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Flatland optics. III. Achromatic diffraction
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In the previous two sections of ‘‘Flatland optics’’ [J. Opt. Soc. Am. A 17, 1755 (2000); 18, 1056 (2001)] we de-
scribed the basic principles of two-dimensional (2D) optics and showed that a wavelength l in three-
dimensional (3D) space (x, y, z) may appear in Flatland (x, z) as a wave with another wavelength
L5l/cos a. The tilt angle a can be modified by a 3D-Spaceland individual, who then is able to influence the
2D optics in a way that must appear to be magical to 2D-Flatland individuals—in the spirit of E. A. Abbott’s
science fiction story of 1884 [Flatland, a Romance of Many Dimensions, 6th ed. (Dover, New York, 1952)].
Here we show how the light from a white source can be perceived in Flatland as perfectly monochromatic, so
diffraction with white light will be free of color blurring and the contrast of interference fringes can be 100%.
The basic considerations for perfectly achromatic diffraction are presented, along with experimental illustra-
tion of Talbot self-imaging performed with broadband illumination. © 2001 Optical Society of America

OCIS codes: 050.1960, 030.1640.
1. INTRODUCTION
In this series on ‘‘Flatland optics’’ we try to describe optics
as it would appear to a two-dimensional (2D) physicist,
limited to live (and observe light) on an infinite plane.
This is in the spirit of E. A. Abbott’s science fiction story
Flatland of 1884.1 Flatland optics takes place in free
space, or more specifically in a plane ( y 5 0) with coor-
dinates (x, z). The third dimension ( y) can provide us,
the three-dimensional (3D) creatures, with the ability to
manipulate the (x, z) optics of Flatland.

The fundamentals of Flatland optics, especially its ba-
sic wave equation, were presented in part I2 of our three-
part series on Flatland, where we showed that a 2D
physicist will measure a 2D wavelength L that may be
different from the 3D wavelength l. The connection be-
tween these two wavelengths is

L 5
l

cos a
, (1)

where a is the tilt angle of the beam in the y –z plane.
Intuitively, this means that the k vector of the light for
the 2D physicist in Flatland is the projection of the 3D k
vector onto the plane of Flatland. The reality, or the ob-
jectivity, of Flatland optics was demonstrated in part II,3

where the Flatland-equivalent basic experiments of wave
optics, i.e., the Young biprism fringes, the Talbot effect,
Fresnel diffraction on a zone plate, and Fraunhofer dif-
fraction from a double slit and a grating, were performed.
The aim of this part III of ‘‘Flatland optics’’ is to demon-
strate how a 3D physicist can manipulate the illumina-
tion spectrum in Flatland in a lossless manner. In par-
ticular, we demonstrate how such manipulations can be
exploited to obtain perfectly achromatic diffraction in
white light.

2. ACHROMATIC DIFFRACTION
Achromatic Fresnel diffraction systems have been inves-
tigated for some time.4–9 In some cases, certain approxi-
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mations had to be incorporated to achieve the achromati-
zation. In others, either complicated diffractive
components were required or the system was specialized
for periodic objects. Here we demonstrate how one can
achieve perfectly achromatic diffraction in Flatland by us-
ing an arbitrary broadband 3D light source.

By perfectly achromatic we mean that the intensity dis-
tribution I(x, y, z) in the half-space (z > 0) behind the
object is the same for all wavelengths l, whereby

uV~x, y, z; n, l!u2 5 I~x, y, z !, (2)

where V(x, y, z; n, l) is the distribution of the complex
amplitude at wavelength l and refractive index n. Such
perfect achromatization is possible theoretically, if the re-
fractive index n(l) of the medium in (z > 0) were to be
linearly proportional to the wavelength, as

n~l! 5 n1l. (3)

As a consequence of Eq. (3) the length k of the wave vector
would be the same for all wavelengths, so

k~l! 5
2pn

l
5 2pn1 . (4)

We are not aware of any material whose refractive in-
dex would obey Eq. (3). However, in accordance with our
Flatland optics,2,3 it is possible to readily control the re-
fractive index in Flatland by tilting the illumination as in
the generic setup shown in Fig. 1. Specifically, in Flat-
land the effective 2D wavelength L depends on the 3D
wavelength l as

L 5
l

cos a
5 L~l, a!. (5)

According to Eq. (5), the cos a takes the place of the re-
fractive index, so perfect achromaticity would be achieved
if the cos a (l) varied as

cos a~l! 5 l 3 const. (6)
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Grating diffraction obeys a similar law:

sin b~l! 5 l/D, (7)

where b (l) is the angle of diffraction and D is the grating
period. Thus what we need is a setup in which the grat-
ing angle b is connected to the Flatland angle a by

b~l! 1 a~l! 5 p/2. (8)

That is possible by bending the optical axis by 90°, yield-
ing

cos a~l! 5 sin b~l! 5 l/D. (9)

When comparing Eq. (9) with Eq. (5) we realize that the
Flatland 2D wavelength L is identical to the grating pe-
riod D, which is valid for every illumination 3D wave-
length l. The basic optical setup for achieving achroma-
tization is presented in Fig. 2. There a polychromatic
source is collimated to form a plane wave normally inci-
dent on a grating that is oriented at 90° to the object.
Plane waves are diffracted from the grating at an angle b

Fig. 1. Optical setup in which a 1D object at z 5 0 is illumi-
nated by a plane wave, tilted by an angle a in the y direction.

