Mode-matched phase diffractive optical element for
detecting laser modes with spiral phases
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A new type of diffractive optical element for detecting and measuring the power distribution of transverse
modes emanating from radially symmetric laser resonators is presented. It is based on a relatively simple
straightforward design of a phase-only diffractive optical element that serves as a matched filter, which
correlates between specific prerecorded transverse modes with a certain azimuthal mode order and those
in the incident laser light. Computer simulations supported by experimental results demonstrate how
such elements can accurately detect modes with spiral phases and provide quantitative results on the
modal power distribution. © 2007 Optical Society of America
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1. Introduction

It is often advantageous to determine and shape the
distributions of modes in the output laser beam and
to diagnose whether one mode or a mix of several
modes exist [1-7]. Typically, the modal distribution
is estimated by visual inspection, but such inspec-
tion is inadequate for most applications that involve
sensitive optical sensors [8,9], feedback loops in
adaptive optics, and diagnostics of temperature in-
duced changes in high power lasers, as well as for
laser beam characterization [7,10]. Other far field
image processing techniques for extracting modal
composition suffer from nonlinearities, have limited
dynamic range, and involve complicated time con-
suming digital processing [11,12]. Still other tech-
niques involve high quality computer generated
diffractive optical elements (DOESs), designed by ef-
ficient iterative or cell oriented procedures for con-
verting a complex transmittance function into a
phase function (encoding) [4,6,7,10,13-17].

In this paper we consider a new type of phase only
DOE with which it is possible to simultaneously de-
tect several transverse modes with different azi-
muthal mode orders and obtain quantitative results
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on modal power distribution. Such a mode-matched
DOE is designed in a relatively simple straightfor-
ward procedure for directly obtaining the required
phase function, with no need for complicated encod-
ing. It incorporates several multiple carrier spatial
frequencies, where, at each spatial frequency, a mode
with a certain azimuthal mode order is detected.
Quantitative experimental results on modal power
distribution are presented.

2. Basic Principles and Optical Correlation
Arrangement

In radially symmetric laser cavities and fiber lasers
a mixture of either several degenerate Laguerre—
Gaussian transverse modes TEM,, or nondegener-
ate Laguerre-Gaussian transverse modes TEM, *
exist. These have the form of

U,u(r, @) =R, (r) cos(l¢), degenerate, (1)

U, (r, ¢) =R, ,(r) exp(il¢), nondegenerate, (2)
where r and ¢ are the polar coordinates, R,,(r) is a
real valued function of the polar radius, p = 0,
1,2 ... is the radial mode order, /] = 0, =1, 2. ..
is the azimuthal mode order, and l¢ is a spiral
phase. The two dimensional orthogonality property
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Fig. 1. Basic optical arrangement for mode detection and mea-

surements.

of s, ,(r, ¢) is provided by the orthogonality of R, (r) in
the radial coordinate r and the orthogonality of
exp(ile) and cos(l¢) in the angular coordinate ¢. In
order to detect modes with a different azimuthal or-
der [ we need to exploit only the orthogonality in the
angular coordinate ¢. Accordingly, R, ,(r) can simply
be replaced by any radial function R(r).

The basic optical arrangement for such mode de-
tection is schematically shown in Fig. 1. It includes
the mode-matched DOE, a focusing Fourier lens with
afocal length F, and a two dimensional detector array
in the focal plane of the lens. The mode-matched DOE
contains a set of conjugate spiral phases —l¢, where
[ ranges from —/,,, to /..., each on a different spatial
frequency carrier. With the optical arrangement, cor-
relation peaks are obtained at the detector array
when the input light contains the corresponding
modes [4]. The correlation peak for each azimuthal
mode order [ occurs at a different location. The de-
sired complex transmittance function for the mode-
matched DOE can be written as

T= ; t exp[i(—lcp + Zwv(l)x)], (3)

where x is a Cartesian coordinate in the DOE plane,
v is the carrier spatial frequency for azimuthal mode
order /, and ¢; is the complex weight given to each
azimuthal mode order /. Accordingly, the correlation
peak for each [ occurs at AFv"” along the x coordinate
of the detector plane, where \ is the laser wavelength.
Separation between different correlation peaks is en-
sured by resorting to sufficiently large spatial fre-
quencies v, while the correlation results from the
interaction between conjugate spiral phases —lo in T'
and spiral phases [¢ of the respective modes in the
input laser beam. The modal power distribution can
be directly measured as the intensity distribution
among the correlation peaks.

