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A model for designing and analyzing complicated surface relief diffractive elements in the resonance domain is
developed. It is based on subdividing the complicated diffractive element into many highly efficient local dif-
fraction gratings whose surface relief modulations can be effectively characterized as slanted volume gratings
for which closed form analytic solutions exist. The model is illustrated by finding in the resonance domain the
local period, effective slant angle, and groove depth at each location on an off-axis cylindrical diffractive lens.
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1. INTRODUCTION

Diffractive optical elements (DOEs) are usually designed
and characterized with scalar diffraction Fourier
methods’ and scalar analytical ray tracing for beam fo-
cusing and shaping.?™ The scalar analytical ray tracing is
based on first-order beam diffraction at each point of the
DOE, similar to refraction at each point of a conventional
refractive optical element. Accordingly, a local diffraction
grating approximation, where light is diffracted by the
angles defined by a local spatial frequency and the grat-
ing period on the DOE, is exploited. The scalar diffraction
designs where the DOE grating period is significantly
larger (at least ten times) than the illumination wave-
length have advanced to the level at which either analyti-
cal equations or well-defined iterative algorithms have
been established and successfully applied.

Unfortunately, when the local grating period of the
DOEs is comparable to the illumination wavelength in
the resonance domain of diffraction, the situation is much
more complex. Typically, numerical methods of rigorous
diffraction theory’™ are exploited for designing such
DOEs whose local diffraction gratings have high diffrac-
tion angles.’*® When the grating period is smaller than
the illumination wavelength, namely, in the subwave-
length domain, there are well-developed analytical mod-
els of effective medium theory. They are based on substi-
tution of grating grooves by an averaged effective medium
layer.””

In this paper we present a method that combines the
simplicity of the scalar diffraction design with the accu-
racy of rigorous diffraction for designing DOEs with sur-
face relief gratings. This method is applied to DOEs that
obey two conditions. First, they are in the resonance do-
main. Second, their first-order diffracted beam is re-
stricted by geometrical optics and, consequently, the DOE
may be treated as built-up from local surface relief dif-
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fraction gratings with gradually variable grating orienta-
tion and groove parameters. The local diffraction grating
should be designed to transform the angular orientation
of the local incident beam to that of the local diffracted
beam with high diffraction efficiency. Diffraction effi-
ciency and phase are estimated with an analytical effec-
tive grating model that is based on the Bragg properties
of the local surface relief gratings.'®2! We show that the
parameters of the local grating grooves (period, depth, ef-
fective slant angle, orientation shape) may be chosen with
a simple set of analytical equations. Computer simula-
tions of specific diffraction gratings and off-axis diffrac-
tive elements confirm the validity and applicability of our
method.

2. HIGHLY EFFICIENT DIFFRACTIVE
OPTICAL ELEMENTS

The approach we propose for the DOE is quite similar to
that for kinoform diffractive elements® in terms of input
to output beam transformation, but exploits resonance do-
main diffraction'® rather than classical scalar diffraction.
We consider a basic DOE, recorded either holographically
or by direct writing process, on planar or curved sub-
strates. The relevant parameters and geometry of the
DOE and beam transformation are depicted in Fig. 1,
where £ is the maximum height of the grating grooves; A
the grating period; ny, the refractive index of the groove
material; n; the refractive index of the surrounding me-
dium (normally air so n;=1); 6;,., N;,., and S;,. character-
ize the local angular orientation and phase distribution
(eikonal) of the incident beam; 6,,;, N,,; and S,,; charac-
terize the local angular orientation and phase distribu-
tion (eikonal) of the output diffracted beam; N,, is the lo-
cal unit normal to the DOE substrate and pointing to the
side of beam propagation; and x the lateral coordinate
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Fig. 1. (Color online) Relevant parameters and geometry of a
beam-transforming DOE.

along the DOE surface. Obviously, angles and unit ray
vectors of the incident and output diffracted beams are re-
lated as

Cos einc = Ninc : Nn’ cos enut = Nout : Nn (1)

We assume that the DOE is illuminated with a mono-
chromatic beam that obeys the restrictions of geometrical
optics and has a wavelength N and eikonal function S;,..
In accordance with the eikonal equation of geometrical
optics, the unit ray vector N;,, is

VS;
Ninc = = ’ (2)

where V is the 3-D gradient operator.

