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In the previous chapters of this book the nonlinear theory of the parametric 
excitation of waves was given in the mean-field approximation. It was called 
the S-theory, after the amplitudes of the interaction of wave pairs, S(k ,  k'), 
which plays a decisive role in it. As has been shown in Chap. 9, the S- 
theory is in good qualitative and quantitative agreement with the whole 
set of experiments on parametric excitation of magnons in ferromagnets 
and antiferromagnets. At the same time there are some other experiments 
and it is possible to realize special experiments which show a necessity of 
overcoming the framework of the S- t heory. Indeed, the S-t heory describes 
only the total characteristics of the parametrically excited waves and does 
not allow for the width of its distributio~l in w, k-space. In the approximation 
of the S-theory (the first order of perturbation theory with respect to 'Flint) 
the stationary state of parametric waves is singular: 

where n ( k ,  w) and a(k,  w) are the Fourier transform of the non-simultaneous 
normal and anomalous correlators (see Sect. 6.4.1, eqs. (6.4.1-4)). Actually, 
singularities of the parametric wave distributions (10.1.1) never occur. To 
confirnl this point it is sufficient to attempt to estimate the effect of the 
next order in Flint with the help of the kinetic equation [10.1]. Its collision 
term becomes divergent for the solution (10.1.1). This means that the mu- 
tual scattering of the parametric waves should broaden their distribution 
function (10.1.1). 

There have been many attempts to improve the approximation of the 
S-theory, allowing for the second-order terms in 'Flint like derivation of the 
kinetic equation. But this approach is not correct because the kinetic equa- 
tion can be applied only if the wave distribution has sufficiently large width 
in frequencies to guarantee the stochastization of wave phases; at the same 
time the distribution (10.1.1) has only one frequency w=wp/2 AS a rule, 
in attempts to overcome the framework of second order approximation in 
Flint it is necessary to use a diagrammatic technique, which is the regular 
method to formulate a perturbation theory with respect to 
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There are several types of diagrammatic techniques applied to describe 
non-equilibrium systems (see, e.g., [10.2, 31). For classical problems it is 
more natural to use the diagrammatic technique (DT) suggested by Wyld 
in 1961 [10.2] which has become a regular procedure for investigation of de- 
veloped hydrodynamic turbulence. The Wyld DT is very similar to the well 
known Feynman DT for quantum electrodynamics and other field theories: 
the rules of diagram reading are the same in both DTs, the Dyson equation 
for the Green's function is also the same. The principal feature of the Wyld 
DT (as well as that of any technique for strongly non-equilibrium systems 
[10.3]) consists in constructing two diagram series for the Green's functions 
(6.4.1) and for the pair correlators (6.4.4). In the thermodynamic equilib- 
rium the Green's function G(k,w) and double correlator n(k,w) related 
by the universal relationship (by the fluctuation-dissipation theorem [10.3]) 
and two types of function reduce to one type. Under parametric excitation 
of waves there is no such relation. 

Our goal in this chapter is to describe the consistent nonlinear theory 
of parametric excitation of waves which takes into account not only the 
mean-field S-interaction of pairs, but also the T2-scattering of parametric 
waves from each other and their interaction with the thermal bath of the 
thermal waves. The latter interaction leads to the damping of the paramet- 
ric waves. This theory was named S, T2-theory [10.4-61. The formalism of 
the S, T2-theory is essentially more complicated than that of the S-theory. 
To keep the review of the S, T2-theory within reasonable limits, the dis- 
cussion in this chapter presupposes a higher standard of knowledge than 
in the previous part of this book. In particular, the reader is assumed to 
be familiar with the ideas of the Feynman diagrammatic technique [10.3]. 
A systematic derivation of the main equation of the S, T2-theory, making 
use of the Wyld DT for non-equilibrium processes was carried out by L'vov 
[10.6]. To describe this procedure let us consider the motion equation (6.4.8) 
for bj - b(kj,wj) (Fourier transform of the canonical variables b(kj,t)): 

