 3br1 * (192)
Cipb + br
+ ot — +
Wyy - sz - b+ 3bRI W* ’ (1gb)
— 3/2 _
W, = —br(W,")3/? = -1, (19¢)
+ _
. — K,y—+, where (].gd)
= 2(1 -3 CLP)(CIPb + bRI) ' (196)
3 W:'_ bbRI(b +3 bRI)

To determine b-parameters, we used the following data:
1) the numerical values of W, = 6.85 and von-
Karman constant £ = 0.436 can be taken from the direct
numerical simulations (DNS) reported in [4];
2) the detailed analysis of experimental, DNS and
large-eddy-simulation data, made in Ref. [3], yields the
conclusion that with a good accuracy one can take

WZJ;:2W£:2WZJ;:W*+/2; (20)

3) the suggested in the literature (see, e.g. [2]) value
of Cp is % Our analysis showed that all profiles are very
insensitive to a particular choice of Ctp around value 0.2.
Therefore for simplicity we take

Crp =1/5. (21a)
All this knowledge enables us to find b, bg; and ZRI:
2
b= ———— ~0.085 21b
P : (21b)
br1 = 4(1 -3 Clp)b ~ 0.136, (21C)
~ 1— VWE
bri = (1= 3Cw)VIW 6200 (214d)
12k
For future purpose we introduce a parameter
- 7 [T+
p= R VWS s60 (21e)

1-— 3CIP 12k

General solution. With chosen parameters (21)
the formal solution of the system (15), (17) in the entire
turbulent boundary layer is:

WH=2W}, = 4w}, = 4w}, (22a)
3yt W 2 ~ ~

The last equation comes from the solvability condition
for the system of Eqgs. (17): Det = 0. Introduce:

~2

’U+EVW+, ’UjEVWj_, ’I‘El‘f—,uai

3brivd yt
(23)
Then
+ + —
W;;,:—W— b s =3 abhr, (24)
2 2br yt

and Eq. (15) transforms into:

114'2—1—1251"'11+/y+—P+ \/8br/b=0. (25)

This is just a quadratic equation for v+ = W+ with a
unique positive solution:

8b 6b 6b
2 22 - 2y, 2
br—i—(y r) y+r (26)

vt =A| Pt
Comparison of the model and simulations.
Clearly, a model with only 4 (or 5 if Cp is counted in)
fit parameters cannot fit perfectly the profiles of all the
physical quantities that can be measured. Therefore the
actual value of the only remained parameter a should
be determined with a choice of the characteristics of tur-
bulent boundary layers that we desire to describe best.
Foremost in any modeling should be the mean velocity
profile VT which is of crucial importance in a wide va-
riety of transport phenomena. Therefore we chose the
value of @, from the best fit of V*(y™) in the (quasi)
straight logarithmic region 30 < y* < 100:

a="4. (27)

"
Resulting mean velocity profile V*(y+) = [/ ST(¢) d¢,
in which S*(¢) is given by (24), is shown in Fig.2 by
solid line for Re,; = 590. The dotted line represents data
taken from direct numerical simulations [4], for the same
Re; = 590. There is no significant difference between
these plots in the viscous sublayer, buffer and outer lay-
ers, where y* < 300 i.e. in about 50% of the channel
half-width Lt = Re, = 590. This robustness of the
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Fig.2. Mean velocity profiles V' (y™): The dotted line re-
produces the results of direct numerical simulations [4] for
Re, = 590, the solid line is the analytical prediction of the
model with @ = 7.4 and the values (21) of b, bg; and bg;

mean velocity profile V*(y*) is a consequence of the
fact that V*(y*) is an integral of the mean shear S+
which is described very well both in the viscous and the
outer layers.

Notice that our model does not describe the upward
deviation from the log-low which is observed near the
mid-channel (of about a few units in V*). We con-
sider this minor disagreement as an acceptable price for
the simplicity of the model which neglects the spatial en-
ergy transport term toward the centerline of the channel.
This transport is the only reason for some turbulent ac-
tivity near the centerline where both the Reynolds stress
Wzy and S vanish due to symmetry. Just at the center
line the source term in our energy equation, —2SW,,, is
zero, and the missing energy transport term is felt.

The plots in Fig.2 have a reasonably straight loga-
rithmic region from y* ~ 30 to ¥ ~ 100. On the other
hand, the Reynolds stress profile at the same Re, = 590
shown in Fig.3, has no flat region at all. Such a
flat region is expected in the true asymptotic regime
of Re; — oo, where W+ = —1. Therefore if one plots
the model profiles V* at different Re, and fits them by
log-linear profiles

V*(yt) =x""In(y") + B, (28)

one can get a Re,;-dependence of the “effective” inter-
cept B = B(Re,) in the von-Kérmén log-law (28). We
think that this explains why measured value of the inter-
cept depends on the Reynolds number and on the flow
geometry (channel vs. pipe): both in direct numerical
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Fig.3. The trace of the Reynolds-stress tensor (twice the to-
tal kinetic energy densiy): The dotted blue line reproduces
the results of direct numerical simulations [4] at Re, = 590,
the solid red line is analytical prediction with for @ = 7.4.
The insert shows the buffer layer behavior in more detail.
Notice, that there is no plateau in these plots, meaning
that these values of Re, are not large enough to have a
true scale-invariant log-law region
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Fig.4. The Reynolds stress |W,},| : The dotted blue line
represents results from direct numerical simulations [4] for
Re, = 590, the solid red line represents the prediction of
the analytical model with @ = 7.4. There is no pronounced
log-law region where a plateau |W,;| =1 is expected. In-
stead |W,! | reaches only the value 0.85 around y*~ 50.
This means that in this region the viscous transport is still
essential, but the total momentum flux is still below its
(dimensionless) maximum value: max(P*) =1

simulations and in physical experiments one usually does
not reach high enough values of Re,.
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At this point @ and all three b-parameters are already
chosen from the information about mean velocity profile
and yT-independent values of the Reynolds stress tensor
in the lag-law region in the limit Re, — oo. Our results
for of the kinetic energy profile W™, and the Reynolds
stress profile, shown in Figs.3 and 4 by red solid lines, in
the entire TBL for finite Re, value (590) is the predic-
tion of our model without any additional fit parameters.
On the same Figs. the DNS results [4] are shown by
blue dotted lines. Having this in mind we consider the
achieved agreement in the entire TBL as an encouraging
indication that the proposed model really accounts for
the important basic physics of the problem.

Summary. In summary we presented an analytic
model of the physics of wall-bounded turbulence in a
Newtonian fluid, based entirely on the balance of energy
and momentum fluxes with the production and the dissi-
pation. The model has one blatant simplification which
is the neglect of the spatial energy fluxes. The gain is
enormous — we get a local model that can be solved
analytically to find the profiles of the mean velocity, the
turbulent fluctuations and the Reyonlds stress as a func-

tion of the distance from the wall, with all the boundary
layer represented without re-fitting in the various re-
gions. The reason of the success of this simple model is
that we have learned how to compensate the neglect of
the spatial flux in the buffer and the viscous region by a
decrease in the dissipative terms. In future work we are
going to demonstrate the utility of this simple model in
a variety of important wall-bounded flows.
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