We now assume that the incident power is diffracted,
with =100% diffraction efficiency, only into the first dif-
fraction order, which constitutes the output beam. This
output beam is characterized by the eikonal S,,; and can
be, in general, either a simple spherical wave or a more
complex aspherical wave needed for imaging or laser
beam shaping and focusing. Several classes of diffractive
elements, like diffractive lenses® and map-transformation
beam shapers,3 have closed form analytical equations for
S,ut- When S,,; satisfies geometrical optics restrictions,
then the local direction N,,; of the output beam is deter-
mined with the aid of the eikonal equation of geometrical
optics

VSout
Nout = . (3)

n;

In general, the surface relief DOE locally transforms
N;,.. to N,,; and has diffractive zones with gradually vari-
able local orientation and grating period. Thus we can
subdivide the DOE into small areas, each of which can be
treated as a local surface relief diffraction grating charac-
terized by its own parameters. In a DOE design, the goal
is to find those grating parameters that provide the re-
quired change of beam propagation direction with high
diffraction efficiency at each location x on the DOE. The
local spatial frequency v, grating period A, and grating
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orientation vector s are determined from the DOE
equation,z’8 which, in our notation and for the first dif-
fraction order, yields

1 n;
v= ;TVJ.@z I(Nout,J. - Ninc,J_)r (4)
1 v
A=m’ S=7" |S‘=1, (5)

where V| is the 2-D gradient operator with respect to lat-
eral coordinates x along the DOE, N;,,. |, N, | are the
lateral components of the vectors N;,., N,.;, and ¢ is the
DOE phase function, defined at each location x on the
DOE as

@zk(sout_sinc)7 (6)

with k=27/\.

When the eikonals S;,,. and S,,; satisfy geometrical op-
tics restrictions, the phase function ¢ in Eq. (6) is natu-
rally smooth and results in gradual zone distribution in
the DOE. Equation (6) formally looks similar to that for a
thin optical element® in the scalar domain. However, in
the scalar domain, the phase function ¢ is independent of
ray directions, while in other domains of light diffraction
it does depend on the ray directions N;,., N,,;. When the
incidence plane is perpendicular to the grating orienta-
tion vector s, then the DOE Eq. (4) converts to a first-
order grating equation in a classical mounting® as

n;(sin 6;,, + sin 6,,,) = N/A. (7

In order to compare subwavelength, resonance, and
scalar diffraction domains, we calculated the first-order
diffraction efficiency of a sawtooth surface relief grating
with a fixed depth but variable grating period. The results
of the first-order TE diffraction efficiency as a function of
the grating period, taken in units of wavelength, are pre-
sented in Fig. 2. These were calculated by a rigorous
coupled wave approach® with the incidence angle 11.7°,
N=1pum, ny=1.4502, and grating groove depth 2.17 um
which is optimal for obtaining highest diffraction effi-
ciency in the scalar domain, in accordance with the
equa‘cion4

hoptScalar 1

= - (8)

As evident, there are two ranges with nearly 100% dif-
fraction efficiency. One is in the scalar diffraction domain,
with grating periods larger than =17 illumination wave-
lengths. The other is in the resonance domain, with grat-
ing periods comparable with the illumination wavelength.

We found that in the scalar domain only the —1st dif-
fraction order had high diffraction efficiency, whereas in
the resonance domain it was the +1st diffraction order.
The scalar domain suffers from higher diffraction orders
accompanying the first diffraction order. The scalar do-
main is also restricted to low spatial frequency and small
diffraction angles, leading to low numerical aperture (NA)
of available diffractive lenses. The resonance domain in-
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herently avoids disturbing higher diffraction orders, be-
cause they are evanescent. The zeroth and the —1st dif-
fraction order in the resonance domain are well separated
in direction from the main +1st diffraction order, because
of the high diffraction angles occurring with the grating
period comparable to the wavelength. Figure 2(a) shows
the full range of grating periods and Fig. 2(b) shows a
magnified part of the region around the resonance do-
main, both with a groove depth optimized for the scalar
diffraction domain. Figure 3 shows a magnified part of the
region around the resonance domain, but with groove
depth 2.47 um, which is optimal for obtaining highest dif-
fraction efficiency in the resonance domain. Note that the
diffraction efficiency in the resonance domain can reach
100%, even without any antireflection coating (Fig. 3),
while the actual best diffraction efficiency in the scalar
domain is =93% [Fig. 2(a)], where the reduction is due to
diffraction losses into higher diffraction orders.