Here Go(k, w) = [w - w(k) + iy(k)]-' is the zeroth Green's function of 
(6.4.8)' which describes the response of the field b(k,w) to the external 
force f(k,w) at T(k ,  k l ;  k2, k3)=0 and hV(k)=O. There is a Langevin ran- 
dom force f (k ,  w), which simulates the interaction of a wave system with 
the thermal bass, in the right-hand part of this equation. To develop the di- 
agrammatic technique one can obtain the formal solution of these equations 
in the form of a series in degrees of f (k ,  w): 

Then one can build a series for b(k, w) f *(kl l  wl) , b(k, w) f (k l ,  wl), 
b(k,w)b*(kl,wl), and b(k,w)b(kl,wl) then can average over the Gaussian 
ensemble of the random force f .  Using definitions (6.4.1) for the normal 
and anomalous Green's functions G(k, w) and L(k, w), definitions (6.4.4) 
for normal and anomalous double correlators n(k,w) and u(k,w), one can 
derive a series for these functions. The next step in the derivation of the 
Wyld DT is the Dyson summation of a weakly linked (reducible) diagram 
which results in the following system of the Dyson equations for the Green's 
functions: 

G(k,w) =Go(k,w)[l+ &(k,w)G(k,w) + &(k,w)L*(k,w>l, 

L(k,  w) =Gg(-k, w, - w)[l7,*(-k, wp - w)G(k, w) (10.1.4) 

+ E,*(-k,wp - w)L*(k,w)], 

and the Wyld equations for double correlators: 

n(k,w) =[IG(k,w)I2 + IL(k'w)12][zd(k,w) + f2(k)w)1 
+ G(k ,w) l&(k ,~ )L*( -k ,w~  - W) 

+ L(k,w>K?(k,w)G*(k,w), 

0 (k7  w) =G(k1w)L(k,w)[zd(k,w) + f 2 ( k , ~ ) l  
+ L(-k, w, - w)G(-k, w, - w) 

x [Zd(-k,wp - W) + f2(-k,wp - w)] 

+ G ( k , w ) E d ( k , ~ ) G ( - k , ~ p  - W) + L2(k,w)z,*(k,w). 

Here f 2(k, W) is the random force correlator (6.4.12); the following notations 
are introduced for mass operators (MO) of the compact diagram sums: 

Ec(k,w): normal causal mass operator, 
&(k, w): anomalous causal mass operator, 
E d  (k, w ): normal distributive mass operator, 
17d(k, w): anomalous distributive mass operator. 

Zakharov and L 'vov [10.7] described the derivation procedure of these 
equations in detail. To close (10.1.4, 5)) the mass operators must be ex- 
pressed in terms of the Green's functions and correlators. These expressions 
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are partially summarized but, in fact, they are infinite series of the per- 
turbation theory. However, it is sufficient to retain first-order diagrams for 
small amplitudes. Diagrams of second order in the interaction of waves are 
retained in bhe S, T2-theory. In this approximation the simplest distribu- 
tive mass operators are those which determine the distribution function of 
parametric waves in accordance with (10.1.5): 

x T*(k, -k2; -kl,  k3)a;a~n3]6(k + k1 - k2 - kg) 

x S(w + wl  - w2 - ~~)dk~dk:!dk3dw~dwzdwg/(2~)~ ' (10.1.6) r 

Here n j  = n(kj ,  wj), cj = u(kj, wj). The expressions for the causal mass 
operator, which defines the causal Green's function, are, in accordance with 
(10.1.4), somewhat more complicated: 

Here 3; = -kj,wp - wj. If there were random inhomogeneities, i.e. defects, 
pores, deformation fields, in a medium, then the elastic scattering from them 
leads to an additive contribution to the Hamiltonian, 

where y (k,  k') is the interacting amplitude which characterizes the scatter- 
ing of waves from the inhomogeneities, and ~ ( k )  is their amplitude. For point 
defects we have the following expression: ( 2 ~ ) ~ ~ ( k )  = vo exp(ik . r,), 
where r, are the coordinates of defects, and vo is the volume of the elemen- 
tary cell. The detailed analysis [10.6, 71 shows that in interesting cases it is 
enough, as a rule, to retain the lowest diagrams in g(k, k') which give an 
additive contribution into mass operators ( c  is the concentration of defects): 

