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Analytic design and solutions for resonance
domain diffractive optical elements
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A model for designing and analyzing complicated surface relief diffractive elements in the resonance domain is
developed. It is based on subdividing the complicated diffractive element into many highly efficient local dif-
fraction gratings whose surface relief modulations can be effectively characterized as slanted volume gratings
for which closed form analytic solutions exist. The model is illustrated by finding in the resonance domain the
local period, effective slant angle, and groove depth at each location on an off-axis cylindrical diffractive lens.
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. INTRODUCTION
iffractive optical elements (DOEs) are usually designed
nd characterized with scalar diffraction Fourier
ethods1 and scalar analytical ray tracing for beam fo-

using and shaping.2–4 The scalar analytical ray tracing is
ased on first-order beam diffraction at each point of the
OE, similar to refraction at each point of a conventional

efractive optical element. Accordingly, a local diffraction
rating approximation, where light is diffracted by the
ngles defined by a local spatial frequency and the grat-
ng period on the DOE, is exploited. The scalar diffraction
esigns where the DOE grating period is significantly
arger (at least ten times) than the illumination wave-
ength have advanced to the level at which either analyti-
al equations or well-defined iterative algorithms have
een established and successfully applied.
Unfortunately, when the local grating period of the

OEs is comparable to the illumination wavelength in
he resonance domain of diffraction, the situation is much
ore complex. Typically, numerical methods of rigorous

iffraction theory5–9 are exploited for designing such
OEs whose local diffraction gratings have high diffrac-

ion angles.10–16 When the grating period is smaller than
he illumination wavelength, namely, in the subwave-
ength domain, there are well-developed analytical mod-
ls of effective medium theory. They are based on substi-
ution of grating grooves by an averaged effective medium
ayer.17

In this paper we present a method that combines the
implicity of the scalar diffraction design with the accu-
acy of rigorous diffraction for designing DOEs with sur-
ace relief gratings. This method is applied to DOEs that
bey two conditions. First, they are in the resonance do-
ain. Second, their first-order diffracted beam is re-

tricted by geometrical optics and, consequently, the DOE
ay be treated as built-up from local surface relief dif-
1084-7529/07/030687-9/$15.00 © 2
raction gratings with gradually variable grating orienta-
ion and groove parameters. The local diffraction grating
hould be designed to transform the angular orientation
f the local incident beam to that of the local diffracted
eam with high diffraction efficiency. Diffraction effi-
iency and phase are estimated with an analytical effec-
ive grating model that is based on the Bragg properties
f the local surface relief gratings.18–21 We show that the
arameters of the local grating grooves (period, depth, ef-
ective slant angle, orientation shape) may be chosen with

simple set of analytical equations. Computer simula-
ions of specific diffraction gratings and off-axis diffrac-
ive elements confirm the validity and applicability of our
ethod.

. HIGHLY EFFICIENT DIFFRACTIVE
PTICAL ELEMENTS

he approach we propose for the DOE is quite similar to
hat for kinoform diffractive elements1 in terms of input
o output beam transformation, but exploits resonance do-
ain diffraction18 rather than classical scalar diffraction.
e consider a basic DOE, recorded either holographically

r by direct writing process, on planar or curved sub-
trates. The relevant parameters and geometry of the
OE and beam transformation are depicted in Fig. 1,
here h is the maximum height of the grating grooves; �

he grating period; nM the refractive index of the groove
aterial; ni the refractive index of the surrounding me-

ium (normally air so ni=1); �inc, Ninc, and Sinc character-
ze the local angular orientation and phase distribution
eikonal) of the incident beam; �out, Nout and Sout charac-
erize the local angular orientation and phase distribu-
ion (eikonal) of the output diffracted beam; Nn is the lo-
al unit normal to the DOE substrate and pointing to the
ide of beam propagation; and x the lateral coordinate
007 Optical Society of America
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long the DOE surface. Obviously, angles and unit ray
ectors of the incident and output diffracted beams are re-
ated as

cos �inc = Ninc · Nn, cos �out = Nout · Nn. �1�

We assume that the DOE is illuminated with a mono-
hromatic beam that obeys the restrictions of geometrical
ptics and has a wavelength � and eikonal function Sinc.
n accordance with the eikonal equation of geometrical
ptics, the unit ray vector Ninc is