It should be noted that the modal phase distribu-
tion can also be measured by the recording and pro-
cessing of microinterferograms in the vicinity of the
correlation peaks. Moreover, the size and beam qual-
ity M? of the incident beam do not affect the correla-
tion results. A differing beam divergence will merely
shift the correlation peaks but not affect the relative
correlation results.

3. Mode-Matched Diffractive Optical Element

The mode-matched DOE can best be implemented
with a phase only transmittance function. We start
with the phase ¢, for a component with azimuthal
order [ = 1 in Eq. (3), written as

¢, = —¢ + 2mvDx, (4)
where v'? is the carrier spatial frequency for azi-
muthal mode order [ = 1. We now introduce a phase
nonlinearity [18] @(¢.) to obtain the phase only trans-
mittance function exp[iQ(¢.)]. Such a phase only
transmittance function can be expanded in a Fourier
series, to yield

T =exp[iQ(¢.)] = lzw t; exp(ile,)
= zf‘, t, exp(—ile + i2mlvPx), (5)
1=

where the complex Fourier coefficients ¢, are

2m
1
0= 9n f expliQ(¢.) — ile.]de. ®)

0

Comparing Eqgs. (3) and (5) leads to
v® =D, (7

As is evident from Eq. (7), the carrier spatial fre-
quency for each azimuthal mode order /, i.e., v, is a
multiple of v'¥ and therefore lies along the same axis
as v'Y. This results from the fact that the transmis-
sion function 7 in Eq. (5) can be represented as a one
dimensional Fourier series. It should be noted that
the use of the phase nonlinearity Q(¢,) has led di-
rectly to a phase only transmittance function without
the need to resort to complicated complex-to-phase
encoding.

A particular shape of nonlinearity Q(¢,) in Egs. (5)
and (6), which provides weight coefficients ¢, that
have a constant modulus value |¢;| for |/| =/,. and
zero value for |I| > [,.., may be found by the spot
array generation method [19-21]. Accordingly, we
designed and fabricated a typical mode-matched
DOE containing a set of five conjugate spiral phases
[l =-2,-1,0,1,and 2 ([,,.x = 2), and using carrier
spatial frequency v'". Although the mode-matched
DOE can be fabricated with high resolution electron-
beam (e-beam) lithography [6,16,17], we resorted to a
relatively simpler technology mainly for the purpose
of demonstration. For the fabrication we started with
a computer generated pattern Q[ —¢ + 2mv'Yx], which
was converted to a gray level mask by relatively sim-
ple low resolution photographic slide recording equip-
ment that limited the carrier spatial frequency to
v = 5 lines/mm. The pattern of the gray level mask
was then transferred, by means of contact printing,
onto a photopolymer medium to form the final phase
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Fig. 2. Typical mode-matched DOE that has five diffraction
orders of equal intensities and a carrier spatial frequency of
5 lines/mm: (a) nonlinearity function Q(¢,) for each groove; and (b)
central part of the gray level mask of the desired phase function.

only mode-matched DOE with a diameter of 7 mm.
The mode-matched DOE is shown in Fig. 2. Figure
2(a) shows the shape of the phase nonlinearity Q(¢,)
that was found by an iterative algorithm, where Q(¢,)
essentially defines the phase profile of each groove.
Figure 2(b) shows a central part of the gray level
mask of the desired phase function.