Subwavelength domain

>
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3. EFFECTIVE GRATING MODEL OF
GRATINGS IN THE RESONANCE DOMAIN

Surface relief gratings in the resonance domain can be
modeled with an effective grating model*®2° by general-
izing the effective medium theory'’ to include, in addition
to the zeroth order, the first diffraction order. In this sec-
tion we summarize the main features of the effective grat-
ing model and provide the relevant analytic closed-form
equations for evaluating and designing DOEs in the reso-
nance domain. For surface relief gratings in the reso-
nance domain, where the grating period is comparable to
that of the illumination wavelength, the diffraction effi-
ciency of the first diffraction order can reach 100%, as
shown in Fig. 3. Such unusually high diffraction efficiency
for surface relief gratings was explained18 by the two-
wave Bragg diffraction phenomenon,22 which is usually
attributed only to volume hologram gratings. In the effec-
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(b)
(Color online) Diffraction efficiency as a function of grating period/wavelength when groove depth is optimized for the scalar

domain, TE polarization. A diffraction order with highest diffraction efficiency is +1st for the resonance domain and —1st in the scalar
domain. The graph is calculated by a rigorous coupled-wave analysis® for a sawtooth surface relief grating with incidence angle 11.7°,
N=1 um, n;=1.45042, and groove depth 2.17 um. (a) Full range of grating periods, (b) magnified part showing mainly the resonance

domain.
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Fig. 3. (Color online) Diffraction efficiency as a function of grating period/wavelength when groove depth is optimized for the resonance
domain, TE polarization. Magnified part showing mainly the resonance domain. The graph is calculated by a rigorous coupled-wave
analysis (RCWA) for a sawtooth surface relief grating with incidence angle 11.7°, A=1 um, n;=1.45042, and groove depth 2.47 um.
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Fig. 4. (Color online) Geometric and optical parameters of a
single groove of the surface relief grating.

tive grating model the profile of the surface relief grating
groove is decomposed into sublayers. Light diffracted
from these sublayers constructively interferes, resulting
in the high Bragg diffraction efficiency.

The effective grating theory relates the high diffraction
efficiency to the geometrical and optical parameters of the
grooves in the surface relief gratings. For simplicity of the
equations, a linear diffraction grating in classical mount-
ing is assumed from this point. We begin with a general
normalized groove profile defined by the function g(x), 0
=g(y)=1, shown in Fig. 4. The groove profile is assumed
unimodal and single-blazed and can have a variety of
shapes, for instance, sinusoidal, rectangular, or triangu-
lar. As shown, y is the normalized lateral coordinate rang-
ing from 0 to 1 within the groove period A,q, is the dis-
tance from the groove’s edge to the center of the groove’s
peak, ny; and n; are refractive indices of the groove mate-
rial and surrounding medium, ¢, is the effective slant
angle, and g,(y) is the normalized slanted groove profile.

The effective slant angle y, can be related to the
groove’s peak position18 by

A A
t =—(q,-0.5) = —p,, 9
an ¢ h(q ) wP 9

where effective slant parameter p, is defined as p,=q,
—-0.5 and & is the groove depth, which is actually the
maximum value of the groove depth distribution %-g(x)
within the period A. Using such a groove profile, the av-
erage refractive index 7 and the averaged first Fourier co-
efficient G, of the slanted groove profile were found to be

n?=n?+Ank -8, (10)
1
Glff gs(x)exp(-i2my)dy, (11
0
with
1
z- f g0y, Any=nip—n?. 12)
0

The calculated G+, for a triangular groove is 2/72=0.203,
and that for a sinusoidal groove is 0.25.1819

The effective slant angle leads to an effective Bragg in-
cidence angle 6;,. g, which may be related directly to pa-
rameters of the grooves by

