State hierarchy induced by correlated spin domains in short-range spin glasses

Eytan Domany,1,2,* Guy Hed,1 Matteo Palassini,3 and A. P. Young4

1Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
2Institute of Theoretical Physics, University of California, Santa Barbara, California 93106
3Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94118
4Physics Department, University of California Santa Cruz, Santa Cruz, California 95064

(Received 16 April 2001; revised manuscript received 2 August 2001; published 20 November 2001)

We generate equilibrium configurations for the three- and four-dimensional Ising spin glass with Gaussian distributed couplings at temperatures well below the transition temperature T_c. These states are analyzed by a recently proposed method using clustering. The analysis reveals a hierarchical state space structure. At each level of the hierarchy states are labeled by the orientations of a set of correlated macroscopic spin domains. Our picture of the low temperature phase of short-range spin glasses is that of a state hierarchy induced by correlated spin domains (SHICS). The complexity of the low temperature phase is manifest in the fact that the composition of such a spin domain (i.e., its constituent spins), as well as its identifying label, are defined and determined by the “location” in the state hierarchy at which it appears. Mapping out the phase space structure by means of the orientations assumed by these domains enhances our ability to investigate the overlap distribution, which we find to be nontrivial. Evidence is also presented that these states may have a nonultrametric structure.

DOI: 10.1103/PhysRevB.64.224406 PACS number: 75.10.Nr, 05.50.+q, 75.40.Mg, 75.50.Lk

I. INTRODUCTION

Whereas equilibrium properties of infinite range1 spin glasses are completely understood within the framework of replica symmetry breaking (RSB),2–5 spin glasses with short range interactions are the subject of considerable current debate and controversy. Open questions address the nature of correlation functions in a fixed finite region inside the system as $L \to \infty$ with some specified boundary conditions. In particular, it was recently emphasized12–15 that a spin glass can in principle have many thermodynamically important valleys but just two pure states. This is realized when there are many valleys with free energies which differ by an amount of order unity, and configurations taken from different valleys have a vanishing density of (relative) domain walls as $L \to \infty$ (a domain wall is a surface separating a region where the two configurations are identical from a region where they are opposite). In contrast, if the density of domain walls is finite (i.e., the domain walls are space-filling), there is a non-vanishing probability to have a domain wall in any finite region of the system, and thus to have more than two pure states. In this paper we will be mainly concerned with the number and organization of valleys, and we will not investigate whether multiple valleys correspond to multiple pure states as defined above. In the following, by state we will always mean a microstate or spin configuration.

A. RSB, droplet, and TNT scenarios

There are two traditional pictures of the spin glass phase; the droplet picture and RSB. According to the droplet picture of Fisher and Huse6–8 the low energy excitations are in the form of droplets—compact regions with low surface tension that flip collectively. For a droplet of size L the typical (e.g., median) free energy F_L scales as L^θ, where θ is a dimension dependent exponent. Furthermore, the surface of these excitations has a vanishing density for large L. Therefore, thermodynamically important configurations have a vanishing density of relative domain walls, and hence a trivial overlap (defined below) over any finite region. It follows that in this...
approach within any finite region there are only two pure states, related by spin-flip symmetry.

A parameter commonly used to measure domain wall density is the link overlap and its distribution. Denote a configuration (or state) of an N-spin system by \(S^\mu = (S_1^\mu, S_2^\mu, \ldots, S_N^\mu) \). The link overlap \(q_{\mu \nu} \) between two configurations \(S^\mu \) and \(S^\nu \) is defined by

\[
q_{\mu \nu} = \frac{1}{\gamma N} \sum_{\langle ij \rangle} S_i^\mu S_j^\nu S_i^\nu S_j^\mu,
\]

where the sum is over pairs of neighbor sites and \(\gamma N \) is the number of bonds in the system. If the domain wall density vanishes, then the distribution \(P(q_{\text{link}}) \) of the link overlap will be trivial: \(P(q_{\text{link}}) = \delta(q_{\text{link}} - q_0) \). At \(T = 0 \) one has \(q_0 = 1 \), while \(q_0 \) decreases for \(T > 0 \) and becomes zero at \(T_c \).

Another parameter commonly considered is the spin overlap between configurations \(S^\mu \) and \(S^\nu \):

\[
q_{\mu \nu} = \frac{1}{N} \sum_{i=1}^N S_i^\mu S_i^\nu.
\]

If there are only two pure states, as in the droplet model, the local overlap distribution, obtained in a finite part of an infinite system, would be trivial for all \(T < T_c \), i.e., \(P(q) = 0.5[\delta(q - q_{EA}) + \delta(q + q_{EA})] \), where \(q_{EA} \) is the average overlap inside a pure state. In addition, most conventional interpretations of the droplet picture\(^{16,17} \) argue that the global \(P(q) \), obtained from overlaps over the whole system, would also be trivial. This is realized if the droplets (with positive \(\theta \)) are the only relevant excitations over all length scales. However the work of Huse and Fisher\(^2 \), and also Newman and Stein\(^9,18 \) is formulated in a sufficiently general fashion to accommodate a nontrivial global \(P(q) \) if this arises from multiple valleys with non-space-filling domain walls. In this situation, one would have a trivial link overlap distribution \(P(q_{\text{link}}) \) in the infinite system size limit. Even though the global \(P(q) \) would be nontrivial, the local \(P(q) \), would be trivial because a vanishing density of domain walls means that the probability that a domain wall goes through a fixed finite part of the infinite sample also vanishes.

Numerical work has, so far, indicated a nontrivial global \(P(q) \).\(^{19,20} \) For example, Marinari \textit{et al.}\(^{20} \) have used parallel tempering\(^{21,22} \) to sample 3D Ising spin glasses of sizes up to \(L = 16 \) and for temperatures down to \(T = 0.7 \approx 0.74 T_c \). They have found that \(P(q) \) is nontrivial, and \(P(0) \) does not vanish.

In the RSB picture, the Parisi\(^2 - 4 \) theory, which is exact for the infinite range model,\(^1 \) is assumed to also apply to short range systems. Within the RSB solution, both \(P(q) \) and \(P(q_{\text{link}}) \) are nontrivial for \(0 < T < T_c \), which implies that the system has many valleys and also many pure states. RSB suggests a treelike hierarchical structure for the pure states. At every level of the hierarchy the states are divided into sets, so that the states in a given set are closer to each other than to states in other sets. At the next level down the hierarchy these sets are divided into subsets, and so on. Furthermore, according to the RSB solution the distances between the pure states exhibit \textit{ultrametricity}:

\[
q_{\mu \nu} = \min(q_{\mu \rho}, q_{\nu \rho}).
\]

Recently, a mixed picture has been proposed on the basis of numerical results of ground state computations,\(^{12 - 14} \) in which \(P(q) \) is nontrivial but \(P(q_{\text{link}}) \) is trivial (hence referred to as TNT; for trivial and nontrivial). Houdayer, Krzakala and Martin\(^{12,13} \) demonstrated the existence of macroscopic excitations with low energy cost in 3D Ising spin glasses of sizes up to \(L = 11 \). This suggests that the spin overlap distribution, \(P(q) \) is nontrivial at finite temperature. Their results also indicate that the surface of these excitations is not space-filling, which suggests that the link overlap distribution, \(P(q_{\text{link}}) \), is trivial.

