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Amplitude of Waves in the Kelvin-wave Cascade
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Development of experimental techniques to study superfluid dynamics, in particular, application of
nanomechanical oscillators to drive vortex lines, enables potential observation of the Kelvin-wave cascade
on quantized vortices. One of the first questions which then arises in analysis of the experimental results
is the relation between the energy flux in the cascade and the amplitude of the Kelvin waves. We provide
such relation based on the L’vov–Nazarenko picture of the cascade. Remarkably, the amplitude of the waves
depends on the energy flux extermely weakly, as power one tenth.
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In quantum turbulence, velocity fluctuations and
vortex reconnections drive oscillating motion of quan-
tized vortices – Kelvin waves [1]. Kelvin waves interact
non-linearly and support a cascade of energy towards
smaller length scales and larger wave numbers. In the
currently accepted picture of quantum turbulence [2], a
quasi-classical hydrodynamics energy cascade at length
scales larger than the intervortex distance � is followed,
after some cross-over region, by the Kelvin-wave cas-
cade at scales smaller than � [3]. The mutual friction
damps Kelvin waves very efficiently, and the cascade
is expected to start to develop when the mutual fric-
tion α is well below 10−3 [4]. As temperature and α

decreases, the cascade extends to progressively smaller
length scales and eventually, at the lowest temperatures,
it is damped by emission of bosonic [5] or fermionic [6, 7]
quasiparticles by the oscillating vortex cores.

The theory of the Kelvin-wave cascade was the
subject of controversy [8–12], until finally the L’vov-
Nazarenko model got supported by numerical simula-
tions [13, 14]. The theory is built for a straight vortex
with uniform occupation of Kelvin wave modes along
the length. Such situation never occurs in a typical ex-
periment on quantum turbulence. Recently, progress in
experimental techniques [15–17] enables controllable ex-
citation of waves on straight or nearly straight vortices,
see Fig. 1 for possible setups. Such experiments have po-
tential to observe Kelvin-wave cascade directly and thus
allow comparison to the theory. One of the first ques-
tions which analysis of such experiments poses is the
relation of the energy flux carried by the cascade (ob-
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Fig. 1. (Color online) Example configurations of vortex
lines, agitated to generate Kelvin waves. (a) – A single
vortex, attached to an oscillating device. (b) – An array
of vortices, stretched between parallel plates and agitated
by shear or torsional oscillations of the plates

served, e.g., as an increase of the damping of a nanome-
chanical agitator) to the amplitude of the excited Kelvin
waves. We provide such relation in this work.

We assume that the Kelvin-wave cascade on a vortex
of length L (cm) carries the energy flux ε̃ (erg/s) and
starts from the wave number kmin (cm−1). Our goal is
to find the amplitude Ak (cm) of the Kelvin wave with
the wave number k (cm−1). We start by noting that in
the local induction approximation the energy of a vor-
tex line Ev is given by the product of its length L and
the vortex tension νs

Ev = νsL, νs = ρs
κ2Λ

4π
, Λ = ln

( �

a0

)
. (1)

Here ρs is the superfluid density, κ is the circulation
quantum, a0 is the vortex core radius and � is the mean
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intervortex spacing or the size of the enclosing volume,
in the case of a single vortex. For a spiral Kelvin wave of
the radius Ak and wavelength λk = 2π/k, the increase
of the length compared to that of the straight vortex is

Lk =

(√
λ2
k + (2πAk)2 − λk

)
L

λk
≈ L

2π2A2
k

λ2
k

, (2)

where we assumed that Ak � λk. Thus the total energy
due to Kelvin waves is

Ekw =

±∞∑
k=±kmin

νsLk = L

∞∑
k=kmin

νsA
2
kk

2 =

= L
νs

kmin

∫ ∞

kmin

A2
kk

2 dk. (3)

Comparing this result to the expression of the energy
via the Kelvin-wave frequency ωk and the combined oc-
cupation number Nk for modes with ±k [18]

Ekw = ρsL

∞∫

kmin

Ek dk, Ek = ωkNk, ωk =
κΛ

4π
k2, (4)

we find
A2

k =
kmin

κ
Nk. (5)

The L’vov–Nazarenko spectrum is [18]

Ek = CLN
κΛε1/3

Ψ2/3k5/3
, CLN ≈ 0.304, (6a)

Ψ =
8π

Λκ2

∫ ∞

kmin

Ekdk. (6b)

Here ε is the energy flux per unit length and per unit
mass. It is related to the flux ε̃ as

ε =
ε̃

Lρs
, [ε] =

cm4

s3
. (7)

Solving Eq. (6) for Ψ we get

Ψ =
(12πCLN)

3/5ε1/5

κ3/5k
2/5
min

(8)

and from Eq. (5) finally

A2
k = 2

(
2π3C3

LN
9

)1/5
k
19/15
min ε1/5

κ3/5k11/3
≈

≈ 1.4
k
19/15
min

κ3/5k11/3

(
ε̃

Lρs

)1/5

.