Fig. 2. Optical setup for tuning the tilt angle a (l) by means of a
diffraction grating oriented orthogonally to the object.

Fig. 3. Spectrum of a source in 3D Spaceland and in 2D Flat-
land obtained with the setup of Fig. 2.
with respect to the normal to the grating and impinge on
the object at an angle a with respect to the normal to the
object. With such a setup it should be possible to trans-
form an arbitrary 3D spectrum S0(l) into the monochro-
matic 2D spectrum S(L) in Flatland without any loss, as
shown schematically in Fig. 3.

3. EXPERIMENTAL PROCEDURE AND
RESULTS
We performed a Talbot self-imaging experiment with the
setup shown in Fig. 2. The diffraction grating had a pe-
riod D 5 (1/1200) mm, the white light source was a white
discharge lamp imaged onto a pinhole, and the object was
a Ronchi grating (200 lines/in.). The resulting Talbot
self-image is shown in Fig. 4. This image was taken at
the first Talbot x –y plane (at a distance of z 5 3.9 cm
from the object) with a commercial color CCD camera.
Note that a Flatland scientist, who lives in a particular
y 5 constant plane, would perceive only a one-
dimensional (1D) slice of what is recorded in Fig. 4. The
quality of the self-imagery remains essentially the same
even at a larger distance z. That would not be the case
with a ‘‘normal’’ Talbot self-image experiment using poly-
chromatic illumination, where the longitudinal period
2D2/L is wavelength dependent. However, in our Flat-
land experiment the spectrum S(L) effectively became
monochromatic, although the spectrum S0(l) of the origi-
nal source was essentially polychromatic.

4. OTHER POSSIBLE SPECTRAL
MANIPULATIONS
In the preceding section we showed how a 3D broadband
spectrum can be manipulated so it will be perceived as
monochromatic in Flatland. Alternatively, it is possible
to transform a 3D monochromatic spectrum into a 2D
broadband spectrum. Figure 5 illustrates the generic
setup for performing such a transformation. Here, a lin-
ear grating M( y) diffracts the light from a single source
into three beams, so the illumination appears virtually as
an array of three sources. These three sources are coher-
ent in three dimensions (and in two dimensions) so that
interference fringes will appear along the longitudinal di-
rection in the Flatland plane. A Flatland physicist would
interpret these interferences as ‘‘beats,’’ as a result of co-
herent superposition of three different 2D wavelengths.

For a more detailed illustration, let us assume (for sim-
plicity) a grating M( y) with only two diffraction orders.
These two diffraction orders have two different 2D wave
vectors K1 and K2 but the same temporal frequency v.
The two waves will propagate in the x –z plane as

V~z, t ! 5 exp@i~K1z 2 vt !# 1 exp@i~K2z 2 vt !#

5 exp@i~K̄z 2 vt !#2 cos~DKz !, (10)

where K̄ 5 (K1 1 K2)/2 and DK 5 (K1 2 K2)/2. The per-
ceived intensity in Flatland contains longitudinal beats,
of the form

uV~z, t !u2 5 2@1 1 cos~2DKz !#. (11)
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Fig. 4. Experimental result of an achromatic Talbot self-image in Flatland. The illumination spectrum is spread along the y axis. The
image is composed of two CCD captures taken at the same longitudinal distance z, one at the red–yellow spectrum and the other at the
yellow–green spectrum.
We can let the two 2D wavelengths be mutually inco-
herent by moving the grating M in the y direction, so that
the beats phase would change fast enough to average out
during the detection time of a Flatland detector. In other
words, there would be two slightly different frequencies
v1 and v2 , and if the time constant t of the detector were
such that (v1 2 v2)t @ 2p, then the beats would disap-
pear. For the Flatland physicist, the illumination is com-
posed essentially of two sharp spectral lines.

It is important to note that the speed of light in Flat-
land is not constant. It may happen that two waves of
the same 2D wavelength will propagate in Flatland with
different speeds (nontilted 3D red light propagates faster
in Flatland than tilted 3D blue light). For this reason,
our 3D speed of light c is just an upper limit for the speed
of light in Flatland. Thus a dispersion relation between
temporal frequency and wavelength does not exist in
Flatland, so beats in Flatland can be temporally station-
ary if the two 2D wavelengths have the same temporal
frequency. In three dimensions the dispersion relation
prohibits such a situation, so 3D beats always appear in
both space and time.

More complicated spectral transformations are possible
by considering different gratings M with more compli-
cated grating functions along the y direction. The design
of such gratings is equivalent to the design of 1D holo-
grams.

5. CONCLUDING REMARKS
We have shown that the 2D spectrum in Flatland can be
readily manipulated so that polychromatic light in the 3D

Fig. 5. Optical setup for transforming monochromatic light in
3D Spaceland into polychromatic light in 2D Flatland.
world is perceived in the 2D Flatland world as if it were
perfectly monochromatic. This makes it possible to ob-
tain perfectly achromatic diffraction, even with white
light.
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