4. Calculated and Experimental Results

We calculated the correlations among six different
input modal distributions and the mode-matched
DOE shown in Fig. 2. For the calculations, and sub-
sequently for the experiments, we used a focal length
F = 154 mm for the Fourier lens and illumination
wavelength of 1.06 um, so that a spatial frequency of
vV = 5 lines/mm will separate the correlation at the
detector array plane.

Figure 3 shows the calculated far field intensity
distribution of the input modes and correlation re-
sults. The input modal distributions were TEM, _,*,
TEM,_,*, TEM,,, TEM,,* TEM,,* and TEM,,
which is essentially comprised of two nondegenerate
modes TEM, ;* and TEM, _,*. Figures 3(a)-3(f) show
far field intensity distributions of the individual input
modes. Figures 3(g)-3(1) show the corresponding far
field intensity distributions of the correlation result;
the ruler at the bottom of each figure indicates loca-
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Fig. 3. Calculated far field intensity distributions of the input
modes and corresponding correlation results. (a)—(f) Input mode
distributions; (g)—(1) correlation results after passing through the
mode-matched DOE; white ruler shows expected locations of the
correlation peaks according to NFv®.



tions where the correlation peak might occur, accord-
ing to AFv". As expected, the mode-matched DOE
distributes the light of the input beam into five spa-
tially separated correlation distributions, i.e., auto-
correlation and cross correlation. As is evident, Fig.
3(i) shows that, for a TEM, , Gaussian input, a single
correlation peak is obtained at the center of the focal
plane. Figures 3(h) and 3(j) show that, for a TEM, .,*
Laguerre—Gaussian input, a single correlation peak
is obtained at the off-axis location of first order dif-
fraction. Figures 3(g) and 3(k) show that, for a
TEM, .,* Laguerre—Gaussian input, a single correla-
tion peak is obtained at the off-axis location of second
order diffraction. Finally, Fig. 3(1) shows the correla-
tion results for a TEM, ; input, which is essentially a
superposition of TEM,,* and TEM, _,* inputs with
equal powers. Here two symmetrically located corre-
lation peaks are obtained at the proper locations. As
is evident, there is also a cross-correlation distribu-
tion of two lobes around the zero diffraction order.
These lobes are not equal in intensity because of the
inherent asymmetry in the spiral phases and carrier
spatial frequency orientation in the mode-matched
DOE, Egs. (4) and (5). In general, the results demon-
strate that the location of the correlation peaks at the
focal plane correspond to the azimuthal mode order.
The intensities of the correlation peaks are propor-
tional to the relative intensities of the input modes.

In order to test our mode-matched DOEs, we per-
formed experiments using the arrangement shown in
Fig. 1 and the mode-matched DOE shown in Fig. 2.
The mode-matched DOE was placed at a distance of
90 mm from the laser output. The Fourier lens of
focal length F' = 154 mm was placed 10 mm from the
mode-matched DOE. A CCD camera, located at the
focal plane of the Fourier lens, detected the far field
intensity distributions of the incident modes as well
as the correlation results. Although our mode-
matched DOEs can detect the modal distribution of
light emerging directly from a laser, in our experi-
ment the different input modal distributions were
obtained by letting a nearly Gaussian output beam
from a Nd:YAG laser (A = 1.06 pm, a beam diameter
of 0.9 mm 1/e”) pass either through an appropriate
continuous spiral phase element [22,23] or a discon-
tinuous binary phase element [24]. Accordingly, the
input distributions used in the experiments differ
from those TEM,;* modes used in calculations
[25,6,26]. Nevertheless, 84% to 93% of the power in
the resulting modified complex amplitude distribu-
tions represent the desired pure Laguerre—Gaussian
transverse modes of TEM,,* [26].