(9)

Checking dimensions we find correctly [A2
k] = cm2. Note

that Ak ∝ ε̃1/10. Thus determination of the amplitude
from the energy flux should be relatively reliable, while
the reverse procedure is bound to be very uncertain.

The total increase of the vortex line length due to
Kelvin waves can be found from the energy as Lkw =

= Ekw/νs, where Ekw is given by Eqs. (4), (6a) and (8):

Lkw =
Ekw

νs
= L

21/5(3πCLN)
3/5ε1/5

κ3/5k
2/5
min

. (10)

Thus for the relative increase we get a simple formula
Lkw

L
=

Ekw

Ev
=

Ψ

2
. (11)

In cases, where instead of a single vortex, one con-
siders a vortex array with the total length L occupying
volume V with the density L = L/V = �−2 (Fig. 1b), it
might be more convenient to operate with the standard
3-dimensional energy flux ε per unit mass and unit vol-
ume, [ε] = cm2s−3. Having geometry of Fig. 1b in mind,
it is easy to see that ε = εL. Then for the increase Lkw

of the vortex-line density due to Kelvin waves, we find
using Eqs. (8) and (11)

Lkw

L =
Ψ

2
=

[2(3πCLN)
3ε

b2L2κ3

]1/5
≈ 2.2

( ε

b2L2κ3

)1/5

, (12)

where we introduced

b = kmin� ∼ 1. (13)

We note that the numerical value of the prefactor in
Eqs. (9) and (12) should be taken with caution. In the
calculations we assume that the total energy of Kelvin
waves can be found by the integral (4) limited from be-
low by kmin with the scale-invariant spectrum (6). In
reality this spectrum was derived for k � kmin while
the main contribution to Ekw is coming from the re-
gion k � kmin. Behavior of the Kelvin-wave spectrum
in this long-wavelengths region may be different and, in
general, is not universal.

In some applications, the tilt θ of a vortex carry-
ing Kelvin waves with respect to the direction of the
straight vortex is of interest. The averaged tilt angle
can be connected to the length increase

Lkw =

∫ L

0

√
1 + tan2 θ(z)dz − L �

� 1

2

∫ L

0

tan2 θ(z)dz =
1

2
〈tan2 θ(z)〉L.

(14)

Together with Eq. (11) this results in

〈tan2 θ(z)〉 � 2
Lkw

L
= Ψ, (15)

where Ψ is given by Eq. (8).
For example, let us consider a vortex of length L =

= 100μm in superfluid 4He (κ = 9.9 · 10−4 cm2/s, Λ =

= 17, ρs = 0.14 g/cm3). Vortex is agitated with the fre-
quency f0 = 30 kHz which we assume to set the longest

JETP Letters



Amplitude of Waves in the Kelvin-wave Cascade 3

Kelvin wave length kmin =
√
8π2f0/κΛ ≈ 1.2·104 cm−1,

λkmin ≈ 5.3μm. If the energy flux over the Kelvin-wave
cascade is ε̃ = 10−7 erg/s, then we find that the ampli-
tude of the waves at the largest scale is Akmin ≈ 0.5μm,
increase of the vortex length Lkw ≈ 48μm and the av-
eraged tilt angle 〈θ〉 ≈ 35◦. We see that even such a
moderate flux, which corresponds to working against
the full vortex tension νs over ε̃/νsf0 ≈ 0.2μm per pe-
riod of the drive, can bring the vortex on the edge of
the regime where the turbulence of Kelvin waves may
still be considered as weak.

To conclude, we have found the dependence of the
amplitude of the Kelvin waves, of the length increase of
the vortex, and of the average vortex tilt on the energy
flux carried by the Kelvin-wave cascade. The results are
applicable in the regime of weak turbulence of Kelvin
waves, which is uniform along the vortex. We stress that
the amplitude of the Kelvin waves, generated when a
vortex is mechanically agitated, does not necessary co-
incide with the amplitude of the motion of the agitator.
Solving the problem of excitation of Kelvin waves in a
realistic experimental geometry remains a task for fu-
ture research.
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