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ABSTRACT We present an automated proce-
dure to assign CATH and SCOP classifications to
proteins whose FSSP score is available. CATH classi-
fication is assigned down to the topology level, and
SCOP classification is assigned to the fold level.
Because the FSSP database is updated weekly, this
method makes it possible to update also CATH and
SCOP with the same frequency. Our predictions
have a nearly perfect success rate when ambiguous
cases are discarded. These ambiguous cases are
intrinsic in any protein structure classification that
relies on structural information alone. Hence, we
introduce the “twilight zone for structure classifica-
tion.” We further suggest that to resolve these am-
biguous cases, other criteria of classification, based
also on information about sequence and function,
must be used. Proteins 2002;46:405–415.
© 2002 Wiley-Liss, Inc.
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INTRODUCTION

The first step to analyze the vast amount of information
provided by genome sequencing projects is to organize
proteins (the gene products) into classes with similar
properties. Because during evolution protein structures
are much more conserved than sequences and functions,1

proteins are usually classified first by their structural
similarity (phenetic classification) and then by the similar-
ity of their sequences or by the similarity of their functions
(phylogenetic classification).2

A reliable structural classification scheme is useful for
several reasons. Perhaps the most exciting perspective is
the possibility to routinely assign a function to newly
identified genes.3 This goal may be achievable because a
classified database provides a library of representative
structures to perform prediction of protein structure by
homology4,5 or by threading,6–8 and it allows for the
identification of distant evolutionary relationships.9 In
addition, given a particular protein, it provides a tool to
identify other proteins of similar structure and function.10

The knowledge of the structure helps to reveal the mecha-
nism of molecular recognition involved in catalysis, signal-
ing, and binding2 and may lead to the rational design of
new drugs.11 At a more abstract level, the physical prin-
ciples dictating structural stability of proteins are re-

vealed by their folded state. Therefore, most of the recently
proposed methods to derive energy functions to perform
protein fold predictions rely in different ways on structural
data.12,13

The most comprehensive repository of three-dimen-
sional structures of proteins is the Protein Data Bank
(PDB).14 The number of released structures is increasing
at the pace of about 50 per week, and �12,000 complete
sets of coordinates were available at the time of writing.
Many research groups maintain web-accessible hierarchi-
cal classifications of PDB entries. The most widely used
are FSSP,15 CATH,16 SCOP,17 HOMSTRAD,18 MMDB,19

and 3Dee20 (see Table I for a list of abbreviations). Here we
consider three of these: the FSSP, the CATH, and the
SCOP databases. Each group has its own way to compare
and classify proteins; these three classification schemes
are, however, consistent with each other to a large ex-
tent.21,22

FSSP Database

The FSSP (Fold classification based on Structure-
Structure alignment of Proteins) uses a fully automated
structure comparison algorithm, DALI (Distances ALIgn-
ment algorithm),23,24 to calculate a pairwise structural
similarity measure (the S-score) between protein chains.

The algorithm searches for that amino acid alignment
between the two protein chains that yields the most
similar pair of C� distance maps. In general, the more
geometrically similar two chain structures are, the higher
their S-score is. The mean and standard deviations of the
S-scores obtained for all the pairs of proteins are evalu-
ated. Shifting the S-scores by their mean and rescaling by
the standard deviation yield the statistically meaningful
Z-scores.

For classification of structures, the FSSP uses the
Z-scores for all pairs in a representative subset of the PDB.
A fold tree is generated by applying an average-linkage
hierarchical clustering algorithm25 to this all-against-all
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Z-score matrix. An alternate classification based on a more
common four-level hierarchy is also available.24

CATH Database

Orengo and coworkers use a combination of automatic
and manual procedures to create a hierarchical classifica-
tion of domains (CATH).16 They arrange domains in a
four-level hierarchy of families according to the protein
class (C), architecture (A), topology (T), and homologous
superfamily (H). The class level describes the secondary
structures found in the domain26 and is created automati-
cally. There are four class types: mainly-�, mainly-�, �-�,
and proteins with few secondary structures (FSS). The
architecture level, on the other hand, is assigned manually
(using human judgment) and describes the shape created
by the relative orientation of the secondary structure
units. The shape families are chosen according to a com-
monly used structure classification (e.g., barrel, sandwich,
roll, etc.). The topology level groups together all structures
with similar sequential connectivity between their second-
ary structure elements. Structures with high structural
and functional similarity are put in the same fourth-level
family, called homologous superfamily. Both the topology
and homologous superfamily levels are assigned by thresh-
olding a calculated structural similarity measure (SSAP)
at two different levels, respectively.27,28 The CATH data-
base has been recently linked to the Dictionary of Homolo-
gous Superfamilies (DHS) database,29 which allows fur-
ther analysis of structural and functional features of
evolutionary related proteins. There is a growing need for
annotating proteins classified in structural databases be-
cause structural genomic initiatives are providing a large
number of new proteins whose function might be gathered
by distant homology informations.