Ninc =
�Sinc

ni
, �2�

here � is the 3-D gradient operator.
We now assume that the incident power is diffracted,

ith �100% diffraction efficiency, only into the first dif-
raction order, which constitutes the output beam. This
utput beam is characterized by the eikonal Sout and can
e, in general, either a simple spherical wave or a more
omplex aspherical wave needed for imaging or laser
eam shaping and focusing. Several classes of diffractive
lements, like diffractive lenses2 and map-transformation
eam shapers,3 have closed form analytical equations for
out. When Sout satisfies geometrical optics restrictions,

hen the local direction Nout of the output beam is deter-
ined with the aid of the eikonal equation of geometrical

ptics

Nout =
�Sout

ni
. �3�

In general, the surface relief DOE locally transforms
inc to Nout and has diffractive zones with gradually vari-

ble local orientation and grating period. Thus we can
ubdivide the DOE into small areas, each of which can be
reated as a local surface relief diffraction grating charac-
erized by its own parameters. In a DOE design, the goal
s to find those grating parameters that provide the re-
uired change of beam propagation direction with high
iffraction efficiency at each location x on the DOE. The
ocal spatial frequency �, grating period �, and grating

ig. 1. (Color online) Relevant parameters and geometry of a
eam-transforming DOE.
rientation vector s are determined from the DOE
quation,2,8 which, in our notation and for the first dif-
raction order, yields

� =
1

2�
��� =

ni

�
�Nout,� − Ninc,��, �4�

� =
1

���
, s =

�

���
, �s� = 1, �5�

here �� is the 2-D gradient operator with respect to lat-
ral coordinates x along the DOE, Ninc,�, Nout,� are the
ateral components of the vectors Ninc, Nout, and � is the
OE phase function, defined at each location x on the
OE as

� = k�Sout − Sinc�, �6�

ith k=2� /�.
When the eikonals Sinc and Sout satisfy geometrical op-

ics restrictions, the phase function � in Eq. (6) is natu-
ally smooth and results in gradual zone distribution in
he DOE. Equation (6) formally looks similar to that for a
hin optical element4 in the scalar domain. However, in
he scalar domain, the phase function � is independent of
ay directions, while in other domains of light diffraction
t does depend on the ray directions Ninc, Nout. When the
ncidence plane is perpendicular to the grating orienta-
ion vector s, then the DOE Eq. (4) converts to a first-
rder grating equation in a classical mounting8 as

ni�sin �inc + sin �out� = �/�. �7�

In order to compare subwavelength, resonance, and
calar diffraction domains, we calculated the first-order
iffraction efficiency of a sawtooth surface relief grating
ith a fixed depth but variable grating period. The results
f the first-order TE diffraction efficiency as a function of
he grating period, taken in units of wavelength, are pre-
ented in Fig. 2. These were calculated by a rigorous
oupled wave approach5 with the incidence angle 11.7°,
=1 �m, nM=1.4502, and grating groove depth 2.17 �m
hich is optimal for obtaining highest diffraction effi-

iency in the scalar domain, in accordance with the
quation4

hoptScalar

�
=

1

nM − ni
. �8�

s evident, there are two ranges with nearly 100% dif-
raction efficiency. One is in the scalar diffraction domain,
ith grating periods larger than �17 illumination wave-

engths. The other is in the resonance domain, with grat-
ng periods comparable with the illumination wavelength.

We found that in the scalar domain only the −1st dif-
raction order had high diffraction efficiency, whereas in
he resonance domain it was the +1st diffraction order.
he scalar domain suffers from higher diffraction orders
ccompanying the first diffraction order. The scalar do-
ain is also restricted to low spatial frequency and small

iffraction angles, leading to low numerical aperture (NA)
f available diffractive lenses. The resonance domain in-
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erently avoids disturbing higher diffraction orders, be-
ause they are evanescent. The zeroth and the −1st dif-
raction order in the resonance domain are well separated
n direction from the main +1st diffraction order, because
f the high diffraction angles occurring with the grating
eriod comparable to the wavelength. Figure 2(a) shows
he full range of grating periods and Fig. 2(b) shows a
agnified part of the region around the resonance do-
ain, both with a groove depth optimized for the scalar

iffraction domain. Figure 3 shows a magnified part of the
egion around the resonance domain, but with groove
epth 2.47 �m, which is optimal for obtaining highest dif-
raction efficiency in the resonance domain. Note that the
iffraction efficiency in the resonance domain can reach
00%, even without any antireflection coating (Fig. 3),
hile the actual best diffraction efficiency in the scalar
omain is �93% [Fig. 2(a)], where the reduction is due to
iffraction losses into higher diffraction orders.