N FLZ )\ 2 11/2
n;sin O, p=— —tan ¢;| ——— - | —
T OineB= 9 ®l T+tane, \2A

(13)

and depends on the ratio A/\, the effective slant angle ¢,
and the refractive indices via 7. At the Bragg incidence
angle 6;,. 5, the diffraction efficiency of the 1st diffraction
order 7p is
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_ain?{ g R0L_
np = sin”| 27 , (14)
A cos PsCosB

where

A
1)1/2’ sin 081= . > (15)

cosp = (1 —sin? 6, oA cos 0
S

and the coupling parameters kj; in the cases of TE and
TM polarizations are

2

) ) Any,
Koirg = onyGrs, oy =——, (16)
2n
Koirs = Korre(1 — 2 sin? 6y). (17)

Note that the resonance domain diffraction efficiency
Eq. (14) substantially depends on A/\, effective slant
angle ¢,, the Fourier coefficient G, of the normalized
groove profile, and also on the ration A/\ and refractive
indices n;,ny,. For comparison, a relative diffraction effi-
ciency in the scalar domain depends only on A/N and
n;,ny, as

Scalar = Sinc2(h/hoptScalar -1, (18)

where hqpiscq1q- 18 determined from Eqg. (8).

The effective grating model is based essentially based
on the coupled wave theory of volume holograms with
nearly Bragg incidence angle but is valid only in a specific
period range Ay, <A<A,, of surface relief gratings.'® A
lower value Ay, of the grating period is derived as A,
=max(Agw,Ag), from two separate lower limits Agy and
Afg, which are both independent of the groove depth. An
upper value A,, of the grating period is derived as A,,
=min(Ag,A,), from two separate upper limits Ag and Ay,
with Ap independent of the groove depth.

The first lower limit Agy is the grating period that de-
fines the border between the subwavelength domain and
the resonance domain. It is found from

—_— = - . (19)
N min(n,n;) +n;sin 6, p

The second lower limit is the grating period that defines
the border where the second-order derivatives in coupled
wave equations21 can be neglected. Accordingly, Az must
satisfy the equation

’_(OI/COsB = Ymax> (20)

with co,p and kp; defined in Eqs. (15)—(17) and yp.x
~0.15. The first upper limit Ap is the grating period that
satisfies the two-wave Bragg diffraction regime
criterion.?? It is determined from

Ap S}lz/iéh

— =7 (21)

N cos o (AR, Y2
where An =An%;|Gy,|/7 is the refractive index modula-
tion for the surface relief grating,'® and €hign estimates
the power diffracted to other than the zeroth and first or-
ders over the incidence beam power. In the development
of the effective grating model the relative power &;, was
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assumed to be zero, but a value of about 0.15 can be tol-
erated.

The second upper limit A4 is the grating period that de-
fines for a certain aspect ratio A/A the border beyond
which high Bragg diffraction efficiency cannot be obtained
for the surface relief grating, even though it can be ob-
tained for an effective volume grating. This is because the
surface relief grating may include also additional gratings
with slant parameters p as

h tan ¢

A APow (22)

P=Ds=Apipy =
where the calculated Ap,,, for a triangular groove is
1.3524 and for a sinusoidal groove 1.052,18’19 and p, is the
effective slant parameter of the effective grating [Eq. (9)].
To ensure that the light diffracted by the additional grat-
ings is minimized, A4 should satisfy'®

7(Qa - tan ¢,\/cos? ¢, - @3 )
)N AAP ﬁZ )N 211/2
= sl | @®
2A4 h | 1+ (Agp/h) 2A4

A gmis COSS Ps AA
- - o Emis=0.507. (24
TN - , CosB Emis (24)

where

Qa

To conclude, several limits and bounds must be im-
posed in order that the effective grating model of the sur-
face relief grating in the resonance domain is valid. These
include the following:

1. the groove profile should be unimodal and single-
blazed,;

2. the period A must be above lower limits Agy and Ag,
to exceed the subwavelength domain and satisfy coupled
wave approximations;

3. the period A must be below upper limit Ap to have
the two-wave Bragg diffraction;

4. the period A for a certain aspect ratio A/A must be
below the upper limit A4 in order to minimize the influ-
ence of additional gratings. For typical optical materials,
the range of periods Ay, ,A,, is centered at about wave-
length \, compatible with the resonance domain gratings.
To ensure that the DOEs are in the resonance domain,
they must have small periods, comparable to A, over their
entire area. This is achieved with relatively high offset
angles between the incident and output beams.