SCOP Database

The Structural Classification of Proteins (SCOP)17 data-
base is organized hierarchically. The lower two levels
(family and superfamily) describe near and distant evolu-
tionary relationship, the third (fold) describes structural
similarity, and the top level (class) describes the secondary

structure content.26 SCOP is linked to the ASTRAL com-
pendium,30 which provides a series of tools for further
analysis of the classified structures, mainly through the
use of their sequence. At variance with FSSP and CATH,
SCOP is constructed manually, by visual inspection and
comparison of not only structures but also sequences and
functions.

Automated Assignment of SCOP and CATH
Classifications

In this work we present a method, Classification by
Optimization (CO), to predict without human intervention
the SCOP fold level and the CATH topology level from the
FSSP pairwise structure similarity score. A protein for
which the Z-score is available is classified into a SCOP fold
and into a CATH topology by the CO method, an optimiza-
tion procedure that finds the assignment of minimal cost,
where the cost is defined in terms of Z-scores (see Materi-
als and Methods). The query for the classification of any
such protein can be submitted to the web site.31

RESULTS
Consistency of the FSSP, CATH, and SCOP
Classifications

We found that the FSSP and CATH databases are
consistent.21 In this section we show that SCOP is also
consistent with these to a large extent (see also Ref. 22). In
the rest of this work we use this fact to derive an
automated procedure to assign the CATH and SCOP
classifications starting from the FSSP Z-scores (which are
updated weekly) in a fully automated fashion to include
new releases in the PDB.1 Here we further discuss the
consistency of the three classification schemes by introduc-
ing concepts and quantities that are later used in the
prediction of the CATH and SCOP classifications.

We first illustrate the correlation between the FSSP
similarity score and the CATH classification. A simple and
visually appealing way to study this problem is shown in
Figure 1. The element Zij of the Z-score matrix [Fig. 1(a)]
represents the score for superimposing structure i with
structure j of the set PFrCs (a subset of the proteins in
FSSP and CATH, see Table III and Materials and Meth-
ods) using the DALI algorithm.23,24 In Figure 1(a) only the
pairs with Z � 2 are shown; therefore, the matrix is
sparse and the proteins are ordered in a random fashion.
Figure 1(b) is produced by reordering the rows and col-
umns of the original Z-score matrix [Fig. 1(a)]. The reorder-
ing is performed according to the CATH classification in
the following way: for each of the proteins in this set we
have the CATH classifications at all levels. First, we order
the proteins by their class; within the class, by the
architecture; within it by the topology, and so on. This
reordering generates a permutation of the columns and
rows of the Z matrix. The solid black grid in Figure 1(b)
separates the proteins according to their CATH class, and
a thin grid is placed at the boundaries between architec-
tures.

Figure 1(b) shows the underlying order behind the
apparent randomness of Figure 1(a) and reveals the extent

TABLE I. Abbreviations and Definitions

Abbreviation Definition

3Dee Database of protein domain definitions
ASTRAL The ASTRAL compendium for sequence and

structure analysis
CATH Protein structure classification
CO Classification by optimization
DALI Protein structure comparison by alignment of

distance matrices
DHS Dictionary of homologous superfamilies
FSSP Fold classification based on structure-structure

alignment of proteins
HOMSTRAD Homologous structure alignment database
MMDB Molecular modeling database
PDB Protein data bank
SCOP Structural classification of proteins
SSAP Structure comparison algorithm
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to which the FSSP Z-scores reflect the CATH classifica-
tion.

Several interesting observations can be made. First,
consider the Class level of CATH. As can be seen in Figure
1(b), there are no matrix elements with Z � 2.0 in region
A that connect proteins of the mainly-� class to the
mainly-� class. At variance with this, some proteins from
both of these classes have large Z-scores with proteins
from the �-� class (region B). This is reasonable, because of
the way similarity is defined by FSSP; a mainly-� protein
can have a high Z-score with an �-� protein because of high
similarity with the � part. Second, in the Architecture
level, we observe that there are architecture families that
are highly connected within themselves, e.g., �-� barrels
(482–525: region C), whereas for others the intrafamily
connections are more sparse. The similarities within the
mainly-� sandwich family (318–406: region D) have two
relatively distinct subgroups, which suggest an inner
structure corresponding to the lower levels in the CATH
hierarchy. Checking the topology level (the third CATH
level) for this architecture, one indeed finds two large
topology subfamilies, the immunoglobulin-like proteins
(324–366: upper left part of region D) and the Jelly-Rolls
(373–402: lower right part of region D), which correspond
precisely to the two strongly connected subgroups that
appear in Figure 1(b).