Pallassini and Young\(^14 \) studied changes to the ground state of a spin glass when a weak perturbation is applied to the bulk of the system. They considered short range models in three and four dimensions as well as the infinite range SK model and the Viana-Bray model. The results for the SK and Viana-Bray models agreed with the replica symmetry breaking picture as expected, but the data for the short range models agreed with the TNT picture. Effects of the type of perturbation considered in Ref. 14 on RSB have been investigated by Franz and Parisi.\(^23 \)

Katzgraber \textit{et al.}\(^{24} \) measured directly the distributions \(P(q) \) and \(P(q_{\text{link}}) \) at finite temperature using parallel tempering\(^{21,22} \). Monte Carlo, for 3D systems of linear size \(L \leq 8 \) at temperature \(T \geq 0.2 \), and 4D systems with \(L \leq 5 \) and the same temperature range. Extrapolating their results to large sizes they found that the variance of \(P(q_{\text{link}}) \) vanishes as \(L \to \infty \), and the distribution converges to a delta function. They also found the distribution \(P(q) \) to be nontrivial, as in Refs. 19 and 20, so their results also agree with the TNT picture. In the TNT scenario there are many valleys separated by free energy barriers, but only two pure states.\(^{25,15} \)

Although several pieces of work\(^{12 - 14,23,24,26} \) supported a vanishing density of domain walls (and hence a fractal dimension of the domain walls, \(d_s \), less than the space dimension), a large extrapolation is involved in deducing this result, and Marinari and Parisi\(^{27 - 29} \) have argued, based on their own data and a somewhat different analysis, that actually \(d_s = D \), which corresponds to RSB.

B. SHICS: State hierarchy induced by correlated spin domains

Very recently another method of analysis of the structure of the low temperature phase of short range spin glasses has been introduced.\(^{30,31} \) Evidence for a picture of this phase, which is consistent with the TNT scenario, but inconsistent with RSB (since there is no ultrametricity), has been presented\(^{30} \) on the basis of a “clustering analysis” of the degenerate ground states of the model (1) with \(J_{ij} = \pm 1 \) couplings. We denote this by “state hierarchy induced by correlated spin domains” (SHICS).
FIG. 1. Schematic representation of the SHICS picture; the two largest spin domains and the first two levels in the hierarchical organization of the states are shown. The structure of the states is explained by the spin domains’ orientations; e.g., in the states of the two sets C_1, C_2, the spins of the larger domain, \tilde{C}_1, have the same orientation, whereas the spins of the smaller domain, \tilde{C}_2, have flipped. Spins not in \tilde{C}_1 or \tilde{C}_2 are in smaller domains which are not resolved at this level of the hierarchy.

In this picture there is a hierarchical treelike structure of the states as in the RSB solution. The highest levels of the state hierarchy, are schematically illustrated in Fig. 1. At the first level of the hierarchy the states divide into sets C and \overline{C}, such that a state in C has a counterpart with the same energy in \overline{C}, obtained by flipping all the spins. This equality of the energies follows, of course, from the symmetry of the Hamiltonian in zero field. However, this symmetry information is not imposed on the analysis; the method finds it by itself. In fact, it is not trivial, for a spin glass, to divide the states into two clusters such that every state in C has its reversed state in \overline{C}. Suppose, for example, that one has two states μ and ν, and states μ^\ast and ν^\ast with reversed spins, such that the spin overlap $Q_{\mu\nu}$ is close to zero. Should one put ν or ν^\ast in the same cluster as μ? The analysis, used in Ref. 30 and here determines which one it is.

Many of the spins stay, with high probability, in the same relative orientation in most of the states C. Most of these form a contiguous domain C_1, see Fig. 1. Among the remaining spins, an apparently macroscopic fraction form a contiguous domain, C_2, such that the spins in it maintain, with high probability, their relative orientation in nearly all the states of C. Hence C divides into two subclusters of states, C_1 and C_2, depending on the orientation of C_2, see Fig. 1. In general, the domains C_1 and C_2 are distinct. In many samples, further levels of the hierarchy, with successively smaller domains C_3, \ldots can be clearly resolved, as discussed later. The excitations obtained by flipping the domains C_2, C_1, \ldots appear to correspond to the large scale, low energy excitations investigated by Krzakala and Martin and Palassini and Young. Note that the local (or link) overlap was not investigated in Ref. 30.

By contrast, in the conventional interpretations of the droplet picture, the only substantial division of the states would be into C and \overline{C}, and any further divisions emerging from the analysis would only correspond to microscopic spin domains. In the RSB scenario there would be a hierarchical structure to the states, similar to what we find here, but the nature of the spin domains would appear to be different; see, e.g., Ref. 32. We will discuss these differences further in Secs. IV and VII.

The purpose of the present paper is to use the methodology of Ref. 30 to investigate whether the same picture of the spin glass phase found there also occurs for a spin glass with Gaussian couplings (which has a unique ground state apart from spin reversal) at finite temperatures. Both three and four dimensions are studied. We find that our data do fit this picture quite well. We also present here full details of the method.

Readers who like to skip ahead will find the picture of state clusters and spin domains that were obtained at $T = 0.2$ for a particular bond realization, conveniently summarized in Fig. 12. The corresponding overlap distribution $P(q)$ is presented in Fig. 14(a).

The numerical procedure and parameters that were used in our simulations are described in Sec. II. In Sec. III we present the clustering methodology which we use to identify the states hierarchy, as described in Sec. IV. In Sec. V we use the hierarchical partition of the state space to obtain the spin domains, show that their sizes scale with the system size and their correlation does not approach unity as $L \to \infty$. We also show that these spin domains, that were identified on physical grounds, can also be obtained by a cluster analysis of the N spins. Those domains yield a nontrivial overlap distribution $P(q)$ with peaks corresponding to the different domain sizes, as we show in Sec. VI. Since we find that the average correlation between spins in different domains does not approach unity with increasing system size, $P(q)$ will remain nontrivial as $L \to \infty$. The nature of our picture appears to yield a nonultrametric structure, as indicated at the end of Sec. IV and demonstrated in Sec. VII, in which we present a parameter for ultrametricity and measure its distribution. Finally, our method and findings are summarized in Sec. VIII.

After this work was completed we received a report from Marinari et al. who have adopted and adapted the methodology of Refs. 30 and 31 to study the $J_{ij} = \pm 1$ model in $d = 3$ at a single temperature ($T = 0.5$—whereas here we considered $T = 0.2$ and $T = 0.5$ for the Gaussian model). They also confirmed that the previously observed SHICS scenario of a treelike structure of the states, governed by correlated spin domains, remains valid at a nonzero temperature.

II. NUMERICAL METHOD

We simulate the Hamiltonian in Eq. (1) using the parallel tempering Monte Carlo method. In this technique, one simulates several identical replicas of the system at different temperatures, and, in addition to the usual local moves, one performs global moves in which the temperatures of two replicas (with adjacent temperatures) are exchanged. This greatly speeds up equilibration at low temperatures. The detailed balance condition for temperature exchanges is satisfied by accepting these moves with probability

$$\exp(\frac{\Delta E}{kT})$$

where $\Delta E = E^{\mu} - E^{\nu}$, E^{μ} and E^{ν} are the (total) energies of replicas μ and ν, and $\Delta E = E^{\mu} - E^{\nu}$ is the difference in inverse temperatures.
TABLE I. Parameters of the simulations in $D = 3$ and 4 dimensions. N_{samp} is the number of samples (i.e., sets of bonds), n_{equil} is the number of sweeps for equilibration, and n_{meas} is the number of sweeps for measurements for each of the $2N_T$ replicas for a single sample. N_T is the number of temperatures used in the parallel tempering method.