We verified our effective grating model in the resonance
domain with the sawtooth surface relief grating where
numerically derived diffraction efficiency as a function of
grating period/wavelength is shown in Fig. 3. Specifically,
we exploited the analytic effective grating Eqs. (14) and
(13) to find the Bragg diffraction efficiency and the Bragg
incidence angle at the grating period/wavelength of 1.1,
where the peak of diffraction efficiency occurs. The results
were calculated as Bragg diffraction efficiency of 99.90%
and Bragg incidence angle of 11.74°. These are in a good
agreement with the values of 99.70% and 11.7° that were
obtained by rigorous numerical calculations.
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4. ANALYTICAL DESIGN OF DIFFRACTIVE
OPTICAL ELEMENTS IN THE
RESONANCE DOMAIN

The relevant optical and geometrical parameters of the lo-
cal surface relief gratings must be determined in order to
obtain a DOE with desired local input and output beam
directions and eikonals and with high diffraction efficien-
cies. These local parameters, such as the grating orienta-
tion vector s, period A, effective slant angle ¢, relative
peak position of groove q., groove depth 4, and refractive
index of groove material nj; can be determined analyti-
cally from our effective grating model and the DOE equa-
tions (4) and (5).

In order to obtain high (near 100%) diffraction effi-
ciency g with given period A, the local grating must obey
the Bragg condition of the equivalent grating model, Eq.
(13). For the incidence angle 6;,. and a desired output dif-
fraction angle 6,,, such a Bragg condition will be satisfied
if the groove effective slant angle ¢, is

2
i

2

1/2
) i

tan ¢, = X[(ﬁ2 —-n?sin? 6,2 - (7% - n?sin? 6,,,)"?],

(25)

as derived from Egs. (7) and (13). Then, substituting ¢,
from Eq. (25) into Eq. (9) yields effective slant parameter
ps and relative groove peak position g, as

h
P, = Xtan @5, q.=0.5+p;,. (26)

Now we are able to determine an optimal groove depth
hope for a certain desired Bragg efficiency 7pq. Since the
functions c¢(,g and ky; depend only on A/\ and ¢,, we need

hopemas (100%)
hoptTE (] 00%)
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Fig. 5. Bragg TE and TM diffraction efficiency for surface relief
gratings with triangular groove profiles as functions of the nor-
malized groove depth i#/\ for the resonance domain and for the
scalar domain. Calculations were done by the effective grating
model. Effective slant angle is ¢,=15°, A/A=1.1, refractive index
of grooves ny=1.46, n;=1.
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to solve Eq. (14) in order to determine the groove depth A
that would lead to this Bragg efficiency 7p, at the Bragg
incidence angle. For a specific value of 7p,4, there are two
main solutions for the optimal groove depths for the TE
polarization and two for the TM polarization, as

hopt(ﬂBd) CosB COS ¢g |: ™ ( ™

—+ 5 arcsin\'E> ] , (27)

N 2mAky | 2

with kgy; for TE, ko175, and kg for TM, ko173, @s in Egs.
(16) and (17). Note that any deviation of 4 from h,,, would
lead to a change in the Bragg diffraction efficiency in ac-
cordance with Eq. (14). This is illustrated in Fig. 5, which
shows the TE and TM Bragg diffraction efficiency as a
function of the normalized groove depth A/\. Also shown
for comparison is the scalar domain diffraction efficiency,
calculated in accordance with Egs. (18) and (8). It is evi-
dent that the resonance domain diffraction efficiency of
nBq=100% for the TM polarization is achieved with larger
optimal groove depth %, 15(754) than that for the TE po-
larization Ap,r5(784), whereby both of the TE and TM
depths are larger than the prediction of the scalar domain
diffraction for an optimal groove depth A,,:5cq10-[Eq. (8)].