We found that the CATH classification at the level of
topology is reflected in the Z-matrix. This is to be expected
because the Z-score measures the structural similarity of
two aligned proteins while preserving their connectivity.
Overall, this analysis shows that the Z-matrix is corre-
lated with the CATH classification. In a similar way it is
possible to show that the Z-score is correlated with the
SCOP classification. The results are available at the web
site.31

These findings suggest that Z-scores can be used to
predict the CATH and SCOP classifications of yet unclassi-
fied proteins. In what follows, we demonstrate that this
indeed can be done. We also estimate the success rate of
our predictions and provide a web site31 that can be used to
retrieve our predictions for the CATH topology and the
SCOP fold for new entries in FSSP.

We also verified that the CATH and SCOP classifica-
tions are to a large extent mutually compatible. An
immediate consequence of this is that it is possible to
construct a “translation table,” T̂, from the proteins that
have already both a CATH and a SCOP classification. In
this way, given a CATH entry, one can obtain the corre-
sponding SCOP classification (see Fig. 2). Row i of the
table refers to a particular CATH topology and column j to
a particular SCOP fold. The element T̂ij of the table is the
measured fraction of times that a protein has a CATH
topology i and a SCOP fold j. This number is calculated by
enumerating all the 10,197 single-domain proteins with
known CATH and SCOP classifications (PCsSs), and it is
an estimate of Tij, the joint probability distribution for a
protein to have CATH topology i and SCOP fold j. If the
CATH and SCOP classifications had been independent,
every element Tij could have been expressed as a product
of Ci, the fraction of proteins that belong to CATH topology
i, and Sj, the fraction that belongs to SCOP fold j, that is,
Tij � Ci � Sj. Randomly placing 10,197 proteins using
such a probability distribution yields 4780 � 40 nonzero
elements in the matrix. In the other extreme case, if there
had been a full correspondence between the SCOP and
CATH classifications, the table would have had a single
nonzero element in each row and column (in each CATH
topology row the nonzero element would have been in that
SCOP fold column that corresponds to it). In this case, the
proteins in PCsSs would have been distributed among 284

Fig. 1. a: Z-score matrix between all pairs of proteins in the PFrCs set. A black dot represents Z � 2.0. b:
Same Z-score matrix with rows and columns rearranged by using the CATH classification (see text). Part (b)
shows the underlying order behind the apparent randomness of part (a) and illustrates the extent to which the
FSSP Z-scores reflect the CATH classification. The regions A, B, C, and D are discussed in the text.
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nonzero elements (the number of distinct CATH topologies
in PCsSs).

We found 369 nonzero elements in T̂, meaning that the
CATH and SCOP classifications are highly dependent.
Still, the correspondence is not entirely one-to-one; in
general, more than one SCOP fold corresponds to a given
CATH topology. The number of such folds is, however,
typically small. Such a translation table may be used to
predict the SCOP classification of a structure already
classified in CATH or at least to significantly restrict the
number of possibilities and vice versa. For example, the
assignment of the CATH topology to a protein with known
SCOP fold can be done by selecting the CATH topology
with the largest value in the translation table for that
particular SCOP fold. Such an assignment is correct in
93% of the cases. The corresponding assignment of the
SCOP fold from the CATH topology is correct in 82% of the
cases. Although this is possibly useful information, in this
work we do not assign classifications in this way.

SUMMARY OF THE COCLASSIFICATION
PERFORMANCE

Every time the FSSP Z-scores are updated (once a week)
the CO classification can be applied to all the proteins that
appear in the new FSSP release but are not yet classified
in CATH or in SCOP. The possible outcomes of the
classification procedure are as follows:

1. Correct classification: the predicted classification will
agree with the future release of the databases.

2. Rejection: the program is unable to classify the struc-
ture.

3. Ambiguous classification: a classification is returned

(both for CATH and SCOP), but a later release provides
a different classification.

The frequencies of these outcomes greatly depends on
the statistics of the set of proteins to be classified. More
specifically, rejected proteins are of two types: proteins
that do not have high Z-scores with any other proteins
(“islands”; see Materials and Methods) and clusters of
proteins that are similar among themselves but do not
have high Z-scores with other proteins outside their clus-
ter (“superislands”). The fraction of islands and superis-
lands is a feature of the particular set of proteins to be
classified. The occurrence of a superisland suggests that a
new classification type (a new topology for CATH and and
new fold for SCOP) might be needed. The work of maintain-
ing CATH and SCOP can be thus focused on the classifica-
tion of a representative from each of these superislands.

For the set PFCs, the fraction of islands and superis-
lands is 5%. We used this set to provide an upper bound for
the performance of the CO method (see below); however,
for the set PFC� the fraction of rejections goes up to 22%. If
rejections are not counted, we classify correctly 98% of the
PFCs proteins. On the other hand, we could test our
predictions also against the new CATH release v2.0. Of
1582 proteins that were assigned to previously existing
CATH topologies, CO has classified correctly 80%. The
difference in success rates between PFCs and PFC� is due
to the different way in which the test set is nested in the
larger set of structures with known classification. In the
first case, the test set consisted of 20% of the members of
PFCs, selected at random; the remaining 80% were used to
“predict” the classification of the test set. In the second
case, the members of CATH v1.7 were used to predict the
classification of the new proteins that were added when

Fig. 2. Translation table from the CATH topology to the SCOP fold and vice versa. Nonzero entries of T̂ij

appear as black dots. T̂ij is proportional to the number of proteins of CATH topology i that have a SCOP fold j in
PCsSs.
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CATH v2.0 was released. These new structures are not
distributed uniformly at random among the members of
CATH v1.7.