10.2 Limit of the S-Theory 

10.2.1 Form of the Green's Function 

One can represent the solution of the Dyson equations (10.1.3,4) in the form, 
similar to (6.4.5) 

G(k, w) = [w, - w - wNL(k) - i r (k ) ]  /A(k, w), 
(10.2.1~) 

L*(k, W)  =17,"(-k, w, - w)/A(k, w), 

It is obvious that ImG(k,w) and L(k,w) in the middle of the frequency 
packet, i.e., when w=w,/2 have the Lorentzian form with the width Ak = 
u/v (v is the group velocity and u 2 = r 2  - 11712). This width is essentially less 
than r / v  because of the compensation of damping by the pump according 
to (10.10a). The packet width of the frequency wNL(k) in the center of the 
packet, i.e. on the resonance surface, is even smaller: Aw u 2 / r .  The 
normal Green's function G(k,w) looks like the free Green's function far 
from the resonance surface, but the function must have the renormalized 
frequency and damping: 
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and the anomalous Green's function L(k, w) is small: IL(k, w)12 << IG(k, w)). 
Concluding this section it is necessary to note that the Green's functions 

(10.2.la) coincide with (6.4.15), if one puts 

i.e. neglects terms proportional to T2 in (10.1.7). This is an approximation 
of the S-theory for the Green's functions! 

10.2.2 Separation of the Waves into Parametric and Thermal 

This problem has been discussed in Sect. 6.4.3 in the mean-field approxi- 
mation of the basic S-theory. By analogy with (6.4.19) let us put np(k,w) 
= n(k, W )  - n ~ ( k ,  w), where 

Here np and nT are the distribution functions of parametric and thermal 
waves. It is necessary to note that functions r ( k )  and wNL(k) in (10.2.4) 
are not to be calculated in the thermodynamic equilibrium but using the 
real spectrum n ~ ( k ,  w), np(k,  w) and a(k ,  w) which was calculated in the 
presence of pumping. In this definition nT is everywhere a smooth function 
of k but it moves to the equilibrium spectrum asymptotically beyond the 
resonance surface for [wNL(k) - wp/2] >> r. As for the quantities 

they rapidly decrease beyond the resonance surface. It may be shown'that 
np(k) and a(k)  cc l / [ w ~ ~ ( k )  - wP/2l2. It must be noted that in the above 
arguments we have nowhere used the actual form of the interaction of waves. 
The definitions of parametric and thermal waves in (10.2.4) are, therefore, 
valid for every interaction, particularly in cases where three-wave processes 
and interactions with phonons, etc. are essential. Now let us use the method 
developed for studying the packet of parametric waves at relatively small 
amplitudes of pumping, where the scattering of the thermal waves by each 
other forms the main contribution to the mass operator. It is necessary to 
substitute n(k,  w ) = n ~ ( k ,  w)  + np(k, w), a (k ,  w) into the expressions for C,, 
ITc, Ed and Dd and to study the obtained expressions. The result obtained 
in the zero approximation in np,  a is known from (10.2.4a). Formula 

describes the frequency dependence of the waves on the medium temper- 
ature in the first order in Let us assume that this dependence has 
already been included in the definition of w(k), so that 

Expressions (10.1.6) for Ed and Dd are quadratic in the amplitudes of the 
interaction Hamiltonian T(k,  kl ;  k2,  k3). At the first stage of the investi- 
gation this allows one to calculate them in the zero approximation in the 
amplitude of the parametric turbulence. The applicability framework of this 
approximation and the effects appearing for large amplitudes will be con- 
sidered below. In this approximation I I d = O  and 

This expression is the contribution to the correlator of random force f2(k) ,  
arising due to four-wave scattering. Let us assume that the contribution 
(10.2.7) has already been included in f 2(k). Then in equations (10.1.5) it is 
necessary to put not only Dd =0 but also Ed =O. Substituting the expressions 
(10.2.la, 3) for the Green's functions into (10.1.5) for double correlators 
(at &=Ed=O) it is easy to see that the resulting equations coincide with 
(6.4.16), which has been obtained in the temperature S-theory in Sect. 
6.4. That means the approximation of the basic S-theory may be obtained 
from the S, T2-theory if we neglect the influence of parametric waves in the 
expressions for mass operators of second order in the vertex T(k, kl ;  k2, k3). 
The parameter of this approximation will be given later. 