To illustrate our analytic design of DOEs in the reso-
nance domain, we consider a cylindrical focusing diffrac-
tive lens having a desired high diffraction efficiency of
nBq- In order to keep the DOE grating periods within the
bounds Ay, <A <A,, and comparable to the illumination
wavelength A\, we need relatively high off-axis angles. The
geometrical parameters of the lens are depicted in Fig. 6.
Figure 6(a) shows the entire geometry of the lens and Fig.
6(b) a magnified one-dimensional cross section. As shown
the grating grooves are oriented parallel to the y axis.

The phase function of the cylindrical focusing diffrac-
tive lens, which transforms an oblique plane incident
wave to an off-axis converging cylindrical wave is

2
(P(x) = T{F[l - 7(x)] —x sin ainc}7 (28)

where |x| <D /2, D is the lens aperture, « is the off-axis
angle of the converging cylindrical lens, F' is the focal
length, 6,. is the incidence angle of the incident plane
wave, the same for all locations x on the lens, and

X x2
'y(x) = 1+2sin CYF + F—Q (29)

Note that when D<F,¢(x) of Eq. (28) can be approxi-
mated by

27 x2
o(x) = T — (sin 6;,, + sin a)x — oF [ (30)

The spatial frequency and local grating period in accor-
dance with the DOE Eqgs. (4) and (5), are
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nified one-dimensional cross section.

1

v, =-— X[Sin Oine + 81N O], (31)
1

As—. (32)

v

where
sin a + x/F
SN Gpyp = —————. (33)
$469)

Then, the effective local slant angle ¢, is determined from
Eq. (25), the groove peak position g, from Egs. (26), and
the groove depth 2 from Eq. (27).

We designed a specific diffractive cylindrical lens in the
resonance domain using the following parameters: A
=0.633 mm, ny=1.457, n;=1, a=45°, 6;,.=15°, F=50 mm,
D=25mm, 7p;=100% and triangular groove profiles.
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Specifically, we calculated the local normalized grating
periods, effective slant angles, groove peak positions, and
the groove depths, all as a function of relative lateral co-
ordinates 2x/D of the diffractive lens. The results are pre-
sented in Figs. 7-10 and in Table 1. Figure 7 shows the
variations of the grating period A normalized with respect
to the wavelength, as well as its lower and upper period
bounds Ay, and A,,. As is evident, the actual normalized
periods A/\ range from 1.25 to 0.94, so they fall within
these bounds.

Figures 8 and 9 depict variations of the local effective
slant angle and groove peak position that satisfy the
Bragg condition locally at each coordinate x of the diffrac-
tive cylindrical lens. Figures 8 and 9 indicate that at the

)8 pesescccsccncccccccccccccaacaaacns

Local grating period / wavelength

-1 0.75-05-025 0 025 05 075 1
Relative lateral coordinate of lens

= Effective grating model

— Upper bound

==== Lower bound
Fig. 7. Variations of the normalized local grating period A/\ of
the diffractive off-axis cylindrical lens in the resonance domain
as a function of the relative lateral coordinate 2x/D on the lens.
Also shown are the lower and upper period bounds Ay, and A,
Parameters are A=0.633 mm, n;=1.457, a=45°, 60,,.=15°, F
=50 mm, D=25 mm, 7g;=100%.

Local effective slant angle, degrees

-1 07505025 0 025 05 075 1
Relative lateral coordinate of lens
Fig. 8. Variations of the local effective slant angle ¢, of the reso-
nance domain diffractive off-axis cylindrical lens, which provide
the Bragg condition locally at each coordinate x point of the cy-
lindrical lens, plotted as a function of the relative lateral coordi-
nate 2x/D on the lens. Parameters are the same as in Fig. 7.
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Fig. 9. Variations of the relative groove peak position g, of the
resonance domain diffractive off-axis cylindrical lens, which pro-
vide Bragg condition locally at each coordinate x point of the cy-
lindrical lens, plotted as a function of the relative lateral coordi-
nate 2x/D on the lens. Parameters are the same as in Fig. 7.
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0.25

Local groove depth / wavelength
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0—1 -0.75-05-025 0 025 05 075 1
Relative lateral coordinate of lens