<table>
<thead>
<tr>
<th>D</th>
<th>L</th>
<th>n_{equil}</th>
<th>n_{meas}</th>
<th>N_{samp}</th>
<th>N_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>10^4</td>
<td>10^5</td>
<td>500</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5×10^4</td>
<td>5×10^5</td>
<td>500</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>3×10^4</td>
<td>3×10^5</td>
<td>500</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>10^6</td>
<td>10^7</td>
<td>335</td>
<td>18</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>2×10^5</td>
<td>2×10^6</td>
<td>254</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>10^4</td>
<td>10^5</td>
<td>500</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4×10^4</td>
<td>4×10^5</td>
<td>500</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>8×10^4</td>
<td>8×10^6</td>
<td>200</td>
<td>25</td>
</tr>
</tbody>
</table>

We choose a set of temperatures T_i, $i = 1, 2, \ldots, N_T$, in order that the acceptance ratio for the global moves is satisfactory, typically greater than about 0.3. We use the test for equilibration discussed in Ref. 24, which involves measurements of q_{link}. For that, we need, at each temperature, two copies of the system, so we actually run 2 sets of N_T replicas and perform the global moves independently in each of these two sets.

For the three-dimensional model we stored configurations for sizes $L = 4, 5, 6$, and 8 at $T = 0.2, 0.5$, and 2.0, which are to be compared with $^{20}T_c = 0.95$. We also stored size $L = 12$ configurations at $T = 0.5$. The parameters of the simulations are shown in Table I. The highest temperature was 2.0 and lowest 0.2 except for $L = 12$ where the lowest temperature was 0.5.

We generated randomly chosen interactions, J_{ij}, with a Gaussian distribution with zero mean and standard deviation unity. For each size, temperature and bond configuration (sample) we saved 500 spin configurations. These, together with the 500 obtained from them by spin reversal, constitute our ensemble of $M = 1000$ spin configurations, generated for each sample.

For the four-dimensional model we stored configurations for sizes $L = 3, 4$, and 5 at $T = 0.2, 0.8$, and 2.6, compared with $^{14}T_c = 1.80$. The highest temperature was 2.6 and the lowest 0.2. 500 spin configurations were saved for each sample. The other parameters of the simulations are also shown in Table I.

We are confident, based on the equilibration test used, that the spin configurations we generate are in thermal equilibrium. However, it is interesting to ask whether there are significant correlations between them. Our results do not require that correlations be absent, but the clustering methodology does require that a substantial number of independent configurations are generated for each sample.

For each set of bonds (and temperature) we store 500 spin configurations, 250 for each replica, so the number of sweeps between measurements, t_{meas}, is given by $t_{\text{meas}} = n_{\text{meas}}/250$ where n_{meas} is given in Table I. We will denote by “time,” t, the number of Monte Carlo sweeps. A quantity which tests for correlations is the time-dependent Edwards-Anderson order parameter

$$[q(t)]_j = \frac{1}{N_{t_0}} \sum_{i=0}^{N_{t_0}} \sum_{t=0}^{N} S_i(t_0) S_i(t_0 + t),$$

where we have averaged over N_{t_0} values for the initial time t_0 as well as over spins and bond configurations. Clearly $[q(0)]_j = 1$ and $[q(t)]_j \rightarrow 0$ for times sufficiently long that there are no correlations.

In Fig. 2 we show data for $[q(t)]_j$ in $D = 3$ for $L = 8, T = 0.2$. We see that the correlation is very small even for $t/t_{\text{meas}} = 1$ (i.e., between the configurations of neighboring measurements). The same is true for smaller sizes and higher temperatures. For $L = 12, T = 0.5$, shown in the inset to Fig. 2, the correlations are larger, about 0.24 for $t/t_{\text{meas}} = 1$, and then decrease, though less fast than exponentially. Thus, for $L = 12$, correlations will decrease, somewhat, the effective number of independent spin configurations. However, we feel that this is not crucial since we do not use the $D = 3, L = 12$ data for the clustering analysis, and only present it in one place, Fig. 9.

In $D = 4$, for $L = 3$ and 5, the strength of the correlations at $T = 0.2$ is small, comparable to, or less than, that for $D = 3, L = 8, T = 0.2$. For $L = 4$, the correlation is intermediate between the results shown in $D = 3$ for $L = 8$ and 12.

III. CLUSTERING METHODOLOGY

Clustering is an important technique to perform exploratory data analysis. The aim is to partition data according to natural classes present in it. By “natural classes” we mean groups of points that are close to one another and relatively far from other points, so that it is natural to assign them...
together, without using any preconceived information on the features according to which the set should be classified.

The standard definition of the clustering problem35 is as follows. Partition \(N \) given data points (or objects) into \(K \) groups (i.e., clusters) so that two points that belong to the same group are, in some sense, more similar than two that belong to different groups. The \(i = 1, 2, \ldots, N \) data points are specified either in terms of their coordinates \(\bar{X}_i \) in a \(D \)-dimensional space (representing the measured values of \(D \) attributes or features) or, alternatively, by means of an \(N \times N \) “distance matrix,” whose elements \(d_{ij} \) measure the dissimilarity of data points \(i \) and \(j \). The traditional tasks of clustering algorithms are to determine \(K \) and to assign each data point to a cluster.

In the context of the present work we can think of our sample of \(M \) spin configurations as the objects to be clustered. Each object is represented by an \(N \)-component vector \(S^{\mu} = (S^{\mu}_1, S^{\mu}_2, \ldots, S^{\mu}_N) \), where \(S^{\mu}_i = \pm 1 \) is the value taken by spin \(i \) in state \(\mu \). An alternative view, which we also use, is to consider the \(N \) spins as the objects to be clustered.

Our first aim in this work was to look for a hierarchical structure of the states of a spin glass. Hence we wanted to find a hierarchy of partitions, where each partition is a refinement of the previous partition. This purpose calls for using a hierarchical clustering algorithm. The output of such an algorithm is a tree of clusters, called a dendrogram. Each node in the tree corresponds to a cluster. The splitting of a cluster represents its partition into subclusters. The trunk is the single “cluster” that contains all the objects, representing the crudest partition; at the other extreme each leaf is a cluster of a single object, representing the finest partition.

There are many clustering algorithms that produce such a hierarchical partitioning of any data set. We tried two algorithms; a recently introduced one, SPC,36 which uses the physics of granular ferromagnets to identify clusters, and a graph-based algorithm proposed by Ward. In the present problem the state clusters are nearly always compact (i.e., consist of a high density of points concentrated in a relatively small volume), and the same holds for spin clusters. Therefore an algorithm that identifies compact clusters easily is most suitable for our needs and Ward’s algorithm is designed to find such clusters. Furthermore, SPC is a “short-range” algorithm,37 in the sense that it couples directly only points within a characteristic length scale. If this scale is tuned by the distances inside valleys, which are much smaller than the distance between them, SPC identifies the valleys as different clusters, but may miss their relative hierarchical structure.