10.3 Nonlinear Theory for Parametric Excitation 
of Waves in Random Media 

Except for some rare cases, real media possess various inhomogeneities which 
destroy their ideal translation symmetry. The nature of the inhomogeneities 
in ferromagnetic crystals and their influence on the ferromagnetic resonance 
and spin waves were studied in a large number of works: see, e.g., Spark's 
monograph [10.8] and Schloman's paper [10.9]. A more detailed information 
can be found in Gurevich [10.10]. Many experimental works (see [10.10, 12 
- 141) are devoted to the question of the influence of inhomogeneities on 
parallel pumping of magnons. This section will discuss the theory of the 
phenomenon and make a comparison with experiment. 
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10.3.1 General Equations in the S,g2-Approximation 

Let us formulate the so-called S, g2-approsimation in the nonlinear theory 
for the parametric excitation of waves in random media [10.15]. We start 
with the diagrammatic equations (10.1.5-9) and (10.2.1) in which we will 
talce into account: 

(1) interaction of the parametric and thermal waves which leads to damp- 
ing of parametric waves and to a dependence of the spectrum on the tem- 
perature, 

(2) mean-field S-interaction between the parametric wave pairs, result- 
ing in a renormaliza.tion of the pumping, 

(3) elastic scattering of waves from inhomogeneities in Born's approxi- 
mation proportional to Ig(k, k')I2. 

In such a S, g2-theory we obtain the following equations: 

where $k) and P ( k )  are damping and pumping of parametric waves in 
the basic S-theory and where the MOs C, 17 are given by (10.1.9). It is 
easy to see that if n(k,w) and a(k,w) cc S(w - wp/2), Ed,  and Dd are also 
cc S(w - wp/2) This means that elastic scattering of parametric waves on 
inhomogeneities does not disturb the uniform character of the parametric 
turbulence of waves inherent in the S- theory. With the one-frequency ap- 
proximation the Wyld equations (10.1.5) may be integrated over the mod- 
ulus k. As a result we have: 

Ed(0)  =Ed,el(O) = C lg(0, 01) I2n(Rl )d& , J 
J 

(10.3.2~) 

Dd(0) 'Dd,el(R) = c g(n,  01)g(fi1 al)"(fll)df21 . 

Here n(f2) and a ( 0 )  are the distribution functions np(k,w) and u(k,w) 
(6.4.21) integrated in w and module k and depending only on the angular 
coordinates R = O, cp, on the resonant surface; 0 = r - 0, p + T ;  k(R) and 
v(R) are the wave vector and group velocity of the waves at the point on 
the resonant surface with the angular coordinate R. 

Equations (10.3.2) represent the S, g2-t heory, a closed system of integral 
equations which enables one to describe the system of interacting parametric 
waves in a medium with random inhomogeneities. They were obtained in 
[10.15] for the first time. 

Elastic scattering of waves may be characterized by the decrement of 
damping. From the conventional perturbation theory it follows: 

1 where g z g(k, kl),  and A2 5 47r is a characteristic scattering space angle 
(A is the scattering angle). Thus, the S, g2-theory includes three dimen- 
sionless parameters: the degree of homogeneity of the medium yel/y, the 

I 
scattering angle A, and the supercriticality p. 

10.3.2 Distribution Function of Parametric Waves 

From (10.3.2) there follows the integral relation 

which describes the energy balance in the system of parametric waves: the 
total dissipation of energy due to external relaxation mechanisms is equal 
to the total energy flow into all the pairs. Elastic scattering does not enter 
into this relation because it occurs with frequency conservation and, hence, 
does not expel energy out of a system of parametric waves. Such a scat- 
tering results in two effects: isotropization of the distribution functions and 
destruction of the phase correlations in the pairs, which leads to a decrease 
of the ratio a(R)/n(Q). 

