Outline

1. Classical Hamiltonian formalism for nonlinear waves
 - Examples of non-linear waves
 - Canonical structure of the Hamiltonian at small nonlinearity

2. Statistical description of weakly nonlinear waves
 - Approximation of wave-kinetic equation
 - General properties of wave-kinetic equation
 - Conservation laws
 - Boltzmann’s H-theorem and Thermodynamic Equilibrium

3. Kolmogorov spectra of wave turbulence
 - Turbulent spectra with constant energy-flux
 - Interaction locality
 - Turbulent spectra with constant Particle-flux
 - Direction of fluxes

4. Summary and road ahead
Classical Hamiltonian formalism
Examples of non-linear waves

Dispersive waves play a crucial role in a vast range of physical applications, from quantum to classical regions, from microscopic to astrophysical scales:

- **Kelvin waves** propagating on quantized vortex lines provide an essential mechanism of turbulent energy cascades in superfluids.

- **Sea waves** are important for the momentum and energy transfers from wind to ocean, as well as for navigation conditions.

- **Internal waves** on density stratifications and inertial waves due to rotation are important in turbulence behavior and mixing in planetary atmospheres and oceans.

- **Planetary Rossby waves** are important for the weather and climate evolutions.

- **Alfven waves** are ubiquitous in turbulence of solar wind and interstellar medium.
Basic equations of motion in various media are very different:

- **Gravity and capillary waves** on fluid surface and in stratified fluids, including Rossby waves in rotation atmosphere, Cyclones and Anticyclones, Intrinsic waves in the Ocean ⇒ The Navier-Stokes Equations
- **Acoustic waves, Sound** in crystals, glasses (disordered media), fluids and plasmas: ⇒ Material equations
- **Electromagnetic waves**: Radio-frequency, Microwaves, Light, X-rays, etc. in dielectrics; Numerous wave types in plasma ⇒ The Maxwell + Material equations
- **Spin waves in Magnetics**: ⇒ The Bloch & Landau-Lifshitz Eqs.

All these equations can be presented in a canonical form as the Hamiltonian equations of motion for wave amplitude $a_k(t)$

$$i \frac{d a_k}{d t} = \frac{\delta H\{a_k', a_{k'}^*\}}{\delta a_k^*}$$
Step 1. Let \(a, a^* = 0 \) in the absence of a wave. Assume that \(a, a^* \) are small in required sense, for instance, when the elevation of the surface-water waves is smaller than the wavelength.

Step 2. For small \(a, a^* \) Hamiltonian \(\mathcal{H} \) can be expanded over \(a, a^* \):

\[
\mathcal{H} = \mathcal{H}_2 + \mathcal{H}_{\text{int}}, \quad \mathcal{H}_{\text{int}} = \mathcal{H}_3 + \mathcal{H}_4 + \mathcal{H}_5 + \mathcal{H}_6 + \ldots, \quad (1)
\]

where free-wave Hamiltonian \(\mathcal{H}_2 = \sum_k \omega(k)a_k a_k^* \), and \(\mathcal{H}_n \propto a^{(n-m)} a^*(m) \) is \(n \)-wave interaction Hamiltonian:

\[
\mathcal{H}_3 = \mathcal{H}_2 \leftrightarrow 1 + \mathcal{H}_3 \leftrightarrow 0 = \frac{1}{2} \sum_{k_1 = k_2 + k_3} \left(V_{1,2,3}^{2,3} b_1^* a_2 a_3 + \text{c.c.} \right) + \frac{1}{6} \sum_{k_1 + k_2 + k_3 = 0} \left(U_{1,2,3} a_1^* a_2^* a_3^* + \text{c.c.} \right).
\]
Classical Hamiltonian formalism

Hamiltonian at small nonlinearity: Four- Five and Six-wave interaction Hamiltonian

\[\mathcal{H}_4 = \mathcal{H}_{2\leftrightarrow2} + \mathcal{H}_{3\leftrightarrow1} + \mathcal{H}_{4\leftrightarrow0} \]
\[= \frac{1}{4} \sum_{k_1+k_2=k_3+k_4} W_{1,2}^{3,4} a_1^* a_2^* a_3 a_4 \]
\[+ \frac{1}{3!} \sum_{k_1=k_2+k_3+k_4} \left(G_{1}^{2,3,4} a_1 a_2^* a_3^* a_4^* + \text{c.c.} \right) \]
\[+ \frac{1}{4!} \sum_{k_1+k_2+k_3+k_4=0} \left(R_{1,2,3,4}^* a_1 a_2 a_3 a_4 + \text{c.c.} \right) \]