Ward’s algorithm35 is agglomerative, works its way up from the leaves to the trunk, by fusing two clusters at each step. It begins with an initial partition to \(i = 1, 2, \ldots, N \) clusters, with a single data point in each. One calculates the distance \(D_{ij} \) between every pair of points \(i, j \); one may use, for example, the Euclidean definition of distance, or (for binary valued coordinates) the Hamming distance.

At each step that pair of clusters, \(\alpha, \beta \), which are separated by the shortest effective distance \(\rho_{\alpha\beta} \) from each other, are identified and fused to form a new cluster \(\alpha' = \alpha \cup \beta \).

The process stops when there is only one cluster that contains all points.

Initially each data point \(i = 1, 2, \ldots, N \) constitutes a cluster and hence the distance \(\rho_{ij} \) between two such “clusters” is the original distance \(D_{ij} \) between points \(i \) and \(j \). For subsequent steps, however, one must define an effective distance \(\rho_{\alpha\beta} \), between any two clusters \(\alpha \) and \(\beta \). This distance is defined by the following update rule: if at a particular step we fuse two clusters, \(\alpha \) and \(\beta \), to form a new cluster \(\alpha' \), we calculate the effective distances \(\rho_{\gamma\delta} \), between every unchanged cluster, \(\gamma \neq \alpha, \beta \), and the new \(\alpha' \), according to

\[
\rho_{\alpha'\gamma} = \frac{n_\gamma}{n_\alpha + n_\beta + n_\gamma} \rho_{\gamma\delta} + \frac{n_\alpha + n_\gamma}{n_\alpha + n_\beta + n_\gamma} \rho_{\alpha\beta}.
\]

where \(n_\alpha \) is the number of data points in cluster \(\alpha \). Distances between unfused clusters remain the same. Note that \(\rho_{\alpha'\gamma} \geq \rho_{\alpha\beta} \) and \(\rho_{\gamma\delta} > \rho_{\alpha\beta} \) for every two clusters \(\gamma, \delta \). Hence after every fusion step the minimal distance between clusters increases.

Whenever two clusters are fused, the quantity

\[
S = \sum_\alpha \sigma_\alpha,
\]

where \(\sigma_\alpha \) is the sum of squared distances over all pairs of points in cluster \(\alpha \),

\[
\sigma_\alpha = \sum_{i,j \in \alpha} D_{ij}^2,
\]

increases. It can be shown35 that Ward’s fusion and distance update rules ensure that at each fusion step this increase is minimal.

We associate a value \(\tau \) with each cluster \(\alpha' \), where \(\tau(\alpha') = \rho_{\alpha\beta} \) is the effective distance between the two clusters that were fused to form \(\alpha' \). For the initial single-point clusters we set \(\tau = 0 \). \(\tau(\alpha) \) is related to \(\sigma_\alpha \), the sum of squared distances within cluster \(\alpha \). Clusters formed earlier have lower \(\tau \) values, and their \(\sigma_\alpha \) is smaller.

The result of the algorithm is a dendrogram, or tree, as in Fig. 3(a). The leaves at the bottom represent the individual data points; they are ordered on the horizontal axis in a way that reflects their proximity and hierarchical assignment.38 The small boxes at the nodes represent clusters. The vertical location of cluster \(\alpha \) is its \(\tau \) value, and is thus related to its \(\sigma_\alpha \). When two relatively tight and well-separated clusters are fused, the \(\tau \) value of the resulting cluster is much higher than those of the two constituents. Hence the length of the branch above cluster \(\alpha \) provides a measure of its relative \(\sigma_\alpha \); long branches identify clear, tight clusters.

Every clustering algorithm is designed to work well for data that satisfy some (usually implicit) assumptions. When the actual distribution of the data points deviates from these
assumptions, the algorithm may produce some “unnatural” partitions. For Ward’s algorithm one has to look out for two potential problems.

The first problem arises from the implicit assumption that minimizing \(S \), the variance within clusters, leads to “natural” partitions. This is not the case when, for example, the data consists of a set of points \(C \) whose natural partition is into two clusters \(C_1 \) and \(C_2 \) with very different sizes. We encountered this problem only for the classification of very small groups of states, and therefore it has very little statistical effect on our results.

The second, and seemingly more serious concern is the fact that like every agglomerative algorithm, Ward’s algorithm will generate a treelike structure when applied to any set of data. In fact, it is fairly easy to identify when the dendrogram and the corresponding partitions do correspond to real hierarchical structure, and when it is an artifact of the clustering algorithm used. We used three indicators for the “naturalness” of our state clusters: direct observations of the clustering algorithm used. We used three indicators for the to real hierarchical structure, and when it is an artifact of the algorithm. In fact, it is fairly easy to identify when the algorithm will generate a treelike structure when applied to any set of data. The second, and seemingly more serious concern is the fact that like every agglomerative algorithm, Ward’s algorithm may produce some “unnatural” partitions.

The first problem arises from the implicit assumption that minimizing \(S \), the variance within clusters, leads to “natural” partitions. This is not the case when, for example, the data consists of a set of points \(C \) whose natural partition is into two clusters \(C_1 \) and \(C_2 \) with very different sizes. We encountered this problem only for the classification of very small groups of states, and therefore it has very little statistical effect on our results.

The second, and seemingly more serious concern is the fact that like every agglomerative algorithm, Ward’s algorithm will generate a treelike structure when applied to any set of data. In fact, it is fairly easy to identify when the dendrogram and the corresponding partitions do correspond to real hierarchical structure, and when it is an artifact of the clustering algorithm used. We used three indicators for the “naturalness” of our state clusters: direct observations of (1) the dendrograms and (2) the distance matrices, as well as (3) a quantitative measurement of the distances within our clusters, which are significantly smaller than the distance between clusters. These points are demonstrated in Sec. IV; for a detailed discussion, see Ref. 37.

IV. STATE SPACE STRUCTURE

For a particular (randomly chosen) set of bonds \(|J|\) of the system we generate, as discussed in Sec. II, a sample of 500 states, which constitute an equilibrium ensemble at a temperature \(T \). Next, we add to this ensemble the set of 500 states obtained from the original set by spin reversal. Clearly the new ensemble of \(M=1000 \) states also corresponds to thermal equilibrium at \(T \). We now address the following question:

Do the \(M \) states of the equilibrium ensemble cover the \(2^N \) points of state space or a part of it uniformly, or is there some underlying hierarchical organization?

As it turns out, the answer depends on \(T \); whereas above \(T_c \) the \(M \) states do not exhibit any apparent structure, below \(T_c \) a very pronounced hierarchical organization is seen. To uncover this organization we use the clustering methodology of the previous section, treating the \(M \) states of our ensemble as the data points to be clustered.

We describe here analysis of a single realization of the randomness, in order to help the reader perceive the qualitative nature of the results (see Figs. 4 and 5), and to define the observables that we measure. These observables were measured for each of the different realizations, and the distributions of their values were determined; the average and width of these distributions are also presented. These data demonstrate that the results described in this section for a single sample are typical and seen in many samples.