Ambiguous classifications are due to two different mecha-
nisms. The first stems from a well-known problem with the
way the FSSP similarity index is calculated (the “Russian
doll effect”; see below). The second kind of “mistake” is
actually not a wrong classification; rather, it happens
when the newly classified structure lies within the ambigu-
ous “twilight zone” between two closely related topologies
(for CATH) or folds (for SCOP), as demonstrated in detail
below.

Automated Assignment of CATH Classification
From FSSP

In this section we describe the procedure that we used to
predict CATH topology level from the FSSP scores. We
identified a set of 7431 proteins (PFC� ; see Materials and
Methods) that appear in FSSP but were not yet processed
by CATH 1.7. Our goal is to predict the CATH topology of
these 7431 proteins by using (a) the Z-scores between all
proteins in PF (see Materials and Methods) and (b) the
known classifications of the set PFrCs (see Materials and
Methods).

Predicting topologies is a classification problem that we
treated with pattern recognition tools. We tested several
prediction algorithms using cross-validation to estimate
their performance.21 Every one of the algorithms that were
tested can be viewed as a two-stage process. In the first
stage, a new similarity measure is produced from the
original Z-scores. This is done either by a direct rescaling
of the original Z-scores or by using the results of various
hierarchical clustering methods to produce new similarity
measures. The second stage consists of using these similari-
ties as the input to some classification method, yielding

predictions for the classes and architectures. In this work
we present only results obtained by one particular method
(CO), which uses the original Z-score as a similarity
measure (see Materials and Methods). A complete list of
the results obtained by using other methods can be found
in Ref. 21, which is available on the web site.31

Our final assignments for the set PFC� using the CO
method are listed in the web site. A more illustrative way
to present these results is shown in Figure 3. In Figure 3(a)
we present the Z-score matrix for the combined set PFrCs �
PFC� . The submatrix in the upper left corner is the
reordered Z-score matrix of the set PFrCs, which was
already shown in Figure 1(b). The rest of the matrix in
Figure 3(a) presents the Z-scores of PFrCs with the set
PFC� (randomly ordered) and the Z-scores of PFC� among
themselves. In Figure 3(b) we reordered the rows and
columns whose index was �860, corresponding to proteins
in PFC� . Although in the matrix of Figure 3(a) these
proteins appear in a random order, in Figure 3(b) they
appear in the order imposed by our prediction of their
CATH topology. One can see that the original order in the
submatrix PFrCs is propagated by our assignment proce-
dure to the set PFC� . For example, focus on the small black
square at the upper left corner of the matrix. This small
black square represents the high Z-scores among the
mainly-� class of proteins in PFrCs. In the corresponding
top rows of the full matrix we see high Z-scores between
these structures and some proteins from PFC� . In particu-
lar, the small group with indices near 2476 are “close” to
these mainly-� structures and hence are also classified as
such. On the other hand, there is a large group of struc-
tures from PFC� (between 861 and 2476), which do not have
high Z-scores with any of the proteins in PFrCs or with any
of the other structures in PFC� with index �2476. Hence,

Fig. 3. a: Z-score matrix between all pairs of proteins in the combined PFrCs � PFC� sets. The submatrix in
the upper left corner is the reordered Z-score matrix of the set PFrCs, which was already shown in Figure 1(b).
The rest of the matrix presents the Z-scores for the proteins in the set PFC� . b: The same matrix as in (a) with the
rows and columns relative to the proteins in PFC� reordered according to our assignment of their CATH
topology. With the CO method, the original order in the submatrix PFrCs is propagated to the entire matrix.
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we are unable to classify this group of structures on the
basis of their FSSP scores.

Figure 3(b) illustrates the central idea of this work. We
perform a task that is intermediate between clustering
and classification. We take proteins of known classification
and we use them as fixed a priori values in a clustering
procedure.