Let us briefly discuss now the simplest and interesting limiting case 
where y,l >> y. Then it follows from (10.3.2) 

With the exception of the so-called degenerate cases, in which the operator 
K(R,  R1) has the eigenvalue 1 (for instance, at I< = 1 ), it follows from 
(10.3.7) that 17, z 17 x P. Allowing for (10.2.5, 6) this yields 
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i.e. the destruction of phase correlations and, accordingly, the increase of 
the excitation threshold of waves. Instead of the estimate (hthV)=(y), which 
would have held for lo l=n, it follows from (10.3.4) that 

This formula has been qualitatively confirmed in a direct experiment by 
Smirnov and Petrov [10.4] who independently measured the values hth, ~~1 

and (y(R)) in the antiferromagnet CsMnF3. A quantitative analysis of the 
behavior of parametric waves requires knowledge of the function g(k, k1) 
which is determined by the destructive character of the inhomogeneity of 
the medium. After that there are no fundamental difficulties to carry out 
this analysis. 

10.3.3 Behavior of Parametrically Excited Waves 
Beyond the Threshold 

In the study of the behavior of parametrically excited waves the most in- 
teresting case is that of large scattering intensities, where a stronger influ- 
ence of two-magnon scattering may be expected. In the simple model, with 
S(O, O') E V(0)V(O1), q(k)=q, and y(k)=y, it follows from (10.3.2) 

In the case of scattering from point defects, when g ( k ,  k.l) is proportional 
to (kkl) ,  one can obtain for the fluctuation of the exchange constant an 
expression close to (10.3.10) 

For intense small-angle scattering, when yA2 > y, one can obtain [10.3] :' 

In all the described cases the excitation level of parametric waves for 
strong scattering from inhomogeneities proves to be a factor of yelA2/y 
greater (at the same supercriticality) than in uniform medium. This is 
caused by partial destruction of the phase correlations, which leads to a 
weakening of the phase mechanism of the amplitude limiting. The specific 
form of the dependence N on supercriticality in (10.3.10-13) is not univer- 
sal, but originates from the specific form of the function S(O, 01). In other 
cases (see, e.g., [10.16]) the dependence of N on h is more complicated and 
it reproduces these dependences only qualitatively. 

In all the described cases one can obtain from (10.3.2) for the nonlinear 
susceptibility the following expression 

This result coincides with the known expressions (5.5.35) for X,  which were 
obtained within the basic S-theory for an uniform medium. It means that 
the dependences of the nonlinear susceptibilities X' and X" on the value 
(h/hth) are not significantly changed by the scattering of waves from in- 
homogeneities. Of course, the value of the threshold field in a nonuniform 
medium itself is greater than that in an uniform medium. The literal coin- 
cidence of the formulae for x should not be overestimated. In more com- 
plicated situations (see, e.g., [10.16]) the dependence ~ ( h l h t h )  resembles 
(10.3.13) only qualitatively. 

10.4 Consistent Nonlinear Theory 

for Parametric Excitation of Waves 

We know that the S-theory takes into account only the mean-field inter- 
action of zkk-pairs of parametrically excited waves. In order to describe 
phenomena beyond the framework of such approximation it is necessary to 
include into the formalism of the theory the scattering of individual para- 
metric waves and their interaction with the thermal bath. This was possible 
with the help of the Wyld diagrammatic technique [10.2]. An account of 
such a consistent theory (S, T2-theory) based on the Wyld DT is given in 
my book [10.3] in Russian. Here I represent only a short review of its resylts. 

10.4.1 Spectral Density of Parametrically Excited Waves 

As has already been pointed out, the elastic scattering does not change the 
number and frequency of parametric waves but only destroys their coupling 
to the pump, the process leading to the dephasing of wave pairs, and to the 
isotropization of the parametric wave distribution. If the frequency of the 
elastic scattering distributed is greater than all other relaxation frequencies, 
the distribution of the parametric waves is isotropic, and the influence of 
the parametric pumping and of the parametric wave scattering from each 
other can be taken into account as small perturbations. A simple equation 
appears in this approximation for the distribution function of parametric 
waves in frequencies. One can solve it analytically and isolate the only stable 
solution from the stationary solutions. We discuss here the results of the 
S, T2-theory for this case, which looks at first sight complicated. In the 
mass operator we will take into consideration the contributions of elastic 
scattering Eel, Del, the contribution of the interaction of parametric waves 
with thermal waves y(k) and f (k, w )  and the contribution of the interaction 
of parametric waves among themselves, (10.1.6). In the limit yel >> y the 
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equations (10.1.4, 5) have the isotropic solution n(k, w) - n(k, w). It allows 
one to integrate them in the general form not only in k but also in the solid 
angle f2. Ultimately, after some modifications, we obtain the equation for 
the spectral density of parametric waves n(w) = Jn(k, w)dk , 