\[\mathcal{H}_{2\leftrightarrow3} = \frac{1}{12} \sum_{1+2=3+4+5} \left[V_{1,2}^{3,4,5} a_1 a_2 a_3^* a_4^* a_5^* + \text{c.c.} \right] , \]

\[\mathcal{H}_{3\leftrightarrow3} = \frac{1}{36} \sum_{1+2+3=4+5+6} W_{1,2,3}^{4,5,6} a_1 a_2 a_3 a_4^* a_5^* a_6^* . \]
Statistical description of weakly interacting waves can be reached in terms of the wave Kinetic Equation (KE)

\[\frac{\partial n(\mathbf{k}, t)}{\partial t} = \text{St}(\mathbf{k}, t), \]

for the simultaneous pair correlation functions \(n(\mathbf{k}, t) \), defined by

\[\langle a(\mathbf{k}, t)a^*(\mathbf{k}', t) \rangle = n(\mathbf{k}, t)\delta(\mathbf{k} - \mathbf{k}'), \]

where \(\langle \ldots \rangle \) stands for proper (ensemble, etc.) averaging.

In classical limit, when the occupation numbers of Bose particles \(N(\mathbf{k}, t) \gg 1, n(\mathbf{k}, t) = \hbar N(\mathbf{k}, t). \)
The collision integral \(\text{St}(k, t) \) can be found in various ways, including the Golden Rule of quantum mechanics.

- For the 1 ↔ 2 process, described by the Hamiltonian \(\mathcal{H}_{1\leftrightarrow 2} \):

\[
\text{St}_{1\leftrightarrow 2}(k) = \pi \int d\mathbf{k}_1 d\mathbf{k}_2 \left\{ \frac{1}{2} |V_{k}^{1,2}|^2 \delta_{k}^{1,2} \delta(\Omega_{k}^{1,2}) N_{k}^{1,2} \\
+ |V_{1}^{k,2}|^2 \delta_{1}^{k,2} \delta(\Omega_{1}^{k,2}) N_{1}^{k,2} \right\} , \quad \text{where}
\]

\[
N_{k}^{1,2} \equiv n_{k} n_{1} n_{2} (n_{k}^{-1} - n_{1}^{-1} - n_{2}^{-1}) ,
\]

\[
\delta_{k}^{1,2} \equiv \delta(k - k_{1} - k_{2}) ,
\]

\[
\Omega_{k}^{1,2} \equiv \omega_{k} - \omega_{k_{1}} - \omega_{k_{2}} .
\]
Statistical description of weakly nonlinear waves

$2 \leftrightarrow 2, \ 2 \leftrightarrow 3$ and $3 \leftrightarrow 3$ Collision terms

$$
\text{St}_{2\leftrightarrow 2} = \frac{\pi}{2} \int dk_1 dk_2 dk_3 \left| T_{k_1, k_2, k_3}^{2, 3} \right|^2 \delta_{k_1, k_2, k_3} \delta(\omega_k + \omega_1 - \omega_2 - \omega_3) \\
\times n_k n_1 n_2 n_3 \left(n_k^{-1} + n_1^{-1} - n_2^{-1} - n_3^{-1} \right),
$$

$$
\text{St}_{2\leftrightarrow 3} = \frac{\pi}{12} \int dk_1 \ldots dk_4 \left\{ 2 \left| V_{k_1, k_2, k_3, k_4}^{2, 3, 4} \right|^2 \delta_{k_1, k_2, k_3, k_4} \mathcal{N}_{k_1, k_2}^{2, 3, 4} \right. \\
\times \delta(\omega_k + \omega_1 - \omega_2 - \omega_3 - \omega_4) \\
+ 3 \left| V_{k_1, k_2, k_3, k_4}^{k_1, k_2, k_3, k_4} \right|^2 \delta_{k_1, k_2, k_3, k_4} \mathcal{N}_{k_1, k_2}^{k_1, k_2, k_3, k_4} \right. \\
\left. \times \delta(\omega_k + \omega_1 - \omega_k - \omega_3 - \omega_4) \right\},
$$

$$
\mathcal{N}_{1, 2}^{3, 4, 5} \equiv n_1 n_2 n_3 n_4 n_5 \left(n_1^{-1} + n_2^{-1} - n_3^{-1} - n_4^{-1} - n_5^{-1} \right);
$$

$$
\text{St}_{3\leftrightarrow 3} = \frac{\pi}{12} \int dk_1 \ldots dk_5 \left| W_{k_1, k_2, k_3, k_4, k_5}^{4, 5, 6} \right|^2 \delta_{k_1, k_2, k_3, k_4, k_5} \\
\times \delta(\omega_k + \omega_1 + \omega_2 - \omega_3 - \omega_4 - \omega_5) n_k n_1 n_2 n_3 n_4 n_5 \\
\times \left(n_1^{-1} + n_2^{-1} + n_3^{-1} - n_4^{-1} - n_5^{-1} - n_6^{-1} \right).
$$
General properties of wave-kinetic equation