In order to cluster the states, each state \(\mu \) is represented as an \(N \)-component vector \(S^\mu = (S_1^\mu, \ldots, S_N^\mu) \), where \(S_i^\mu = \pm 1 \) is the value taken by spin \(i \) in state \(\mu \). The complete data set can be represented as an \(N \times M \) data matrix, whose columns are the vectors \(S^\mu \). For the set of \(M=1000 \) states, obtained at \(T=0.2 \) for a particular bond realization of an \(N=8^3 \) spin system, the data matrix is presented in Fig. 4(a). Pixel \((i,\mu)\) of this figure represents the sign of spin \(i \) in state \(\mu \); a black
entry corresponds to +1 and white to −1. The spins appear in lexicographic order and the states in the random order generated by the simulation. As can be seen, the matrix appears fairly random, with no easily discernible structure; nevertheless, there is a clear organization of these M states into tight clusters. For the particular realization and ensemble of states presented here, these clusters of states can be seen by direct observation of the M = 1000 data points Sμ, once one overcomes the hurdle of directly viewing a cloud of 1000 points in a N = 512 dimensional space.

A trivial way of visualizing points that lie in a high dimensional space is to project them onto a low (i.e., two or three) dimensional subspace. In order to reveal the underlying structure, it is important to choose with care the subspace onto which one projects. A widely used method to choose this subspace is that of principal component analysis (PCA). One constructs the N×N covariance matrix of the M points,

\[r_{ij} = \frac{1}{M} \sum_{\mu=1}^{M} \delta S^\mu_i \delta S^\mu_j, \tag{9} \]

where

\[\delta S^\mu_i = (S^\mu_i - m_i) / \sigma_i, \tag{10} \]

with m_i the average of the M variables S^\mu_i and \sigma^2_i their variance. For our case m_i = 0 and \sigma_i = 1 for all i, and hence the covariance matrix is the spin correlation matrix, i.e.,

\[r_{ij} = c_{ij} = \frac{1}{M} \sum_{\mu=1}^{M} S^\mu_i S^\mu_j. \tag{11} \]

The eigenvectors e_i of this matrix are the principal directions or components of the variation in the data. They are ordered according to the size of the corresponding eigenvalues, with the largest coming first.

In Fig. 5 we present the projections of our T = 0.2 ensemble of M = 1000 states on the first two and three principal components. Even though projection of N = 8^3 dimensional data onto three and two dimensions involves a major loss of information, the cluster structure of the states is still clearly evident. In Fig. 5(a) projection onto the largest eigenvector, e_1, is represented by the horizontal axis, and on the second largest, e_2, by the vertical. It is interesting to note that the two largest state clusters, C_1 and C_2, project mostly onto e_1 and the second largest pair, C_3 and C_4, onto e_2. Figure 5(b) indicates that the next sized variation, due to splitting of C_2 into two subgroups, is captured by e_3. The scale of the projections can be understood by the following argument: if the (normalized) eigenvector e_1 is parallel to a typical vector from C_1, then, since normalization of e_1 involves a factor of 1/√N, the maximum possible projection is √N ≈ 22.6. Hence the projections shown in Fig. 5 are quite large, i.e., close to the maximum possible value.

Next we obtain a systematic quantitative measure of the hierarchical structure of state space by performing a cluster analysis of the M points. The choice of the particular clustering algorithm used was dictated by our idea of the state

FIG. 5. Principal component analysis of a sample of M = 500 × 2 states of a specific realization of \{U\} in 3D with N = 8^3 spins at T = 0.2. Each point represents a state S^\mu. The coordinates are projections onto eigenvectors e_i, corresponding to the largest eigenvalues of the correlation matrix in Eq. (11). We show in (a) projections onto two eigenvectors, corresponding to the largest and next-largest eigenvalues of the correlation matrix, shown, respectively, on the horizontal and vertical axes. In (b) the three largest eigenvectors are used. The first and second level partitions of the hierarchy are clearly visible and, to some extent, the third level also.

FIG. 4. (a) The original data matrix of 500×2 states S^\mu, \mu = \pm 1, with black/white representing +/−. This 3D sample was generated for a realization of size 8^3 at T = 0.2 (the same one as in Fig. 3). The spins are in lexicographic order. (b) The same matrix, with the states ordered according to the dendrogram in Fig. 3. (c) The matrix in (b) with, in addition, the spins ordered according to the spin dendrogram D in Fig. 11.
space structure, obtained from PCA and from the picture described in the Introduction and summarized in Fig. 1. Our aim is to find a hierarchy of partitions into compact clusters. That is, we would like states that belong to the same cluster to be closer to each other than to states in different clusters. Ward’s algorithm, described in Sec. III, is tailored to perform this task for the kind of data distribution that we have in state space.

To start, we defined the $M \times M$ distance matrix D between the states μ, ν by

$$D_{\mu \nu} = \frac{1 - q_{\mu \nu}}{2},$$

(12)

where $q_{\mu \nu}$ is the state overlap defined by Eq. (3). Next, we clustered the states using the distance matrix $D_{\mu \nu}$ as input to Ward’s algorithm [see Eq. (6)]. The algorithm results in a dendrogram, as shown in Figs. 3(a), 3(c), and 3(e), for a sample at $T = 0.2, 0.5$, and 2.0, in three dimensions. The leaves, which represent the states, are ordered on the horizontal axis according to the order imposed by the dendrogram.38 The nodes represent the clusters. The vertical location of each cluster corresponds to its τ value, and is thus related to the variance within it.

For $T = 0.2$ and 0.5, which are below $T_{c} \approx 0.95$,20 we found clear partitions in the two highest levels of the dendrogram, as presented in Figs. 3(a) and 3(c). At the highest level the states are partitioned into C and \bar{C}. At the next level, C is broken into two subclusters, which we denote as C_1 and C_2. For this specific realization the cluster C_2 breaks further into two subclusters, which are clearly seen in Fig. 5 as well.

To gain insight into the manner in which similar states are grouped together, and to actually “look into the spin glass” at the microscopic level, we present in Fig. 4(b) the same data matrix as shown in Fig. 4(a), but with the states again reordered according to the dendrogram of Fig. 3(a). That is, to get Fig. 4(b), the columns of Fig. 4(a) have been permuted according to their position in the dendrogram. The clear central vertical dividing line separates C from \bar{C}. In addition to the central dividing line, another vertical line is also clearly visible—it separates the states that belong to the larger cluster C_1 from the smaller one, C_2.

We now demonstrate that the state clusters we found are indeed “correct” and “natural.” First, we checked that the situation of merging two clusters of very different sizes occurs very rarely.

We showed that our partitions are “natural” and not an artifact of the algorithm (which produces a tree for any data), in three ways.

(1) Note that direct observation of the dendrograms clearly distinguishes between the different situations above and below T_{c}. At $T = 0.2, 0.5 < T_{c}$ the relative τ values of the state clusters C,C_1 and C_2—measured by the length of the branch above each cluster—are high. A long branch indicates that the distances within the cluster is much smaller than the distance between it and its “brother,” which indicates that the partition into these two groups is natural. In comparison, in the dendrogram obtained at $T = 2.0 > T_{c}$, the relative τ values are much smaller than at $T = 0.2, 0.5$.