Here T2 is the mean value of the square T(k, k1 ; k2, k 3 )  Fl has the order 
of magnitude (ye1)2/y. The second term in (10.4.1) may be neglected at 
small supercriticality. In this case the distribution n ( ~ )  is a Lorentzian with 
width q = v ~ ,  which may be determined by integrating (10.4.1) in 6 .  Taking 
(10.3.12) into account we have 

Here r is the small parameter (6.4.28c), characterizing the influence of the 
thermal bass: r = SNT/kv, NT = 4r2no k3 . In the opposite case of large 
supercriticality, the thermal term in (10.4.1) can be neglected. Cherepanov 
and L'vov [10.17] showed that this equation has a one-parametric set of 
solutions. However, only one of them is stable. It is a spectral soliton: 

In almost uniform crystals, when y,l << y, the study of spectral solitons 
becomes very complicated because of the anisotropy of n(k, w). Therefore 
Krutensko et al. [10.18] limited themselves to an axially symmetric situation 
which is realized in isotropic and cubic ferromagnets. In the region of super- 
criticalities pl < p < p2 (here pl - 1 = 2ps(yel/y)3/4, p2 - 1 = p,(yel/y)3/4, 
p, e kvly) the broadening in w is determined by the T2-scattering of para- 
metric waves and the line shape of n(w) is close to (10.4.3) with the effective 
width, qn t :  

Broadening in angles is determined by elastic two-wave scattering. Both 
thermal fluctuations and two-wave scattering may be neglected at greater 
supercriticalities p > p2. Then 

The line shape of n(w) remains similar to that in (10.4.3). In the appli- 
cability framework of the theory (p II p,) AO(k) n. However, such su- 
percriticalities are of interest only from an academic point of view since 
auto-oscillations arise first, leading to sharp broadening of the spectrum in 
AO(k) and Aw(k). 

In conclusion we point out that the spectral solitons (10.4.3) at the 
parametric excitation of the magnons in YIG have been experimentally in- 
vestigated in detail by Krutensko et al. [10.18]. Good qualitative and quan- 
titative agreement with the above described theory has been observed (see 
Sect. 9.4.2 and Figs. 9.12, 13). One can see that the data concerning n(w), 
which are given in Fig. 9.13 in "straightening" coordinates (chosen in such 
a way that the Gaussian in coordinates 1, the Lorentzian in coordinates 2, 
and function (10.4.3) in coordinates 3 will be straight lines) lie on a straight 
line only in coordinates 3. This and other facts give reason to believe that 
the theory elaborated on describes the reality well. 

10.4.2 St ruc tu re  of t h e  Distribution Function in k-Space 

It has already been pointed out that the T2-scattering of parametric waves 
leads to the finite width of the distribution function n(k,w) of paramet- 
ric waves, not only in w but also in k. There Aw = u2/2y, which is 
much less than Aw(k) II u, when the supercriticality is not large. It 
gives reason to think that the study of the distribution function structure 
n(k) = Jn(k, w)dk may be restricted to the so called one-frequency turbu- 
lence approximation. This is the assumption that 

Such an approximation allows one to analyze equations of the S, T2-theory 
effectively in practically all interesting cases, as will be shown in this section. 
In the one-frequency approximation the Wyld equations (10.1.5) have the 
simple form: 

UP 2 
A(k) = [ w ~ ~ ( k )  - + u2(k), v2(k) = r 2 ( k )  - IlIc(k)12. 