The experimental results are presented in Fig. 4
and Table 1. Figures 4(a)—4(f) show the far field in-
tensity distributions for six input modal distributions
along with the elements that were used to form these
modes. Figures 4(a)-4(e) show the far field intensity
distributions of essentially single nondegenerate
modes TEM, _,*, TEM,_,*, TEM,, TEM,,*, and
TEM,,*, and Fig. 4(f) shows the far field intensity
distribution of the degenerate TEM,; mode, which is

(b) TEMy.1* (h)
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Fig. 4. (Color online) Experimental far field intensity distribu-
tions of the input modes and corresponding correlation results.
(a)-(f) Input mode distributions along with phase elements for
forming these modes as essentially single TEM* or TEM modes,
(g)—(1) correlation results after passing through the mode-matched
DOE; white ruler shows expected locations of the correlation peaks
according to NFv?.

® TEMy, M

essentially composed of two single nondegenerate
modes TEM, _,* and TEM, ;*. Figures 4(g)—4(1) show
the corresponding correlation results at the output
and a ruler pointing to the expected locations of the
correlation peaks, according to NFv"”. As is evident
for each particular essentially single input mode
there is a single bright correlation peak at the
proper focal plane location, whereas there is a ring
and a dark spot at the center of the locations that
correspond to the other modes, as depicted in Figs.
4(g)—4(k). When the incident beam has essentially
two modes, then the expected two bright correlation
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Table 1. Experimental Modal Power Distribution: Normalized
Experimental Correlation Intensities at the Output Locations According
to AFv” for Each of the Six Input Modal Distributions

Output Locations, [ -2 -1 0 1 2
Input Mode
TEM, _,* 1 0.05 0.01 0.01 0.02
TEM, _,* 0.03 1 0.01 0.01 0.01
TEM,, 0.00 0.01 1 0.04  0.00
TEM, ;* 0.00 0.01 0.04 1 0.01
TEM, »* 0.00 0.02 0.03 0.03 1
TEM, , 0.02 096 0.05 1.00  0.00

Note: The top five rows refer to essentially pure TEM, ;* modes,
hence a single correlation peak is expected at the column with
respective number /. The bottom row refers to the TEM, ; mode,
which is an equal superposition of essentially TEM, _;* and
TEM, ,*, hence two identical correlation peaks are expected in
columns number / = 1 and [ = —1.

peaks appear at the locations corresponding to

= =*1, as depicted in Fig. 4(1).

For a more quantitative characterization, as well
as the detection and measurements of modal power
distributions, we measured the correlation intensi-
ties at each of the output locations, according to A\Fv®
withl = —2, —1, 0, 1, and 2. The results are summa-
rized in Table 1. In each row we normalized the inten-
sities according to the bright autocorrelation peak
intensity for the matched mode. Any intensities that
are below 1% are indicated as zero. As expected, the
results for inputs with essentially single nondegener-
ate modes, which are given in the top five rows, contain
only one strong correlation peak intensity in each row.
In the last row, when the input is of essentially two
nondegenerate modes, two strong and nearly identical
(with 4% accuracy) correlation peak intensities are ob-
tained as expected. Cross-correlation intensities are
much smaller, all below 5% of the strong autocorrela-
tion peak intensity, indicating good signal-to-noise
ratio. Therefore our DOE enabled us to present quan-
titative experimental results on modal power distribu-
tion, as compared with the qualitative results of
reference [16]. These results indicate that aside from
some low cross-correlation intensities there is good
agreement with the calculated results at NFv" loca-
tions in the detector array plane. We attribute the
discrepancies mainly to fabrication errors of the
DOE, imperfections in the nonlinearity function, and
the imperfections in the input modes that lead to the
nonuniformity of the power distribution between
diffraction orders, some wavefront aberrations, and
nonzero cross-correlation intensities.

5. Concluding Remarks

We demonstrated how it is possible to detect and
measure the modal power distribution of a laser
output by means of a relatively simple computer
generated mode-matched phase DOE. Our initial
experiments show that the accuracy of mode detec-
tions is better than 5%. We expect that these results
can be significantly improved by fabricating the
mode-matched DOEs with a higher level technology.
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