Conservation Laws

- All KEs conserve the total energy of non-interacting waves:

\[E = \int d\mathbf{k} \varepsilon_k , \quad \text{with the energy density } \varepsilon_k \equiv \omega_k n_k = \hbar \omega_k N_k , \]

where the quantum mechanical occupation numbers \(N_k \equiv n_k / \hbar \).

This energy does not include (small) correction to the total energy of the system of interacting waves, described by \(\mathcal{H}_{\text{int}} \).

Compute \(dE/dt \) using \((2 \leftrightarrow 1)\)-KE to get

\[
\frac{dE}{dt} = \int d1d2d3 \omega_k \delta(\omega_k - \omega_1 - \omega_2) \ldots \\
= \frac{1}{3} \int d1d2d3 (\omega_k - \omega_1 - \omega_2) \delta(\omega_k - \omega_1 - \omega_2) \ldots = 0 .
\]

One sees that formally the conservation of energy follows from the \(\delta(\omega_k - \omega_1 - \omega_2) \), that originates from the time-invariance.
For the $\text{(2} \leftrightarrow \text{2)}$-KE analogously one gets
\[
\frac{d E}{d t} = \int \, d1d2d3d4 \, \omega_k \delta(\omega_k + \omega_1 - \omega_2 - \omega_3) \ldots \\
= \frac{1}{4} \int \, d1d2d3d4 \, (\omega_k + \omega_1 - \omega_2 - \omega_3) \delta(\omega_k + \omega_1 - \omega_2 - \omega_3) \ldots = 0 .
\]
In the same way one proves conservation of energy $E = \int \omega_k n_k d k$ in any high-order KE.

- All KEs conserve the total mechanical moment P of interacting waves:
 \[
 \frac{d P}{d t} = 0 , \quad \text{where} \quad P \equiv \int (k n_k) , \, dk .
 \]
- (2 \leftrightarrow 2)- and (2 \leftrightarrow 2)-KEs conserve the total number of particles N of interacting waves:
 \[
 \frac{d N}{d t} = 0 , \quad \text{where} \quad N \equiv \int n_k , \, dk .
 \]
Introduce the entropy of the wave system $S(t) = \int \ln(n_k) d\,k$ and study its evolution, computing with the help of KE one gets

$$\frac{dS}{dt} = \int \frac{\partial n_k}{n_k \partial t} d\,k = \int \frac{St_k}{n_k} d\,k \Rightarrow \text{for the } (2 \leftrightarrow 1) \text{ collision integral} \Rightarrow$$

$$= \frac{\pi}{2} \int dk \int dk_1 dk_2 \ldots \left(\frac{1}{n_k} - \frac{1}{n_1} - \frac{1}{n_2}\right) \left(\frac{1}{n_k} - \frac{1}{n_1} - \frac{1}{n_2}\right) \geq 0 .$$

Analogously, for the $(2 \leftrightarrow 2)$ collision integral

$$\frac{dS}{dt} = :$$

$$\frac{\pi}{8} \int dk \int dk_1 dk_2 dk_3 \ldots \left(\frac{1}{n_k} + \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3}\right) \left(\frac{1}{n_k} + \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3}\right) \geq 0 .$$

Similarly, one gets: for any KE wave evolution only increases entropy:

$$\frac{dS}{dt} > 0 , \text{ and in the the state of thermodynamic equilibrium } \frac{dS}{dt} = 0 .$$
In the state of thermodynamic equilibrium \(\frac{dS}{dt} = 0 \) , \(\frac{dn_k}{dt} = 0 \).