Here the mass operators Cd(k) and nd(k )  are determined by the equations: 
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The values &(k) and Dd(k) can be taken on the resonant surface: Cd(k) 
+ Cd(0),  Dd(k) + IId(0).  Contributions to the mass operators Xd and 
Dd arise due to elastic two-wave scattering (see expressions (10.3.2) for 
and Dd,el) and due to four-wave scattering of parametric waves: 

Expressions for (R)  and lird,int(f2) follow from (10.1.6): 

Here n = klk ,  nj = kj/k. The values Cc,int and 17,,int, which are the renor- 
malization of the pumping and damping (on the parametric wave scattering) 
are small (in comparison with the y(k) and P(k))  and will not be taken 
into consideration. It is very simple to analyze solutions of one-frequency 
equations of the S,T2-theory in a rough form. First of all, assuming that 
Ed,int=O, Dd,jnt=O, we can verify that v(Q)=O for tfiose directions where 
n(R) # 0. This means that the distribution of parametric waves in the k- 
space is singular: n(k) # 0 only on the resonance surface which satisfies the 
condition of external stability of the basic S-theory. The distribution n(R) 
on this surface and the integral quantity N are defined by (10.4.7 - lo), 
which reduces to equations of the basic S-theory in the considered approx- 
imation. Next, integrating the first of Eqs. (10.4.7), one gets an estimate 
for the quantity v1-y which characterizes the relative part of damping not 
compensated by the pumping: 

It is necessary to remember that the spectral width in w-space Aw E u2/2y; 
SO 

This result is in a good agreement with the experimental data for parametric 
magnons in YIG [10.18] shown in Fig. 9.13. 

From the one-frequency equations (10.4.7 - 10) it follows that the dis- 
tribution n(k) in the modulus k close to the resonant surface is the squared 

Lorentzian with width Aw(k) z v in w(k) and a width of the order of v/y in 
O(k) (under conditions of axial symmetry). It may be seen from (10.4.7-10) 
that the relative difference of their coefficients from those of the basic S- 
theory for the parameter (vly)' is small and, hence, for total values (like the 
total number of parametric waves N ,  etc.) the difference in the approximate 
results of the basic S-theory and the accurate results of the S, T2-theory is 
also small for the same parameter. 111 particular, from (10.4.7) follows that 
1 - lal/n v2/2y, i.e. at v << y the phase correlations in pairs are retained 
almost completely. An analysis of the diagrams which were neglected when 
solving (10.4.6) and which are proportional to T3,T4,  etc. shows [10.1] that 
they are arranged in a series with the parameter X = (T/v)(TN/kv) and, 
consequently, for v 5 y . X < @ << 1. This means that the equations of 
the S,T2-theory are correct and that the integral quantities N, X' and X" 
are well described by the corresponding formulae of the S-theory right up 
to the amplitudes h E h, which is determined by the condition 

As a specific example of a solution of the one-frequency equations of the 
S, T2-theory, parallel pumping of the magnons in a  cubic ferromagnet for 
M11[100] and [ I l l ]  was considered by Cherepanov and L'vov [10.19]. Since 
the cubic anisotropy is very small, the magnon distribution on the resonant 
surface comprises a set of long stripes with Ay >> A 0  which are stretched 
along the equator. Analyzing the distribution in 0 one can therefore consider 
the distribution in cp to be isotropic. From this assumption it follows that 

and the distribution in cp for M11[100] has the form of a smeared cross with 

However, for M 1 1  [ I l l ] ,  when the distribution n(v) has a shape of a smeared 
star of six vertices, the estimate for vo and consequently for all the quantities 
connected with it, is quite different [10.19]: 

In some cases (e.g. for real T(k ,k l ;  k2, k3) and for spherical symmetry of 
the problem) the contribution to the parametric magno11 scattering propor- 
tional to T2 is almost completely canceled. Then the T3 scattering should 
be taken into account and it is possible to prove that v y m ( p -  1)3/8. 
The latter two examples show that the general estimates (10.4.11) for Aw(L) 
=v and for Aw (10.4.13) for A 0  may prove to be incorrect in some specific 
situations because of unexpected cancellations. Therefore, in spite of the 
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basic understanding of the main statements of the S, T2-theory, the inves- References 
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