ig. 2. (Color online) Diffraction efficiency as a function of gra
omain, TE polarization. A diffraction order with highest diffrac
omain. The graph is calculated by a rigorous coupled-wave ana
=1 �m, nM=1.45042, and groove depth 2.17 �m. (a) Full range
omain.
. EFFECTIVE GRATING MODEL OF
RATINGS IN THE RESONANCE DOMAIN

urface relief gratings in the resonance domain can be
odeled with an effective grating model18–20 by general-

zing the effective medium theory17 to include, in addition
o the zeroth order, the first diffraction order. In this sec-
ion we summarize the main features of the effective grat-
ng model and provide the relevant analytic closed-form
quations for evaluating and designing DOEs in the reso-
ance domain. For surface relief gratings in the reso-
ance domain, where the grating period is comparable to
hat of the illumination wavelength, the diffraction effi-
iency of the first diffraction order can reach 100%, as
hown in Fig. 3. Such unusually high diffraction efficiency
or surface relief gratings was explained18 by the two-
ave Bragg diffraction phenomenon,22 which is usually
ttributed only to volume hologram gratings. In the effec-

riod/wavelength when groove depth is optimized for the scalar
ficiency is +1st for the resonance domain and −1st in the scalar
for a sawtooth surface relief grating with incidence angle 11.7°,
ting periods, (b) magnified part showing mainly the resonance
ting pe
tion ef
lysis5

of gra
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ive grating model the profile of the surface relief grating
roove is decomposed into sublayers. Light diffracted
rom these sublayers constructively interferes, resulting
n the high Bragg diffraction efficiency.

The effective grating theory relates the high diffraction
fficiency to the geometrical and optical parameters of the
rooves in the surface relief gratings. For simplicity of the
quations, a linear diffraction grating in classical mount-
ng is assumed from this point. We begin with a general
ormalized groove profile defined by the function g���, 0
g����1, shown in Fig. 4. The groove profile is assumed

nimodal and single-blazed and can have a variety of
hapes, for instance, sinusoidal, rectangular, or triangu-
ar. As shown, � is the normalized lateral coordinate rang-
ng from 0 to 1 within the groove period � ,qc is the dis-
ance from the groove’s edge to the center of the groove’s
eak, nM and ni are refractive indices of the groove mate-
ial and surrounding medium, �s is the effective slant
ngle, and g ��� is the normalized slanted groove profile.

ig. 3. (Color online) Diffraction efficiency as a function of gratin
omain, TE polarization. Magnified part showing mainly the re
nalysis (RCWA) for a sawtooth surface relief grating with incid

ig. 4. (Color online) Geometric and optical parameters of a
ingle groove of the surface relief grating.
s

The effective slant angle �s can be related to the
roove’s peak position18 by

tan �s =
�

h
�qc − 0.5� =

�

h
ps, �9�

here effective slant parameter ps is defined as ps=qc
0.5 and h is the groove depth, which is actually the
aximum value of the groove depth distribution h ·g���
ithin the period �. Using such a groove profile, the av-
rage refractive index n̄ and the averaged first Fourier co-
fficient G1s of the slanted groove profile were found to be

n̄2 = ni
2 + 	nM

2 · ḡ, �10�

G1s =�
0

1

gs���exp�− i2���d�, �11�

ith

ḡ =�
0

1

g���d�, 	nM
2 = nM

2 − ni
2. �12�

he calculated G1s for a triangular groove is 2/�2=0.203,
nd that for a sinusoidal groove is 0.25.18,19