Notice:

\[
\begin{align*}
\text{St}_{2\leftrightarrow 1} & \propto \delta(\omega_k - \omega_1 - \omega_2) \delta(k - k_1 - k_2) \left[\frac{1}{n_k} - \frac{1}{n_1} - \frac{1}{n_2} \right], \\
\text{St}_{2\leftrightarrow 2} & \propto \delta(\omega_k + \omega_1 - \omega_2 - \omega_3) \delta(k + k_1 - k_2 - k_3) \left[\frac{1}{n_k} + \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} \right], \\
\text{St}_{3\leftrightarrow 2} & \propto \delta(\omega_k + \omega_1 + \omega_2 - \omega_3 - \omega_4) \delta(k + \ldots) \left[\frac{1}{n_k} + \frac{1}{n_1} + \frac{1}{n_2} - \frac{1}{n_3} - \frac{1}{n_4} \right], \\
\text{St}_{3\leftrightarrow 3} & \propto \delta(\omega_k + \omega_1 + \omega_2 - \omega_3 - \omega_4 - \omega_5) \delta(k + k_1 + k_2 - k_3 - k_4 - k_5) \\
& \times \left[\frac{1}{n_k} + \frac{1}{n_1} + \frac{1}{n_2} - \frac{1}{n_3} - \frac{1}{n_4} - \frac{1}{n_5} \right].
\end{align*}
\]

Equilibrium: Rayleigh-Jeans distribution \(n_0(k) = \frac{T}{\omega_k - \mu - k \cdot V} \) with free constants: temperature \(T \), velocity \(V \) and \(\mu \) – chemical potential.
Consider isotropic energy spectra of turbulent waves in d-dimensional [\(d = 1\) – Kelvin waves, \(d = 2\) – surface-water waves, \(d = 3\) – sound] scale-invariant [\(\omega(\lambda k) = \lambda^\alpha \omega(k)\), i.e. \(\omega_k \propto k^\alpha\), etc.] media.

Having energy pumping in the region of small \(k_+\) and energy damping at \(k_- \gg k_+\) we have “inertial interval of scales \(k_+ \ll k \ll k_-\), where wave system obeys KE.

Conservation of energy implies energy-continuity equation:

$$\frac{\partial E_k}{\partial t} + \frac{\partial \varepsilon(k)}{\partial k} = 0,$$

\(E_k \equiv \omega_k n_k\), where energy flux \(\varepsilon(k) \equiv \int_{k_+}^{k} \omega_k \text{St}(k) k^{(d-1)}\).

Assuming locality of the energy transfer [integral convergence in \(\text{St}(k)\)] one estimates in scale-invariant case \(\int d k \sim k^d\), \(V_k^{k,k} \equiv V_3 k^\beta_3\)

\(\varepsilon_{2\leftrightarrow 1}(k) \sim \omega_k k^d \text{St}_{2\leftrightarrow 1}(k) \sim k^{2d} (V_k^{k,k})^2 n_k^2 \sim k^{2d+2\beta_3} V_3^2 n_k^2 \equiv \varepsilon_3\),

\(\varepsilon_{2\leftrightarrow 2}(k) \sim k^{3d} (T_k^{k,k})^2 n_k^3 \sim k^{3d+2\beta_4} V_4^2 n_k^3 \equiv \varepsilon_4\), \(T_k^{k,k} \equiv V_4 k^\beta_4\), ...

\(\varepsilon_{3\leftrightarrow 3}(k) \sim k^{5d} (W_k^{k,k})^2 n_k^5 \sim k^{5d+2\beta_6} V_6^2 n_k^5 \equiv \varepsilon_6\), \(W_k^{k,k} \equiv V_6 k^\beta_6\),...
Consider isotropic energy spectra of turbulent waves in d-dimensional [\(d = 1 - \text{Kelvin waves}, \ d = 2 - \text{surface-water waves, } d = 3 - \text{sound}\)] scale-invariant [\(\omega(\lambda k) = \lambda^\alpha \omega(k)\), i.e. \(\omega_k \propto k^\alpha\), etc.] media.

Having energy pumping in the region of small \(k_+\) and energy damping at \(k_- \gg k_+\) we have “inertial interval of scales \(k_+ \ll k \ll k_-\), where wave system obeys KE.