(2) The genuinely hierarchical structure at $T = 0.2, 0.5$ is also evident from the states’ distance matrix, as shown in Figs. 3(b) and 3(d). This distance matrix was obtained by reordering the states according to the results of the cluster analysis, i.e., according to the order of the leaves of the corresponding dendrogram. When the states are randomly ordered [like in Fig. 4(a)], the resulting distance matrix has no apparent structure and looks homogeneous. The difference between such a matrix and Figs. 3(b) and 3(d) is striking: the distance matrices within clusters C_1 and C_2 appear as dark squares (representing shorter distances) along the diagonal. The distances between clusters are represented by fairly uniform, lighter colored rectangles. In comparison, for $T = 2.0$ there is no real hierarchical organization of the states, and reordering them according to the dendrogram does not generate any ordered appearance of the distance matrix.

(3) We measured the average distance between pairs of states that belong to each of the clusters C, C_1, and C_2. The average $D(C)$ and the width $w(C)$ of the distribution of distances within C are

$$D(C) = \frac{1}{|C|^2} \sum_{\mu, \nu \in C} D_{\mu \nu},$$

(13)

$$w(C) = \left(\frac{1}{|C|^2} \sum_{\mu, \nu \in C} D_{\mu \nu}^2 - D(C)^2 \right)^{1/2},$$

(14)

where μ and ν refer to individual configurations. The average $D(C_\alpha)$ and the width $w(C_\alpha)$ for $\alpha = 1, 2$ are defined in a similar way. The distribution of distances within clusters is to be compared with the distribution of distances between points that belong to different clusters. The average $D(C_1,C_2)$ and width $w(C_1,C_2)$ of the intercluster distance distribution are defined as

$$D(C_1,C_2) = \frac{1}{|C_1||C_2|} \sum_{\mu \in C_1} \sum_{\nu \in C_2} D_{\mu \nu},$$

(15)

$$w(C_1,C_2) = \left(\frac{1}{|C_1||C_2|} \sum_{\mu \in C_1} \sum_{\nu \in C_2} D_{\mu \nu}^2 - D(C_1,C_2)^2 \right)^{1/2}.$$

(16)

The clusters C, \bar{C} are special in that each state $\mu \in C$ has an inverted state $\bar{\mu} \in \bar{C}$, so that $S^\mu = -S^{\bar{\mu}}$. Therefore $D(C,\bar{C}) = 1 - D(C)$ and $w(C,\bar{C}) = w(C)$.

A subset of the results is presented in Table II; for all temperatures, system sizes, and both dimensions, see Ref. 37. We present for each variable x its mean $\langle x \rangle$ (averaged over the disorder $\{J\}$) and its standard deviation $\Delta x = \langle [x - \langle x \rangle]^2 \rangle^{1/2}$. For $T = 0.2$ and 0.5, which are below T_{c}, the average distances within the clusters C and \bar{C} are of the order of 0.1. $D(C,\bar{C})$ is around 0.9, which shows that there is a clear separation between these two clusters. $D(C_1,C_2)$ is much lower, but is still about two or three times larger than either $D(C_1)$ or $D(C_2)$. Note that the width of the distance distribution within a cluster is of the same order of the mean distance, so in general distances will not be much larger than
TABLE II. The average distances within and between state clusters, and the relations between them, for a subset of the $D=3$ dimensional systems. For each variable x we present the average over all realizations, $\langle x \rangle_J$, followed by its standard deviation, i.e., $\Delta x = \langle \{x^2\}_J - \langle x \rangle_J^2 \rangle^{1/2}$. The statistical error of each mean $\langle x \rangle_J$ is $\Delta x / \sqrt{N_{\text{samp}}}$, the number of samples for each L, D is given in Table I.

<table>
<thead>
<tr>
<th>T</th>
<th>L</th>
<th>$[D(C)_J]$</th>
<th>$\Delta D(C)_J$</th>
<th>$[w(C)_J]$</th>
<th>$\Delta w(C)_J$</th>
<th>$[D(C_1)_J]$</th>
<th>$\Delta D(C_1)_J$</th>
<th>$[w(C_1)_J]$</th>
<th>$\Delta w(C_1)_J$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>4</td>
<td>0.045</td>
<td>0.049</td>
<td>0.055</td>
<td>0.052</td>
<td>0.015</td>
<td>0.017</td>
<td>0.019</td>
<td>0.019</td>
</tr>
<tr>
<td>0.5</td>
<td>8</td>
<td>0.139</td>
<td>0.065</td>
<td>0.084</td>
<td>0.046</td>
<td>0.093</td>
<td>0.038</td>
<td>0.045</td>
<td>0.026</td>
</tr>
<tr>
<td>2.0</td>
<td>8</td>
<td>0.487</td>
<td>0.006</td>
<td>0.053</td>
<td>0.002</td>
<td>0.477</td>
<td>0.009</td>
<td>0.055</td>
<td>0.002</td>
</tr>
<tr>
<td>0.2</td>
<td>4</td>
<td>0.025</td>
<td>0.036</td>
<td>0.027</td>
<td>0.034</td>
<td>0.160</td>
<td>0.135</td>
<td>0.026</td>
<td>0.024</td>
</tr>
<tr>
<td>0.5</td>
<td>8</td>
<td>0.112</td>
<td>0.057</td>
<td>0.057</td>
<td>0.037</td>
<td>0.253</td>
<td>0.126</td>
<td>0.053</td>
<td>0.027</td>
</tr>
<tr>
<td>2.0</td>
<td>8</td>
<td>0.472</td>
<td>0.009</td>
<td>0.057</td>
<td>0.002</td>
<td>0.499</td>
<td>0.005</td>
<td>0.048</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Measurement of some of the quantities listed above allows us to investigate the extent to which the state space structure of short-range spin glasses, as reflected by the data in Table II, is compatible with RSB. In the RSB (Refs. 2–5) framework, the overlap between any pair of valleys (which correspond to pure states in the usual interpretation of RSB) from two different clusters that appear at the same level of the hierarchy is constant. It seems natural to associate the pure state clusters of RSB to our state clusters, e.g., C_1 and C_2. In this association, each state cluster contains states that belong to different “pure states.” If the overlap between pure states of the two clusters is constant as in RSB, this should hold also for the overlap between each pair of states $\mu \in C_1$ and $\nu \in C_2$, since the width of the overlap distribution inside a pure state approaches zero. In this case, all entries of the submatrix $D_{\mu \nu}$ for $\mu \in C_1$ and $\nu \in C_2$ would be equal, so the width $w_{12} = \langle [w(C_1,C_2)]_J \rangle$, should vanish as $L \to \infty$. To test whether this is the case, we present in Fig. 6 the values of $w_{12} = \langle [w(C_1,C_2)]_J \rangle$ vs the system size L for $T=0.2$ and $D = 3$. The error bars represent the statistical error (obtained by dividing the standard deviations, given in Table II, by $\sqrt{N_{\text{samp}} - 1}$). We tried fits of the form

$$w_{12} = w_\infty + BL^{-y},$$

(17)

with B and y as fit parameters. The overall best fit was for $w_\infty = 0.0205, B = 0.58$ and $y = 3.36$, which gives a very small χ^2 of 0.036. This is shown by the solid line in Fig. 6. We also tried the best fit assuming that $w_\infty = 0$, which has fit parameters $B = 0.039$ and $y = 0.30$, and is shown by the dashed line in the figure. This has a χ^2 of 1.41 which is much larger than the best fit with $w_\infty \neq 0$, but still acceptable. Hence even though our data suggests that $w_\infty = 0$, which corresponds to RSB, cannot be ruled out.