The effective slant angle leads to an effective Bragg in-
idence angle �inc,B, which may be related directly to pa-
ameters of the grooves by

ni sin �inc,B =
�

2�
− tan �s� n̄2

1 + tan2 �s
− � �

2�
�2	1/2

�13�

nd depends on the ratio � /�, the effective slant angle �s,
nd the refractive indices via n̄. At the Bragg incidence
ngle �inc,B, the diffraction efficiency of the 1st diffraction
rder 
 is18

od/wavelength when groove depth is optimized for the resonance
ce domain. The graph is calculated by a rigorous coupled-wave

gle 11.7°, �=1 �m, nM=1.45042, and groove depth 2.47 �m.
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B = sin2�2�
h

�

n̄�̄01

cos �sc0sB
� , �14�

here

c0sB = �1 − sin2 �s1�1/2, sin �s1 =
�

2n̄� cos �s
, �15�

nd the coupling parameters �̄01 in the cases of TE and
M polarizations are

�̄01TE = �nM
2 G1s, �nM

2 =
	nM

2

2n̄2
, �16�

�̄01TM = �̄01TE�1 − 2 sin2 �s1�. �17�

Note that the resonance domain diffraction efficiency
q. (14) substantially depends on � /�, effective slant
ngle �s, the Fourier coefficient G1s of the normalized
roove profile, and also on the ration h /� and refractive
ndices ni ,nM. For comparison, a relative diffraction effi-
iency in the scalar domain depends only on h /� and
i ,nM, as4


Scalar = sinc2�h/hoptScalar − 1�, �18�

here hoptScalar is determined from Eq. (8).
The effective grating model is based essentially based

n the coupled wave theory of volume holograms with
early Bragg incidence angle but is valid only in a specific
eriod range �low
�
�up of surface relief gratings.18 A
ower value �low of the grating period is derived as �low
max��SW ,�E�, from two separate lower limits �SW and
E, which are both independent of the groove depth. An
pper value �up of the grating period is derived as �up
min��B ,�A�, from two separate upper limits �B and �A,
ith �B independent of the groove depth.
The first lower limit �SW is the grating period that de-

nes the border between the subwavelength domain and
he resonance domain. It is found from

�SW

�
=

1

min�n̄,ni� + nisin �inc,B
. �19�

he second lower limit is the grating period that defines
he border where the second-order derivatives in coupled
ave equations21 can be neglected. Accordingly, �E must

atisfy the equation

�̄01/c0sB = �max, �20�

ith c0sB and �̄01 defined in Eqs. (15)–(17) and �max
0.15. The first upper limit �B is the grating period that

atisfies the two-wave Bragg diffraction regime
riterion.22 It is determined from

�B

�
=

�high
1/4

cos �s�n̄	ns�1/2
, �21�

here 	ns=	nM
2 �G1s � / n̄ is the refractive index modula-

ion for the surface relief grating,18 and �high estimates
he power diffracted to other than the zeroth and first or-
ers over the incidence beam power. In the development
f the effective grating model the relative power � was
high
ssumed to be zero, but a value of about 0.15 can be tol-
rated.

The second upper limit �A is the grating period that de-
nes for a certain aspect ratio h /� the border beyond
hich high Bragg diffraction efficiency cannot be obtained

or the surface relief grating, even though it can be ob-
ained for an effective volume grating. This is because the
urface relief grating may include also additional gratings
ith slant parameters p as

p = ps − 	plow =
h tan �s

�
− 	plow, �22�

here the calculated 	plow for a triangular groove is
.3524 and for a sinusoidal groove 1.052,18,19 and ps is the
ffective slant parameter of the effective grating [Eq. (9)].
o ensure that the light diffracted by the additional grat-
ngs is minimized, �A should satisfy18

�QA − tan �s
cos2 �s − QA
2�

= −
�

2�A
−

�AP

h � n̄2

1 + ��Ap/h�2 − � �

2�A
�2	1/2

, �23�

here

QA =
�

2n̄�A
−

�mis cos3 �s

�

�A

h
c0sB, �mis = 0.507. �24�

To conclude, several limits and bounds must be im-
osed in order that the effective grating model of the sur-
ace relief grating in the resonance domain is valid. These
nclude the following:

1. the groove profile should be unimodal and single-
lazed;
2. the period � must be above lower limits �SW and �E,

o exceed the subwavelength domain and satisfy coupled
ave approximations;
3. the period � must be below upper limit �B to have

he two-wave Bragg diffraction;
4. the period � for a certain aspect ratio h /� must be

elow the upper limit �A in order to minimize the influ-
nce of additional gratings. For typical optical materials,
he range of periods �low ,�up is centered at about wave-
ength �, compatible with the resonance domain gratings.
o ensure that the DOEs are in the resonance domain,
hey must have small periods, comparable to �, over their
ntire area. This is achieved with relatively high offset
ngles between the incident and output beams.

We verified our effective grating model in the resonance
omain with the sawtooth surface relief grating where
umerically derived diffraction efficiency as a function of
rating period/wavelength is shown in Fig. 3. Specifically,
e exploited the analytic effective grating Eqs. (14) and

13) to find the Bragg diffraction efficiency and the Bragg
ncidence angle at the grating period/wavelength of 1.1,
here the peak of diffraction efficiency occurs. The results
ere calculated as Bragg diffraction efficiency of 99.90%
nd Bragg incidence angle of 11.74°. These are in a good
greement with the values of 99.70% and 11.7° that were
btained by rigorous numerical calculations.
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. ANALYTICAL DESIGN OF DIFFRACTIVE
PTICAL ELEMENTS IN THE
ESONANCE DOMAIN
he relevant optical and geometrical parameters of the lo-
al surface relief gratings must be determined in order to
btain a DOE with desired local input and output beam
irections and eikonals and with high diffraction efficien-
ies. These local parameters, such as the grating orienta-
ion vector s, period �, effective slant angle �s, relative
eak position of groove qc, groove depth h, and refractive
ndex of groove material nM can be determined analyti-
ally from our effective grating model and the DOE equa-
ions (4) and (5).

In order to obtain high (near 100%) diffraction effi-
iency 
B with given period �, the local grating must obey
he Bragg condition of the equivalent grating model, Eq.
13). For the incidence angle �inc and a desired output dif-
raction angle �out such a Bragg condition will be satisfied
f the groove effective slant angle �s is

tan �s =
�

�
��n̄2 − ni

2 sin2 �inc�1/2 − �n̄2 − ni
2 sin2 �out�1/2�,

�25�

s derived from Eqs. (7) and (13). Then, substituting �s
rom Eq. (25) into Eq. (9) yields effective slant parameter
s and relative groove peak position qc as

Ps =
h

�
tan �s, qc = 0.5 + ps. �26�

Now we are able to determine an optimal groove depth
opt for a certain desired Bragg efficiency 
Bd. Since the

unctions c0rB and �̄01 depend only on � /� and �s, we need

ig. 5. Bragg TE and TM diffraction efficiency for surface relief
ratings with triangular groove profiles as functions of the nor-
alized groove depth h /� for the resonance domain and for the

calar domain. Calculations were done by the effective grating
odel. Effective slant angle is �s=15°, � /�=1.1, refractive index

f grooves n =1.46, n =1.
M i
o solve Eq. (14) in order to determine the groove depth h
hat would lead to this Bragg efficiency 
Bd at the Bragg
ncidence angle. For a specific value of 
Bd, there are two

ain solutions for the optimal groove depths for the TE
olarization and two for the TM polarization, as

hopt�
Bd�

�
=

c0sB cos �s

2�n̄�̄01
��

2
± ��

2
− arcsin

Bd�	 , �27�

ith �̄01 for TE, �̄01TE, and �̄01 for TM, �̄01TM, as in Eqs.
16) and (17). Note that any deviation of h from hopt would
ead to a change in the Bragg diffraction efficiency in ac-
ordance with Eq. (14). This is illustrated in Fig. 5, which
hows the TE and TM Bragg diffraction efficiency as a
unction of the normalized groove depth h /�. Also shown
or comparison is the scalar domain diffraction efficiency,
alculated in accordance with Eqs. (18) and (8). It is evi-
ent that the resonance domain diffraction efficiency of
Bd=100% for the TM polarization is achieved with larger
ptimal groove depth hoptTE�
Bd� than that for the TE po-
arization hoptTE�
Bd�, whereby both of the TE and TM
epths are larger than the prediction of the scalar domain
iffraction for an optimal groove depth hoptScalar[Eq. (8)].
To illustrate our analytic design of DOEs in the reso-