Conservation of energy implies energy-continuity equation:

\[
\frac{\partial E_k}{\partial t} + \frac{\partial \varepsilon(k)}{\partial k} = 0, \quad E_k \equiv \omega_k n_k, \text{ where energy flux } \varepsilon(k) \equiv \int_{k_+}^k \omega_k \text{St}(k)k^{(d-1)}.
\]

Assuming locality of the energy transfer [integral convergence in \(\text{St}(k)\)] one estimates in scale-invariant case \(\int d k \sim k^d\), \(V_k^{k,k} \equiv V_3 k^{\beta_3}\)

\[
\begin{align*}
\varepsilon_{2\leftrightarrow 1}(k) & \approx \omega_k k^d \text{St}_{2\leftrightarrow 1}(k) \sim k^{2d} (V_k^{k,k})^2 n_k^2 \approx k^{2d+2\beta_3} V_3^2 n_k^2 \equiv \varepsilon_3, \\
\varepsilon_{2\leftrightarrow 2}(k) & \approx k^{3d} (T_{k,k}^{k,k})^2 n_k^3 \approx k^{3d+2\beta_4} V_4^2 n_k^3 \equiv \varepsilon_4, \quad T_{k,k}^{k,k} \equiv V_4 k^{\beta_4}, \ldots \\
\varepsilon_{3\leftrightarrow 3}(k) & \approx k^{5d} (W_{k,k}^{k,k})^2 n_k^5 \approx k^{5d+2\beta_6} V_6^2 n_k^5 \equiv \varepsilon_6, \quad W_{k,k,k}^{k,k,k} \equiv V_6 k^{\beta_6}.
\end{align*}
\]
Kolmogorov spectra of wave turbulence

In general for turbulence with p-wave interactions:

$$\varepsilon_p \simeq (k^d n_k)^{p-1} + 2 \beta_p V_p^2 \Rightarrow n_k \simeq \varepsilon_p^{1/(p-1)} k^{-[d+2\beta_p/(p-1)]} \Rightarrow n_k \propto \frac{1}{k^{x_p}} , \quad x_p = d + \frac{2\beta_p}{p-1} .$$

- **Acoustic turbulence:** $d = 3$, $\omega_k \propto k$, $p = 3$, $\beta_3 = 3/2 \Rightarrow x_3 = 9/2$, Zakharov-Sagdeev spectrum.

- **Capillary waves on deep water:** $d = 2$, $\omega_k \propto k^{3/2}$, $p = 3$, $\beta_3 = 9/4 \Rightarrow x_3 = 17/4$, Zakharov-Filonenko spectrum.

- **Gravity waves on deep water:** $d = 2$, $\omega_k \propto \sqrt{k}$, $p = 4$, $\beta_4 = 3 \Rightarrow x_4 = 4$, Zakharov-Filonenko spectrum.
Kelvin waves (KWs) in superfluids: \(d = 1, \; \omega_k \propto k^2, \; p = 6, \beta_6 = 6 \Rightarrow \)

\[x_6 = 17/5, \quad \text{Kozik-Svistunov-2004 (KS) spectrum ???} \]

All above turbulent energy spectra are based on the \textit{assumption} of the locality of energy transfer over scales (converges of integrals in the collision term). This is the case for all the above examples, except of the last.

Recently Laurie, L’vov, Nazarenko & Rudenko (PRB, submitted) show that KS assumption of locality the Kelvin wave interactions is happened to be wrong and thus the KS-spectrum is irrelevant.

L’vov & Nazarenko (under preparation) show that interaction of the KWs, propagated over randomly curved vortex line is dominated by the five-wave interaction with the local energy transfer. We got:

\[x_5 = 7/2, \quad \text{L’vov-Nazarenko-2009 (LN) local spectrum} \]
Kolmogorov spectra of wave turbulence
Lvov-Nazarenko vs Kozik-Svistunov spectra of Kelvin waves in superfluids

More about KW turbulence (κ – quantum of velocity circulation):

Nonlocal $3 \leftrightarrow 3$ KS-spectrum \Rightarrow Local $3 \leftrightarrow 2$ LN-spectrum

$$n_{KS}(k) \sim \frac{(\varepsilon \kappa^2)^{1/5}}{k^{17/5}} \Rightarrow n_{LN}(k) \sim \frac{(\varepsilon \kappa)^{1/4}}{k^{7/2}}.$$

G. Boffetta, A. Celani, D. Dezzani, J. Laurie and S. Nazarenko
JLTP 156, 193 (2009)
Remember: $2 \leftrightarrow 2$- and $2 \leftrightarrow 2$-KEs conserves total number of particle $N \equiv \int n_k dk$. This implies particle-continuity equation:

$$\frac{\partial n_k}{\partial t} + \frac{\partial \mu(k)}{\partial k} = 0,$$

where "particle" flux $\mu(k) \equiv \int_{k_+}^{k} \text{St}(k) k^{(d-1)} dk$.

