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Apochromatic optical correlation
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Optical correlation, or matched filtering, can now be applied more widely than before, because the light is now
allowed to be totally incoherent, spatially and spectrally. Two such correlators were demonstrated recently.
Their state of chromatic correction can be called achromatic, since the scaling error has two zero crossings within

the visible range of wavelengths.
three zero crossings.

We present a new apochromatic correlator, in which the scaling error has
The maximum error and the rms error are reduced by a factor of 5.

Our apochromatic

correlator is composed of two highly dispersive heavy flint lenses that are in contact with two diffractive lenses

and two chromatic corrected refractive lenses.

dispersion enabled us to achieve apochromatic correction of the scaling factor of the correlator.
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VanderLugt’s invention of the coherent optical matched
filter system® created considerable excitement 35 years
ago, but its impact has been less than originally
expected. The reasons for this disappointment were
problems with the side effects of laser light, such as
coherent noise, delicate adjustment tolerances, and re-
striction to monochromatic objects. Indeed, the need
for totally coherent laser light has ruled out many con-
ceivable applications.

To alleviate the problems associated with coherent
light, researchers have proposed and demonstrated
two approaches to reducing the coherence requirement.
One approach allows the object to be spatially in-
coherent, but the light has to be monochromatic.2~?
The other approach requires spatial coherence but al-
lows the light to be polychromatic.®-!! Recently, it
was shown that the two approaches can be merged
so that totally incoherent illumination can be ex-
ploited.!®!3  Yet, inherent scaling variation that is due
to spectral dispersion was only crudely corrected to a
first-order approximation, leaving a residual scaling er-
ror with only two zero crossings within the visible range
of wavelengths, analogous to the achromatic correction
of achromats. Here we present a new correlator con-
figuration in which the scaling variation is corrected
more accurately, with a residual scaling error of three
zero crossings within the visible range, analogous to an
apochromatic correction. The scaling error is reduced
by a factor of 5, leading to significant improvement in
performance.

When totally incoherent light is used, the object in-
tensity is correlated with a reference pattern, which
exists indirectly as a spatial filter that can be formed
as a black-and-white computer-generated Fourier holo-
gram.* The correlation output intensity I.(x) is

I.(x.) :[Ii(xi)lr(xi + x.)dx; , (1)

where I,(x) is the intensity of the reconstruction of the
holographic filter, I;(x) is the input-object intensity, x.
is the coordinate in the correlation output plane, and x;
is the coordinate in the input-object plane. A peak will
occur at x. = 0 if I, and I; are matched in both shape
and scale.
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The uncommon combination of flint dispersion and diffractive
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When one is trying to perform optical processing
with polychromatic light, three problems arise. One
problem is that a point source at the input plane can
generate a complex amplitude in the output plane, with
a quadratic phase that depends on wavelength, of the
form [I,(x)]Y?exp[imx2/a(A)]. Fortunately, this phase
can be ignored, since in the spatially incoherent case
we are correlating intensities, not complex amplitudes.
The second problem is the longitudinal dispersion. In
other words, I,.(x; A1) and I,.(x; A2) can be focused at
different depth locations, Z(A1) # Z(Ag). The third
problem is scale mismatch; i.e., the scale of the ref-
erence pattern can vary as a function of wavelength
I.(x; ) = I,[x/S(A)], where S(A) is the wavelength-
dependent scaling factor. This problem can lead to a
scaling mismatch between the reference pattern and
the input, degrading the autocorrelation peak at some
wavelengths.

To overcome the problems of longitudinal dispersion
and scaling mismatch we consider the correlator config-
uration shown in Fig. 1. It is composed of two highly
dispersive lenses of opposite powers with an achro-
matic lens between them. The filter is adjacent to the
achromatic lens. Another achromat, at an appropri-
ate location to the right of the second dispersive lens,
converts the virtual white output into a real im-
age on the detector. It was shown that longitudinal
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Fig. 1. Optical correlator configuration for totally incoher-

ent white light.
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dispersion does not occur at all in this configuration if
two requirements are met.'?!* The first requirement
is that distances d; and ds between the lenses be re-
lated by the imaging formula

1,11
dl d2 flens

(2)

where flens 1s the focal length of the achromatic lens.
The second requirement is that the focal lengths of the
two dispersive lenses be related by

fa(A) = —f1(A) (da/d1)?, 3)

where f1(A) and f2(A) are the focal lengths of the
dispersive lenses. It is most convenient to use d; =
da = 2flens and f2(/\) = _fl()‘)-

If one wishes to obtain an ideal correlator, for to-
tally incoherent light without any scaling mismatch,
the scaling factor S(A) should be independent of wave-
length, i.e., S(A) = Sjgeal = constant. The dependence
of S(A) on f1(A) of the dispersive lens is'®

4)

S(A) = /\|:ui +dy — uidy i|’

f1()

where u; is the distance of the input from the first
dispersive lens and d; is the distance from the first
dispersive lens to the achromatic lens. Hence, for an
ideal correlator with no scaling mismatch error, the
optical power of the dispersive lens 1/f1(A) should be!®
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One can see that the focal power should have a
wavelength dependence of the form 1/f1(A) = A +
(B/A), where A and B are constants. This kind of
wavelength dependence cannot be achieved in practice
with existing materials. Thus the scaling factor must
include a mismatch error €(A), defined as S(A) =
Sigeal[1 + €(A)].

In the past, the ideal focal power 1/f1()A) of Eq. (5)
was replaced with 1/fp(A) = A/foAg, which is the
linear focal-power dispersion of a diffractive Fresnel
zone plate. This replacement leads to a parabolic
scaling factor, which is constant only to first order in
wavelength, resulting in a parabolic scaling-mismatch
error €(A) with two zero crossings over the entire visible
spectral range, similar to the first-order achromatic
correction of achromats.