The overall success rate of our prediction estimated by
cross-validation was 93%. To understand the significance
of these success rates, we derived a statistical (see Materi-
als and Methods) upper bound for this kind of prediction.
This upper bound is 95% (see Materials and Methods),
hence the figure of 93/95 � 98% given above.*

We estimated the accuracy of the prediction by using the
following procedure. First, the set PFCs was randomly
“diluted”; that is, we randomly chose a certain fraction of
the proteins in PFCs and placed them in a test set,
pretending that we did not know their classification. The
FSSP scores of the entire set were then used to classify the
test set. For each protein from the test set, we either
return a predicted classification or reject the protein (i.e.,
we declare that we are unable to classify it). The quality of
any classification algorithm (see Materials and Methods)
is measured by its success rate (fraction of correctly
classified proteins, out of the test set) and by the purity
(success rate out of the nonrejected proteins). For the CO
method, the results were 93% for the success rate and 98%
for the purity (using a dilution of 20%). More extensive
tests at other dilutions and for other methods are of
classification are discussed in Ref. 21 and available at the
web site.31

We also tested directly the reliability of the CO assign-
ments by using the CATH version 2.0 (PC2). In PC2, 1640
single-domain proteins that are present in PFC� were
assigned to one of the topologies that existed in v1.7.
Fifty-eight of these we “rejected.” In 1266 cases of the
remaining 1582 (80%), our prediction agrees with the one
given in CATH v2.0. Almost all the cases in which we
misassigned a domain can be explained in a simple way.
These cases are discussed in detail in a following section.

The CO method can also be used to predict directly the C
level and the A level of CATH. We found that when the C
and A levels were predicted as a byproduct of predicting
the T level, the resulting C and A were consistent with
those predicted directly.

Automated Assignment of SCOP Classification
From FSSP

We used the CO method to predict the SCOP fold for a
set of 3451 proteins (PFS� ) that belong in PF but not yet in
PS. The results are available on the web site.31 The
estimated success rate (by cross-validation) was 93%. As in

the case of CATH, this number increased when we dis-
carded proteins in the “twilight zone” (see the next sec-
tion).

Twilight Zone for Protein Classification

The attempt to assign a new protein to a known fold
might lead to frustration because at times one is undecided
about two or more possibilities. To assess that two proteins
have similar structures, a similarity score is needed. FSSP
uses the Z-score, CATH uses the SSAP score, and SCOP
uses a subjective evaluation, which is also a kind of score.
The problem arises when the protein to be classified has
high scores with two proteins already classified, but to
different topologies. In this article, these proteins are
called borders (see Materials and Methods). Being a border
protein depends on the similarity score. We showed,
however, that FSSP, CATH, and SCOP are to a large
extent consistent classifications. Therefore, we suggest
that there are “intrinsically” ambiguous cases—cases that
are unavoidable in structure comparison. We refer to these
ambiguous regions in structure space as the “twilight
zone” in analogy with the case of protein sequence compari-
son where proteins with sequence similarity below 30%
cannot be reliably assigned to the same fold. We illustrate
this concept by a typical case, shown in Figure 4. This is a
border protein. Protein 1dhn (the central one) is the one to
be classified (in fact, it is a three-layer sandwich according
to CATH). It has a Z-score of 9.3 with protein 1a8rA (on the
left), which is a three-layer sandwich topology and a
Z-score of 8.7 with protein 1b66A (on the right), which is a
two-layer sandwich topology. This example illustrates how
structural information alone might not provide a clear-cut
criterion for classification of this protein. The incidence of
the twilight zone is shown in Figure 5. In Figure 5(a) we
present the histogram of the number of protein pairs that
have different CATH topologies as a function of their
Z-score. This number is a rapidly decaying function of Z.
On the contrary, the number of pairs with the same CATH
topology is a slowly decaying function of Z. For Z � 3, the
probability of having the same CATH topology becomes
greater than that of having different topologies. For Z �
7.5, the probability to have the same topology is 97.5%. In
Figure 5(b) we show the corresponding figure for SCOP.
The number of folds in SCOP is larger than the number of
topologies in CATH; therefore, there is more ambiguity.
However, also in this case for Z � 7.5, the probability to
have the same topology is 93.5%. Taken together, these
results indicate that the twilight zone for structure com-
parison can be bound by Z � 7.

There are other cases in which the classification of a
particular protein is inconsistent with that of all its
neighbors. For example, proteins that we called colonies
(see Materials and Methods) are such that none of their
neighbors are of their own kind. This means that the FSSP
scores imply that these proteins are similar only to pro-
teins of different classes and architectures. Identifying
these proteins can also focus the attention to possible
misclassification or to drawbacks of the Z-score. For ex-
ample, 1 of the 49 colonies (at the architecture level) that

* One must keep in mind that the estimated success rate is
calculated for all proteins; both FSSP representatives (�10% of the
proteins) and nonrepresentatives. Because the presence of homolo-
gous proteins can create a bias in these estimates, we also tested the
success rate of predicting the CATH topology only for the FSSP
representatives, which yielded 63%, to be compared with the corre-
sponding upper bound of 74%.
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we found in CATH is the PDB entry 1rboC, which is
classified as a �-� two-layer sandwich. It has 15 neighbors
in PC, 14 of which are classified as mainly-� sandwiches.