Assuming locality of the particle transfer one has (with $\omega_k = \omega k^\alpha$):

$$\mu_{2 \leftrightarrow 2}(k) \simeq k^{3d} (T_{k,k}^k)^2 n_k^3 / o_k \simeq k^{3d+2\beta_4-\alpha} V_4^2 n_k^2 / \omega \equiv \mu_4,$$

$$\mu_{3 \leftrightarrow 3}(k) \simeq k^{5d} (W_{k,k}^k)^2 n_k^5 / \omega_k \simeq k^{5d+2\beta_6-\alpha} V_6^2 n_k^2 / \omega \equiv \mu_6;$$

In general:

$$\mu_{2p}(k) = (k^d n_k)^{2p-1} k^{2\beta_{2p}-\alpha} V_{2p}^2 / \omega.$$

With condition $\mu(k) = \mu = \text{const.}$ the gives:

$$n_k \propto \frac{1}{k^{y_p}}, \quad y_p = d + \frac{2\beta_p - \alpha}{p - 1}.$$
Kolmogorov spectra of wave turbulence
Turbulent spectra with constant energy flux: Physical examples

- Gravity waves on deep water: $d = 2$, $\omega_k \propto \sqrt{k}$, $p = 4$,

 $\beta_4 = 3 \Rightarrow y_4 = 4 - \frac{1}{6} = \frac{23}{6}$, Zakharov-Filonenko (local) spectrum.

- Kelvin waves in superfluids: $d = 1$, $\omega_k \propto k^2$, $p = 4$,

 $\beta_6 = 6 \Rightarrow y_6 = 3$, $n_k \propto \frac{1}{k^3}$, Winen (weakly-nonlocal) spectrum.

Laurie, L'vov, Nazarenko & Rudenko (PRB, submitted) log-correction:

$$n_k \propto \frac{1}{k^3 (\ln k)^{1/5}}.$$
• **Direct energy cascade:**

From one side, we showed (for p-wave KE in d-dimensional media):

$$n_k \propto k^{-x}, \quad x = d + 2 \beta_p / p - 1.$$

From other side, in the thermodynamic equilibrium $n_k = T / \omega_k \propto k^{-\alpha}$. Because energy goes toward equilibrium distribution. In all known examples $x > \alpha$ (e.g. for Kelvin waves $x = 7/2, \alpha = 2$), therefore energy goes toward large k. Therefore we have

"Direct energy cascade" (toward large k).
Following Kraichnan consider energy and particle-number influxes, ε^+ and μ^+ at some $k \approx k_0$. Denote as ω_\pm, and γ_\pm – the wave frequencies and dampings at $k_+ \gg k_0$ and $k_- \ll k_0$, $n_\pm = n(k_\pm)$ – particle numbers at $k = k_\pm$. Then in the k_\pm areas the rates of particle-number dissipations are $\mu_\pm \approx n_\pm \gamma_\pm$, and the rates of energy dissipation: $\varepsilon_\pm \approx \omega_\pm \mu_\pm$. Clearly the total dissipations: $\mu \equiv \mu_+ + \mu_-$, $\varepsilon \equiv \varepsilon_+ + \varepsilon_- = \omega_+ \mu_+ + \omega_- \mu_-$. Solving these Eqs. in the limit $\omega_- \to 0$, and $\omega_+ \to \infty$ one has:

$$\mu = \mu_- + \frac{\varepsilon}{\omega_+} \to \mu^-, \quad \varepsilon = \varepsilon_+ + \omega_- \mu^+ \to \varepsilon_+. $$

This mean that the energy mainly dissipates at large k and we have

Direct energy cascade,

whereas the particle number mainly dissipates at small k and one has

Inverse particle cascade.
We have formulated Classical Hamiltonian formalism for nonlinear waves, considered canonical structure of the Hamiltonian at small nonlinearity;

We presented statistical description of weakly nonlinear waves, formulated wave kinetic equations and studied their general properties;

The main point was Kolmogorov spectra of wave turbulence with constant energy and particle fluxes. We stressed importance of the locality of the energy/particle cascades and considered direction of fluxes.

We did NOT discussed various (well studied) problems, including:

- Many-flux and anisotropic Kolmogorov spectra;
- Matching inertial-interval spectra with the pumping and dissipation regions,
- Exact flux solutions of the 3-wave & 4-wave KEs;
- Stability and evolution toward flux solutions; Kolmogorov spectra of strong wave turbulence, etc.
THE END