V. CORRELATED DOMAINS IN SPIN SPACE

A. Identifying the spin domains

According to our picture, splitting of a cluster at level a in the states hierarchy is induced by a macroscopic contiguous spin domain G_a. The size and shape of this domain determines the energy barrier separating two state clusters that were “born” at this level. In this subsection we describe how we identify from our data the two correlated domains G_1 and G_2, which determine the two highest levels of the states hierarchy, and also discuss whether they remain twice the mean distance. At $T=2.0$ ($> T_c$) the distances within and between clusters are almost equal and the differences are only due to statistical fluctuations, again indicating absence of natural structure, as we claimed on the basis of direct observation.

![FIG. 6. A log-log plot of w_{12} against L for $T=0.2$ and $D = 3$. The solid line is the best least squares fit to Eq. (17), while the dashed line is the best fit with the additional assumption that $w_\infty = 0$.](image)
macroscopic at large \(L \). Domains that emerge at the next level, \(G_3 \) and \(G'_3 \), are also discussed briefly.

Since the spins in such domains flip “collectively,” they are highly correlated. The standard definition of the correlation \(c_{ij} \) of spins \(i \) and \(j \) is

\[
c_{ij} = \langle S_i S_j \rangle = \frac{1}{Z} \sum_{\{S\}} S_i S_j \exp[-\beta \mathcal{H}(\{S\})],
\]

where \(\langle \cdots \rangle \) stands for the thermodynamic average for a particular realization of the disorder, and \(Z \) is the partition function at \(T \). Using our equilibrium ensemble of states \(\{\{S^\mu\}\} \), we evaluate

\[
c_{ij} = \frac{1}{M} \sum_{\mu} S_i^\mu S_j^\mu.
\]

The correlation in itself is unimportant for spin glasses since it is gauge dependent and its average \([c_{ij}] \) over all the realizations of the disorder \(|J| \) vanishes. The relevant measure of correlations in a spin glass is the square, \(c_{ij}^2 \). If two spins are independent of each other over the equilibrium ensemble of states, we have \(c_{ij}^2 = 0 \). On the other hand, for a pair of fully correlated spins we have \(c_{ij}^2 = 1 \); the two spins are either aligned or antialigned in all states.

To proceed, it is convenient to define, quite generally, \(G_{\mu \nu} \) as the set of spins whose sign is different in states \(\mu \) and \(\nu \), i.e.,

\[
G_{\mu \nu} = \{ i | S_i^\mu \neq S_i^\nu \}.
\]

We expect the largest domain, \(G_1 \), to be in one orientation in the states of \(C \) and in the reversed one in the states of \(\bar{C} \). To identify the spins that indeed behave this way, we took all \((M/2)^2\) pairs of states \(\mu \in C \) and \(\nu \in \bar{C} \), and, for each pair, determined \(G_{\mu \nu} \). Ideally all the spins of \(G_1 \) always flip together and maintain their relative orientation; if so, the set of spins \(G_{\mu \nu} \) for all pairs of states \(\mu \) and \(\nu \) would always include \(G_1 \). However, at finite \(T \) we must allow for excitations of the order of \(J \). So, even if a spin is highly correlated with the other spins of \(G_1 \), it might lose its relative orientation in a few of the \(M \) states of the sample. In order not to “miss” such spins, we use a soft criterion when we determine whether a spin is a member of \(G_1 \). We define a threshold \(\theta \) and define \(\tilde{G}_1(\theta) \) as the set of spins \(i \) which are members of \(G_{\mu \nu} \), i.e., for which \(S_i^\mu S_i^\nu = -1 \), for at least a fraction \(\theta \) of the pairs of states \(\mu \in C \) and \(\nu \in \bar{C} \). This can be written as

\[
\tilde{G}_1(\theta) = \left\{ i \left| \frac{1}{|C||\bar{C}|} \sum_{\mu \in C, \nu \in \bar{C}} S_i^\mu S_i^\nu < 1 - 2\theta \right. \right\}.
\]

since the terms in the normalized sum where \(S_i^\mu S_i^\nu = 1 \) must, by definition, sum up to less than \(1 - \theta \) and the sum of the terms with \(S_i^\mu S_i^\nu = -1 \) must be less than \(-\theta \). We define our spin domain \(G_1(\theta) \) as the largest contiguous part of \(\tilde{G}_1(\theta) \). For large enough \(\theta \) we found that for most realizations \(\{J\} \), below \(T_c \), the sites of \(\tilde{G}_1(\theta) \) are contiguous and hence it is identical to \(G_1(\theta) \) (for detailed values of the ratio \(|G_1|/|\bar{G}_1| \), its mean over realizations and its standard deviation, see Ref. 37). The next spin domain \(G_2(\theta) \) is defined in the same manner, on the basis of pairs of states \(\mu \in C_1 \) and \(\nu \in C_2 \).

The above definition sets a lower bound on the correlation of spins within the domain. Consider two spins \(i, j \in G_1(\theta) \). By definition,

\[
c_{ij}^2 = \frac{1}{|C||\bar{C}|} \sum_{\mu \in C, \nu \in \bar{C}} S_i^\mu S_j^\nu S_i^\nu S_j^\mu.
\]

Now the number of states in \(C \) and \(\bar{C} \) are both equal to \(M/2 \). In addition, for a given \(\nu \), we can replace \(\mu \) by its inverse \(\bar{\mu} \) and the product of the four spins does not change. Hence we get the same contribution from \(\mu \in C \) as \(\bar{\mu} \in \bar{C} \). As a result we have

\[
c_{ij}^2 = \frac{1}{|C||\bar{C}|} \sum_{\mu \in C, \nu \in \bar{C}} S_i^\mu S_j^\nu S_i^\nu S_j^\mu.
\]

Now \(S_i^\mu S_j^\nu \) will be \(-1\) for a fraction of the states \(\mu \) and \(\nu \) which is greater than \(\theta \) and \(+1\) for a fraction less than \(1 - \theta \), and similarly for \(S_i^\mu S_j^\nu \). Hence \(S_i^\mu S_j^\nu \) and \(S_i^\mu S_j^\nu \) will have the same sign with probability greater than \(1 - 2(1 - \theta) = 2\theta - 1 \). Consequently, for \(i, j \in G_1(\theta) \), we have

\[
c_{ij}^2 > 2\theta - 1 - [1 - (2\theta - 1)] = 4\theta - 3.
\]
They do remain macroscopic but merge as L, which is the system size, increases. In Fig. 8 we plot the size distributions of the two domains for different temperatures. To study the finite size effects of our analysis we give in Sec. V B.

A simple figurative description of these two mechanisms is discussed above results in $G_1(\theta) = G_2(\theta) = \emptyset$ for any $\theta > 0.5$.