We summarize the results about the assignments of the
CATH architecture for proteins that already have a CATH
classification (PFCs) in a “confusion table” (see Table II). The
first column lists the “correct” classification (as given in
CATH v1.7 for the test set); the second column gives the
assignments by CO (correct, incorrect, or reject), and the
third column lists the corresponding percentages. A full list
of the inconsistent proteins is available on the web site.31

Another problem is that there are some large Z-scores
between proteins of different architectures. Such large
Z-scores arise when a protein of one particular architec-

ture has a similar structure to a part of a protein of a
different architecture. Swindells et al.32 call the phenom-
enon of structures within structures, the “Russian doll”
effect. Such cases are common between architectures of
long proteins that contain substructures corresponding to
architectures of shorter proteins; for example, there are
many two-layer sandwich proteins that resemble a part of
three-layer sandwich proteins. Such relationships can
occur at the class level [e.g., �-� proteins that contain
mainly-� or mainly-� proteins (1rboC, 1hgeA)]. They can
also occur at the architecture level within the same class
[e.g., �-� complex architecture contains �-� two-layer
sandwich (1regX)]. Other inconsistencies occur when pro-
teins fit two architecture definitions.

Fig. 4. Center: Protein 1dhn, which has a CATH � � three-layer (���) sandwich Aspartyl-glucosaminidase
chain B (3.50.11) topology. Left: Protein 1a8rA, which has also a CATH � � three-layer (���) sandwich
Aspartylglucosaminidase chain B (3.50.11) topology and has Z-score of 9.3 with protein 1dhn. Right: Protein
1b66A, which has a CATH � � two-layer sandwich Tetrahydropterin Synthase, subunit A (3.30.479) topology
and has Z-score of 8.7 with protein 1dhn. This example illustrates how structural information alone might be
insufficient to provide a clear-cut criterion for the classification of this protein.

Fig. 5. Twilight zone for protein structure classification. a: The number of protein pairs of with a given FSSP
Z-score that have different CATH folds is a rapidly decaying function of Z. On the contrary, the number of
proteins pairs with the same CATH fold is decaying slowly. For Z � 5 there is a non-negligible probability to
have different folds. We call this threshold the “twilight zone for structure classification.” b: The corresponding
histogram for SCOP folds. The number of SCOP folds is larger than the number of CATH topologies; hence the
twilight zone is Z � 7.
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TABLE II. Summary of a “Confusion Table”

Original classification Assigned classification Cases (%)

Mainly alpha
1.10 Orthogonal bundle 1.10 Orthogonal bundle 96.3

reject 3.3
1.20 Up-down bundle 1.20 Up-down bundle 97.7

4.10 Irregular 1.2
1.10 Orthogonal bundle 0.7

1.25 Horseshoe 1.25 Horseshoe 100.0
1.50 Alpha-alpha barrel 1.50 Alpha-alpha barrel 100.0

Mainly beta
2.10 Ribbon 2.10 Ribbon 93.9

reject 5.7
2.20 Single sheet 2.20 Single sheet 97.2

reject 2.3
2.30 Roll 2.30 Roll 97.2

reject 2.1
3.10 Roll 0.7

2.40 Barrel 2.40 Barrel 91.0
reject 8.8

2.50 Clam 2.50 Clam 94.4
2.40 Barrel 5.6

2.60 Sandwich 2.60 Sandwich 86.1
reject 13.9

2.70 Distorted sandwich 2.70 Distorted sandwich 96.1
2.60 Sandwich 3.9

2.80 Trefoil 2.80 Trefoil 100.0
2.90 Orthogonal prism 2.90 Orthogonal prism 100.0
2.100 Aligned prism 2.100 Aligned prism 100.0
2.102 3-layer sandwich 2.102 3-layer sandwich 78.6

2.30 Roll 21.4
2.110 4 Propellor 2.110 4 Propellor 100.0
2.120 6 Propellor 2.120 6 Propellor 96.1

reject 3.9
2.130 7 Propellor 2.130 7 Propellor 100.0
2.140 8 Propellor 2.140 8 Propellor 85.3

reject 14.7
2.160 3 Solenoid 2.160 3 Solenoid 100.0
2.170 Complex 2.170 Complex 83.3

2.60 Sandwich 8.6
reject 8.0

Mixed alpha-beta
3.10 Roll 3.10 Roll 99.9
3.20 Barrel 3.20 Barrel 100.0
3.30 2-layer sandwich 3.30 2-layer sandwich 93.5

reject 6.0
3.40 3-layer(aba) sandwich 3.40 3-layer(aba) sandwich 96.1

reject 3.8
3.50 3-layer(bba) sandwich 3.50 3-layer(bba) sandwich 72.1

reject 27.2
3.30 2-layer sandwich 0.7

3.60 4-layer sandwich 3.60 4-layer sandwich 99.7
3.70 Box 3.70 Box 100.0
3.75 5-stranded propeller 3.75 5-stranded propeller 100.0
3.80 Horseshoe 3.80 Horseshoe 100.0
3.90 Complex 3.90 Complex 97.9

reject 0.7
Few secondary structures

4.10 Irregular 4.10 Irregular 90.8
reject 8.3
1.20 Up-down bundle 0.8

This table summarizes the results about the assignments of the CATH
architecture for proteins that have already a CATH classification. Only cases
that occur �0.5% are listed. These figures were calculated by using 100
cross-validation runs at 20% dilution.
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Class Prediction Using the Web Site