ance domain, we consider a cylindrical focusing diffrac-
ive lens having a desired high diffraction efficiency of
Bd. In order to keep the DOE grating periods within the
ounds �low
�
�up and comparable to the illumination
avelength �, we need relatively high off-axis angles. The
eometrical parameters of the lens are depicted in Fig. 6.
igure 6(a) shows the entire geometry of the lens and Fig.
(b) a magnified one-dimensional cross section. As shown
he grating grooves are oriented parallel to the y axis.

The phase function of the cylindrical focusing diffrac-
ive lens, which transforms an oblique plane incident
ave to an off-axis converging cylindrical wave is

��x� =
2�

�

F�1 − ��x�� − x sin �inc�, �28�

here �x � 
 D �2, D is the lens aperture, � is the off-axis
ngle of the converging cylindrical lens, F is the focal
ength, �inc is the incidence angle of the incident plane
ave, the same for all locations x on the lens, and

��x� =
1 + 2 sin �
x

F
+

x2

F2 . �29�

ote that when D�F ,��x� of Eq. (28) can be approxi-
ated by

��x� �
2�

�
�− �sin �inc + sin ��x −

x2

2F� . �30�

The spatial frequency and local grating period in accor-
ance with the DOE Eqs. (4) and (5), are
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�x = −
1

�
�sin �inc + sin �out�, �31�

� =
1

��x�
, �32�

here

sin �out =
sin � + x/F

��x�
. �33�

hen, the effective local slant angle �s is determined from
q. (25), the groove peak position qc from Eqs. (26), and

he groove depth h from Eq. (27).
We designed a specific diffractive cylindrical lens in the

esonance domain using the following parameters: �
0.633 mm, nM=1.457, ni=1, �=45°, �inc=15°, F=50 mm,
=25 mm, 
 =100% and triangular groove profiles.

ig. 6. (Color online) Geometrical parameters of the off-axis
ne-dimensional focusing diffractive lens. (a) entire lens, (b) mag-
ified one-dimensional cross section.
Bd
pecifically, we calculated the local normalized grating
eriods, effective slant angles, groove peak positions, and
he groove depths, all as a function of relative lateral co-
rdinates 2x /D of the diffractive lens. The results are pre-
ented in Figs. 7–10 and in Table 1. Figure 7 shows the
ariations of the grating period � normalized with respect
o the wavelength, as well as its lower and upper period
ounds �low and �up. As is evident, the actual normalized
eriods � /� range from 1.25 to 0.94, so they fall within
hese bounds.

Figures 8 and 9 depict variations of the local effective
lant angle and groove peak position that satisfy the
ragg condition locally at each coordinate x of the diffrac-

ive cylindrical lens. Figures 8 and 9 indicate that at the

ig. 7. Variations of the normalized local grating period � /� of
he diffractive off-axis cylindrical lens in the resonance domain
s a function of the relative lateral coordinate 2x /D on the lens.
lso shown are the lower and upper period bounds �low and �up.
arameters are �=0.633 mm, nM=1.457, �=45°, �inc=15°, F
50 mm, D=25 mm, 
Bd=100%.

ig. 8. Variations of the local effective slant angle �s of the reso-
ance domain diffractive off-axis cylindrical lens, which provide
he Bragg condition locally at each coordinate x point of the cy-
indrical lens, plotted as a function of the relative lateral coordi-
ate 2x /D on the lens. Parameters are the same as in Fig. 7.
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dge of the lens, −1 relative lateral coordinate, the grat-
ng grooves have a nearly symmetrical shape (�s=6.9°,
c=0.75, compared with qc=0.5 of a symmetrical groove).
t about the center of the lens, 0.13 relative lateral coor-
inate, the grooves have a sawtooth shape (�s=11.7°, qc
1.0). Finally, at the other edge of the lens, +1 relative

ateral coordinate, the grooves have a significant “over-
ang” ��s=14.1°, qc=1.14� whereby one grating period
verlaps the adjacent one.