= Resonance domain

==== Scalar domain
Fig. 10. Variations of the required normalized local groove
depths h,,,(754)/\ of the resonance domain diffractive off-axis cy-
lindrical lens, which provide the Bragg condition with g,
=100% locally at each coordinate x point of the cylindrical lens,
plotted as a function of the relative lateral coordinate 2x/D on
the lens. Also shown is the scalar depth %,5.qs.-- Parameters are
A=0.633 mm, ny=1.457, «=45°, 6;,.=15°, F=50 mm, D=25 mm.
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edge of the lens, —1 relative lateral coordinate, the grat-
ing grooves have a nearly symmetrical shape (¢,=6.9°,
q.=0.75, compared with g.=0.5 of a symmetrical groove).
At about the center of the lens, 0.13 relative lateral coor-
dinate, the grooves have a sawtooth shape (¢,=11.7°, q,
=1.0). Finally, at the other edge of the lens, +1 relative
lateral coordinate, the grooves have a significant “over-
hang” (¢,=14.1°, q.=1.14) whereby one grating period
overlaps the adjacent one.

Figure 10 depicts variations of the required normalized
local groove depths ,,,(77p4)/\ which provide 7p;=100%
locally at each coordinate x of the diffractive cylindrical
lens. Also shown are the calculated results for the scalar
domain groove depth %,,s5cq0-/N. It is again evident that
the resonance domain requires slightly deeper grooves
than the scalar domain. We verified that these grating pe-
riods, effective slant angles, groove peak positions, and
the groove depths, which were calculated by our effective
grating model, indeed result in high diffraction efficien-
cies. For this we calculated the diffraction efficiency of the
first order by numerical (RCWA)® and got 96.9% at the
edge of the lens, —1 relative lateral coordinate; 99.7% at
about the center of lens, 0.13 relative lateral coordinate;
and 99.8% at the other edge of the lens, +1 relative lateral
coordinate that is in agreement with desired value of
7B4=100%. Table 1 summarizes all the results of Figs.
7-10, showing the relevant parameters obtained with one
design at these local grating locations.

For all the results in this illustration example, the ba-
sic shape of the slanted grooves could be sinusoidal, rect-
angular, or triangular. Such a variety of shapes is possible
because diffraction efficiency depends on the first Fourier
coefficient G, of a groove profile, rather than on the de-
tails of the profile. It is only necessary that the groove
profiles have the proper effective slant angles and aspect
ratios, as well as the proper local grating periods that do
fit the actual G4, value.

5. CONCLUDING REMARKS

We developed and investigated a model for designing and
analyzing resonance domain surface relief DOEs. It is
based on transforming the surface relief modulation to an
effective grating with slanted volume fringes that can
provide closed-form analytical solutions. The local period

Table 1. Design Data for the Local Diffraction Gratings of the Resonance Domain
Off-Axis One-Dimensional Focusing Diffractive Lens®

Position on the Lens Edge Center Other Edge
Relative lateral coordinate on the lens -1 +0.13 +1

Local grating period/wavelength 1.25 1.02 0.94
Local groove depths/wavelength 2.58 2.46 2.39
Scalar groove depth/wavelength — 2.19 —
Local effective slant angle 6.9° 11.7° 14.1°
Local relative groove-peak position 0.75 1.0 1.14
Groove shape Nearly symmetrical Sawtooth Overhanging
Groove scheme See Figs. 8 and 9 See Figs. 8 and 9 See Figs. 8 and 9
Diffraction efficiency, RCWA 96.9% 99.7% 99.8%
Diffraction efficiency designed 100%

“Given parameters are A\=0.633 mm, ny,=1.457, a=45°, 6,,,=15°, F=50 mm, D=25 mm.
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of the DOE, angular orientation of diffractive zones, and
effective slant angle are chosen to ensure required trans-
formation of the local incident beam angular direction to
the desired output beam angular direction and satisfy the
local Bragg condition. The groove depths are optimized
for achieving nearly 100% Bragg diffraction efficiency. We
determined a specific grating period range of A, <A
<A,, within the resonance domain where the effective
grating model is applicable. Both bounds depend on re-
fractive indices, and the upper bound depends also on the
ratio of the groove depth to the grating period. Thus, the
design and analysis of the complicated resonance domain
DOEs with wavelength-scale features can now be per-
formed with almost the same simplicity as that of well-
known scalar domain design and analysis.
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