To retrieve our prediction for the CATH topology or
SCOP fold of a protein, one can use the web site31 by
entering the protein chain identifier in the search box and
submitting the query. If the protein appears in our data-
base, then a table will be returned containing both the
known and the predicted SCOP and CATH classifications.
For example, the submission of the chain identifier “1cuoA”
returns Table III. This protein was classified by neither
CATH v1.7 nor SCOP 1.53, which are the basis of our
predictions. We predicted it to belong to CATH topology
2.60.40 and SCOP fold 2.5. Later, the release CATH v2.0
identified 1cuoA as 2.60.40.

CONCLUSIONS

The rapidly increasing number of experimentally de-
rived protein structures requires a continuous updating of
the existing structure classification databases. Each group
adopts different classification criteria at the level of se-
quence, of structure, and of function similarities. A compari-
son between different classification schemes can help to
understand the optimal interplay between different levels,
it can reveal possible misclassification, and it can ulti-
mately offer a fully automated updating procedure. Manual
steps can be automated in an ever-increasing way by using
the tools made available by other databases.

In this work we showed that it is possible to automati-
cally predict the CATH topology and the SCOP fold from
the FSSP Z-scores. It is possible to submit a protein of
unknown CATH or SCOP classifications but known FSSP
Z-scores to the web site31 to obtain its CATH and SCOP
classifications. Because the FSSP database is updated
weekly, our procedure offers the possibility to update also
CATH and SCOP with the same frequency (at least down
to the topology and fold level, respectively). We introduced
a classification method that clusters together structures of
known and unknown classification according to their
Z-scores. When proteins outside the twilight zone for
structure comparison are considered, our method is highly
reliable. We suggest that, to classify proteins within the
twilight zone, other classification criteria, based on se-
quence and function similarity, must be adopted.

The advent of genome projects is multiplying the efforts
in the field of protein classification. In the past, the aim
was to find the structure of the particular protein that was
interesting at a given time. Now the hope is to find a large
representative set of structures that can encompass most

of the existing folds, possibly all of them.3 In such a
large-scale project, human intervention, which is precious
in setting the principles of classification, should be gradu-
ally replaced by automated procedures.
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MATERIALS AND METHODS
Databases and Protein Sets

Because the CATH and SCOP databases classify do-
mains and FSSP deals with chains, we considered only
chains that form a single domain; therefore, these proteins
appear as a single entry in the three databases. Several
groups have developed methods to identify protein do-
mains.20,23,33–35 In this work, we used the Dali Domain
Dictionary24 to identify single-domain proteins.

We used the following databases. The CATH release 1.7,
which contains 15,802 protein chains, among which 10,906
are classified as single domain. This latter set is called
PCs. We also used the CATH release 2.0, which contains
20,780 protein chains, among which 14,389 are single
domain (PC2s). The SCOP release 1.53, which contains
20,021 protein chains, among which 15,375 are single
domain (PSs). The FSSP release from 14 January 2001,
which contains 22,660 protein chains (PF). The FSSP
proteins are grouped into 2,494 homology classes so that
within a class the sequence similarity is �25%. One
protein per class is selected as representative, and we call
PFr the set of all representatives. All the protein sets and
their sizes are listed in Table IV.

Classification by Optimization (CO) Method

The classification scheme that we used is based on the
minimization of a particular cost function, defined as
follows (for the case of the prediction of CATH topology; a
similar definition holds for SCOP folds). Each protein is

TABLE III. The Search Result When Submitting “1cuoA” to the Web Site
http://www.weizmann.ac.il/physics/complex/compphys/f2cs/

Chain id

CATH v1.7 CATH v2.0 CATH prediction SCOP 1.53
SCOP

prediction

# C A T # C A T C A T # C F C F

1cuoa 	1 1 2 60 40 2 60 40 	1 2 5

This protein was classified by neither CATH v1.7 nor SCOP 1.53, which are the basis of our predictions. We predicted it to belong to CATH
topology 2.60.40 and SCOP fold 2.5. Later it was indeed classified by CATH v2.0 as 2.60.40. The 	1 in both CATH v1.7 and SCOP 1.53 represents
that it was not classified by them.
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assigned an integer number ci, describing its topology
(1–305). We assign to proteins with known classification
the value of c(i) determined by their CATH classification.
To the yet unclassified proteins we assign initially random
values from 1 to 305. A cost is calculated for each configu-
ration C � {ci} of topologies, which penalizes the assign-
ment of different topologies to any pair of proteins. The
value of this penalty is chosen to be the similarity measure
Zij between proteins i and j; the higher the similarity Zij,
the more costly it is to place proteins i and j in different
topologies. The cost function is defined as the sum of
penalties for all protein pairs 
i, j�,

E�C
 � �

i,j�

Zij�1 � ��ci, cj
�. (1)

The classification problem is stated as finding the minimal
cost configuration of the unclassified proteins, while keep-
ing the topologies (i.e., the ci values) of the classified
proteins fixed. This problem corresponds to finding the
ground state of a random field Potts ferromagnet.