Figure 10 depicts variations of the required normalized
ocal groove depths hopt�
Bd� /� which provide 
Bd=100%
ocally at each coordinate x of the diffractive cylindrical
ens. Also shown are the calculated results for the scalar
omain groove depth hoptScalar /�. It is again evident that
he resonance domain requires slightly deeper grooves
han the scalar domain. We verified that these grating pe-
iods, effective slant angles, groove peak positions, and
he groove depths, which were calculated by our effective
rating model, indeed result in high diffraction efficien-
ies. For this we calculated the diffraction efficiency of the
rst order by numerical (RCWA)5 and got 96.9% at the
dge of the lens, −1 relative lateral coordinate; 99.7% at
bout the center of lens, 0.13 relative lateral coordinate;
nd 99.8% at the other edge of the lens, +1 relative lateral
oordinate that is in agreement with desired value of
Bd=100%. Table 1 summarizes all the results of Figs.
–10, showing the relevant parameters obtained with one
esign at these local grating locations.
For all the results in this illustration example, the ba-

ic shape of the slanted grooves could be sinusoidal, rect-
ngular, or triangular. Such a variety of shapes is possible
ecause diffraction efficiency depends on the first Fourier
oefficient G1s of a groove profile, rather than on the de-
ails of the profile. It is only necessary that the groove
rofiles have the proper effective slant angles and aspect
atios, as well as the proper local grating periods that do
t the actual G1s value.

. CONCLUDING REMARKS
e developed and investigated a model for designing and

nalyzing resonance domain surface relief DOEs. It is
ased on transforming the surface relief modulation to an
ffective grating with slanted volume fringes that can
rovide closed-form analytical solutions. The local period

on Gratings of the Resonance Domain
using Diffractive Lensa

Center Other Edge

+0.13 +1
1.02 0.94
2.46 2.39
2.19 —

11.7° 14.1°
1.0 1.14

l Sawtooth Overhanging
See Figs. 8 and 9 See Figs. 8 and 9

99.7% 99.8%
100%

.

Table 1. Design Data for the Local Diffracti
Off-Axis One-Dimensional Foc

osition on the Lens Edge

elative lateral coordinate on the lens −1
ocal grating period/wavelength 1.25
ocal groove depths/wavelength 2.58
calar groove depth/wavelength —
ocal effective slant angle 6.9°
ocal relative groove-peak position 0.75
roove shape Nearly symmetrica
roove scheme See Figs. 8 and 9
iffraction efficiency, RCWA 96.9%
iffraction efficiency designed

aGiven parameters are �=0.633 mm, n =1.457, �=45°, � =15°, F=50 mm, D=25 mm
ig. 9. Variations of the relative groove peak position qc of the
esonance domain diffractive off-axis cylindrical lens, which pro-
ide Bragg condition locally at each coordinate x point of the cy-
indrical lens, plotted as a function of the relative lateral coordi-
ate 2x /D on the lens. Parameters are the same as in Fig. 7.
ig. 10. Variations of the required normalized local groove
epths hopt�
Bd� /� of the resonance domain diffractive off-axis cy-
indrical lens, which provide the Bragg condition with 
Bd
100% locally at each coordinate x point of the cylindrical lens,
lotted as a function of the relative lateral coordinate 2x /D on
he lens. Also shown is the scalar depth hoptScalar. Parameters are
=0.633 mm, n =1.457, �=45°, � =15°, F=50 mm, D=25 mm.
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f the DOE, angular orientation of diffractive zones, and
ffective slant angle are chosen to ensure required trans-
ormation of the local incident beam angular direction to
he desired output beam angular direction and satisfy the
ocal Bragg condition. The groove depths are optimized
or achieving nearly 100% Bragg diffraction efficiency. We
etermined a specific grating period range of �low
�
�up within the resonance domain where the effective

rating model is applicable. Both bounds depend on re-
ractive indices, and the upper bound depends also on the
atio of the groove depth to the grating period. Thus, the
esign and analysis of the complicated resonance domain
OEs with wavelength-scale features can now be per-

ormed with almost the same simplicity as that of well-
nown scalar domain design and analysis.
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