In our new correlator configuration the scaling cor-
rection is significantly improved by addition of two
refractive plano—convex and plano—concave singlet
lenses made from highly dispersive heavy flint glass
(SF6; radii of curvature, *64.55 mm), which were used
in contact with the diffractive lenses of the earlier con-
figuration (fp = *160 mm at A = 633 nm) to form hy-
brid diffractive—refractive lenses. Such hybrid lenses
have rather uncommon dispersion properties. Since
the two lenses are in contact, the common optical power
is the sum of the optical powers of the two lenses,
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where fy, fp, and fr are the focal lengths of the hybrid
lens, the diffractive zone plate, and the refractive
lens, respectively. n(A) is the refractive index of the
refractive lens, and R is its radius of curvature. The
rather different A dependence of the two contributions
to the hybrid focal power turned out to be useful for
the design. Specifically, the diffractive lens has an
optical power that is linear in wavelength, whereas
the optical power of the refractive lens has a nonlinear
dependence on wavelength. The nonlinear part of the
refractive dispersion was what we needed to improve
the order of approximation. The scale-mismatch error
is now predominantly a cubic function of wavelength,
so the approximation progressed like the step from an
achromat (doublet) to an apochromat (triplet).

The optimal values of the radius of curvature of
the refractive lens, R, and the distance of the input
from the first lens, u;, were selected according to the
following procedure: First, an analytic expression for
n(A) was obtained by use of the interpolation formula
given in the Schott catalog for glass materials, for
which the values of n at two specific wavelengths
and the Abbe number were taken from the database
of the “Oslo” Lens Design program. Then, substitut-
ing the analytic expression for n(A) into Eq. (6) yielded
the optical power of the hybrid lens 1/fy and S(A).
Finally, by requiring the scaling factor to be the same
at three specific wavelengths, S(A1) = S(A3) = S(A3),
and using Eqgs. (4) and (6), we obtained u; and
R. The choice of wavelengths A;, A3, and A3 was
numerically optimized to minimize the maximal
scaling-mismatch error over the visible range of the
spectrum, where we assume that Sigea; = S(A;). Note
that the obtained optimal scaling-mismatch error is
independent of any specific parameter of the setup. It
depends only on the choice of material and the
wavelength range of interest. Figure 2 shows the
calculated optimal scaling-mismatch error e3(A) for
the improved, apochromatic hybrid configuration,
along with €;(A), the scaling error that was obtained
previously for the achromatic configuration.!® As is
evident, when the entire visible spectrum (0.4—0.7 um)
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Fig. 2. Scaling-mismatch errors as functions of wave-

length for €;(A), the achromatic configuration, and es(A),
the apochromatic configuration.
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Fig. 3. Scaling-mismatch errors e€(A) at three different
longitudinal input positions u; for (a) the achromatic
correlator configuration €;(A) and (b) the new hybrid
apochromatic configuration e3(A). In both (a) and (b) the
solid curves denote the results for the optimal distance of
u; and the dashed and dotted curves denote the results for
distances that differ by +7% and —7% from the optimal,
respectively.
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Fig. 4. Experimental autocorrelation results for the letter
0. (a), (c) apochromatic configuration; (b), (d) achromatic
configuration.
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is covered, the maximal errors are |e1(A)| = 3.9%,
with a variance of o1 = 2.3%, and |ex(A)| = 0.76%,
with a variance of o9 = 0.526%. Both the variance
and the maximal error values indicate a reduction of
the scaling-mismatch error by a factor of ~5. The
reduction factor is even greater, ~10, for a narrower
spectral range 0f 0.486 um < A < 0.656 um.

S(A) depends on u;, the distance from the input to the
first hybrid lens, as indicated in Eq. (4). Evaluation of
this dependence is important for estimating the toler-
ance of the setup to longitudinal misalignments of the
input. We calculated e2()) as a function of wavelength
for different distances u; (the optimal distance and two
others that differ from it by =7%), assuming that all
other parameters of the setup were fixed. The results
are shown in Fig. 3. Figure 3(a) shows results from
the achromatic configuration, whereas Fig. 3(b) shows
results from the apochromatic configuration. As ex-
pected, when polychromatic light is used, the corre-
lation output is rather insensitive to the longitudinal
misalignment of u;. The reason for this insensitivity
is that the misalignment leads to deviations from the

optimal scaling factor Sjgea; only for small parts of the
spectral range, whereas the deviation remains small
for most of the spectral range; hence, as long as the
misalignment is not severe, the correlation results are
not degraded.

To verify the predicted improvement for the new
apochromatic correlator we performed experiments.
Representative results of an autocorrelation of the let-
ter O are shown in Fig. 4. We chose this letter because
it provides a critical test. The autocorrelation peak
would disappear if the reference letter were magnified
by more than the linewidth of the O circle. The letter
X, on the other hand, is more tolerant of scaling mis-
match and hence is less suitable for use in testing the
performance of the correlator. Figures 4(a) and 4(c)
show the autocorrelation output and the correspond-
ing cross section along the correlation peak for the new
apochromatic correlator. Figures 4(b) and 4(d) show
the results obtained with the achromatic correlator for
comparison. The improvement is obvious.

In conclusion, we have shown that correlation with
totally incoherent white light can be significantly
improved by inclusion of hybrid diffractive—refractive
lenses in the correlator configuration. Such a configu-
ration with hybrid lenses can also be exploited for other
applications in which it is desired that the inherent
diffraction be independent of wavelength.
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