We search for a classification C of minimal cost by an
iterative greedy algorithm described in detail elsewhere.21

The algorithm identifies at which iteration, if any, it
performed a heuristic decision. For low fractions of un-
known topologies, the algorithm usually reaches the global
minimum of the cost function.

Bounds on the Success Rate of the Prediction

In this section we establish a statistical upper bound for
the prediction success rate relevant to a family of predic-
tion algorithms.

The Z-matrix can be reinterpreted as a weighted graph;
each vertex in the graph represents a protein and the
weights on the edges connecting two vertices are the
corresponding Z-scores. Edges with Z � 2.0 are absent
from the graph. Following this representation, we define
two proteins as neighbors if they are connected by an edge.
By analyzing the connectivity properties of set PC we
make inferences about our predictive power.

One can characterize the FSSP-based neighborhood of a
protein according to the CATH classification of itself and
its neighbors. Every protein must belong to one of four
categories:

“Island”: The protein has no neighbors.
“Colony”: It has no neighbors of its own kind.
“Border”: It has neighbors of its own kind as well as of

other kinds.
“Interior”: The protein has only neighbors of its own

kind.
Using these definitions we can arrange the proteins of
PC in groups according to their neighborhood category
at the class, architecture, and topology levels. The
distribution of the proteins among these groups can be
used to calculate an upper bound for the CO method, if
we assume that the set of unclassified proteins has the
same distribution as the classified ones. For example,
islands cannot be classified and are therefore rejected.
Colonies are bound to be misclassified because none of
their neighbors give a clue on their type. Because the
fraction of proteins in each category was estimated on
the basis of a sample, it can be interpreted only as a
statistical upper bound.

We consider the set PFCs to obtain a first type of upper
bound for the success rate of the CO method. This set (see
Table IV) is formed by 10,541 proteins, among which 5%
are islands, a negligible fraction (0.2%) are colonies, 6%
are borders, and 88% are interiors. Therefore, the upper
bound that we found is about 95% for predicting the
topology level in CATH.

The actual prediction performed in this work is done on
the set PFC� , which is formed by the 7431 proteins that are
in FSSP (14 January 2001) but not in CATH1.7 (see Table
IV). Within PFC� there is a subset of 1617 (about 22%)
proteins that are either islands or superislands, that is,
they are connected only with other proteins in the subset
and therefore they have no connection to proteins with
known classification. Thus, the upper bound for this
second type of prediction is about 78%.

TABLE IV. Protein Sets and Their Sizes

Name Description Size of set

PF All chains in FSSP (14 Jan, 2001) 22,660
PFr Representative chains in FSSP (14 Jan, 2001) 2,494
PC Chains in CATH v1.7 15,802
PCs Single-domain chains in CATH v1.7 10,906
PC2 Chains in CATH v2.0 20,780
PC2s Single-domain chains in CATH v2.0 14,389
PS Chains in SCOP 1.53 20,021
PSs Single-domain chains in SCOP 1.53 15,375
PCsSs Single-domain chains in SCOP 1.53 and CATH v1.7 10,197
PFrCs Single-domain chains in CATH that are representatives FSSP (PFr � PCs) 860
PFrSs Single-domain chains in SCOP that are representatives FSSP (PFr � PSs) 1,626
PFCs Chains in FSSP and single domain in CATH v1.7 10,541
PFSs Chains in FSSP and single domain in SCOP 1.53 14,716
PFC� Chains in FSSP and not in CATH v1.7 7,431
PFS� Chains in FSSP and not in SCOP 1.53 3,451
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Evaluating a Classification Prediction Algorithm

Because an algorithm can output either a predicted
classification or a “rejection,” if it does not have any
prediction, one has to estimate two probabilities: Psuccess

and Preject. Robust estimation of these parameters is
produced by cross-validation, a procedure that consists in
averaging over many (T) randomly sampled test trials. In
each trial, the set is divided into two subsets; one is used
for training the algorithm and the other set, of Ntest

proteins, is used to test the algorithm by comparing its
prediction to the true classification. The probability esti-
mates are given by

P̂success � 1/T �
t � 1

T Nsuccess

Ntest
(2)

P̂non-reject � 1 � P̂reject � 1/T �
t � 1

T Ntest � Nreject

Ntest
(3)

Another figure of merit, the purity Ppure, is the probability
of correctly classifying nonrejected proteins. It is esti-
mated by

P̂pure �
P̂success

1 � P̂reject
(4)
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