According to our picture these correlated spin domains govern the hierarchical structure of state space. It is important to clarify whether these domains survive as the system size L increases. There are two mechanisms by which increasing the system size can invalidate our picture: either the domains do not remain macroscopic when L increases, or they do remain macroscopic but merge as $L \rightarrow \infty$, i.e., the fraction of states in which G_2 flips tends to zero. We now discuss each of these possibilities in turn. In addition, a simple figurative description of these two mechanisms is given in Sec. V B.

(1) The domains do not remain macroscopic when L increases. To study the finite size effects of our analysis we normalized the system sizes by the number of spins and plotted the size distributions of the two domains for different system sizes, in $D = 3$ (see Fig. 9) and in $D = 4$ (Fig. 10), at two temperatures in both dimensions. The number of bond realizations, N_{samp}, from which these distributions were obtained for various system sizes L, at both $D = 3, 4$, are given in Table I. For $T = 0.2$ in both dimensions, and at $T = 0.5$ for $D = 3$ the distributions seem to converge even for the small system sizes we use. We conclude with high certainty that at $T = 0.2$ for $D = 3, 4$ and at $T = 0.5$ for $D = 3$ the domain sizes $|G_\alpha|$ are proportional to L^D for both $\alpha = 1, 2$. The mean and width of these distributions are presented in Table III. The width of the distributions does not vanish, so the sizes of the domains are non-self-averaging quantities. On the other hand, for $T = 0.8$ in $D = 4$ we cannot determine conclusively whether the domain sizes do or do not remain proportional to $N = L^2$ as L increases.

(2) G_1 and G_2 may remain macroscopic but merge as $L \rightarrow \infty$. If this occurs, we end up with a single domain and there will be no hierarchical structure in state space. To check that this does not happen we calculated the average correlation \bar{c}_{12} between spins in G_1 and G_2.

$$\bar{c}_{12} = \frac{1}{|G_1||G_2|} \sum_{i \in G_1} \sum_{j \in G_2} c_{ij}^2.$$ \hspace{1cm} (25)

If \bar{c}_{12} approaches the value 1 as $L \rightarrow \infty$, the two domains indeed merge in the thermodynamic limit. In Table III we present, for systems of different sizes and dimensions, the average values of \bar{c}_{12} (averaged over the disorder $\{J\}$) and the corresponding standard deviations. For $T = 0.2$, $D = 3, 4$, and for $T = 0.5$, $D = 3$, the average correlation decreases slightly as the system size increases, although, in $D = 3$ it seems to converge already for $L = 8$ to a fixed value of ~ 0.5. This means that the spins of G_1 and G_2 will not become fully correlated and the two domains will stay separate as L increases.

Interestingly, in $D = 4$, the correlation for $L = 4, 5$ is higher at $T = 0.8$ than at $T = 0.2$. The reason for this is probably that...
as T increases, small pieces of G_1 “fall off.” Since G_2 at $T = 0.2$ is small, one of these pieces, which is larger than G_2, assume the role of G_2 at $T = 0.8$. Since this piece was part of G_1 at $T = 0.2$, we expect its correlation, with what remains of G_1 at $T = 0.8$, to be relatively high. Extrapolating from $L = 3, 4, 5$ is not useful, but we still believe that the correlation does not approach 1 as $L 	o \infty$.

We also attempted to identify G_3 and G_1^*, the spin domains associated with the third level of the state hierarchy (see below). G_3 is the cluster which is associated with splitting C_1 into its two descendents on the dendrogram, C_{1a} and C_{1b}. The domain G_1^* plays the same role in C_2. Since by our notation $|C_1| > |C_2|$ we expected that in order to have a larger number of states, the spin correlations will be lower when measured over C_1 than over C_2. As a result we expect $|G_3| \approx |G_1^*|$. Due to the small sizes of the systems we study, we cannot be sure if the sets of spins we identify as G_3 and G_1^* indeed play the role we attribute to them, or are just a microscopic noise and, therefore, only a finite size effect. The results are given in Table IV. We see that the normalized sizes of both domains decrease with the system size, perhaps due to finite size effects. We also measure the average correlation $\bar{c}(G_3, G_1 \cup G_2)$, of G_3 with the largest domain correlated over C_1, which includes $G_1 \cup G_2$ (this domain has a fixed orientation over the states of C_1). This correlation is defined as

$$\bar{c}(G_3, G_1 \cup G_2) = \frac{1}{|G_1 \cup G_2|} \sum_{i \in G_1 \cup G_2} \sum_{j \in G_3} c_{ij}^2. \quad (26)$$

In Table IV we see that the values of $\bar{c}(G_3, G_1 \cup G_2)$ decrease as L increases; hence if G_3 survives as a macroscopic cluster

TABLE IV. The size of the spin domain G_1 and G_1^*, the correlation of G_3 with $G_1 \cup G_2$ and the relative part of G_3 and of G_1^*, which is common to both these spin domains. All results are taken for realizations where the domains concerned do not vanish, and we give also the probability of this to happen. All data was taken for $T = 0.2$. We present the average over these realizations $|J|$ as the statistical error, obtained by dividing the standard deviation by $\sqrt{N_s}$, where N_s is the number of realizations that contributed to each average.

| D | L | $|G_1|/N$ | $\bar{c}(G_1, G_1 \cup G_2)$ | $|G_1^*|/N$ | $P(G_3 \oplus \emptyset)$ | $|G_3 \cap G_1^*/|G_1^*|/N$ | $P(G_1 \oplus \emptyset)$ | $P(G_3 \oplus \emptyset)$ and $G_1^* \oplus \emptyset$ |
|-----|-----|----------|------------------|-----------|---------------|-----------------|-----------|------------------|
| 3 | 4 | 0.048 ± 0.003 | 0.55 ± 0.015 | 0.914(4) | 0.087 ± 0.008 | 0.834(6) | 0.23 ± 0.019 | 0.772(8) |
| | 5 | 0.046 ± 0.003 | 0.52 ± 0.015 | 0.914(4) | 0.085 ± 0.009 | 0.882(5) | 0.15 ± 0.016 | 0.818(7) |
| 6 | 4 | 0.043 ± 0.003 | 0.48 ± 0.015 | 0.924(3) | 0.081 ± 0.009 | 0.896(4) | 0.19 ± 0.017 | 0.832(6) |
| | 8 | 0.036 ± 0.003 | 0.43 ± 0.017 | 0.905(5) | 0.076 ± 0.010 | 0.905(5) | 0.16 ± 0.019 | 0.827(8) |
| 4 | 3 | 0.045 ± 0.003 | 0.56 ± 0.015 | 0.928(3) | 0.094 ± 0.010 | 0.838(6) | 0.25 ± 0.020 | 0.782(8) |
| | 4 | 0.037 ± 0.003 | 0.48 ± 0.015 | 0.908(4) | 0.061 ± 0.007 | 0.920(3) | 0.16 ± 0.016 | 0.844(6) |
| | 5 | 0.034 ± 0.005 | 0.43 ± 0.024 | 0.84(1) | 0.072 ± 0.014 | 0.865(8) | 0.19 ± 0.027 | 0.73(1) |
at large L, we expect it to remain distinct from the union of the two larger domains.

B. Spin space structure

So far we have obtained the spin domains using the results of the state space analysis. However, the existence of these domains can also be observed directly in spin space, i.e., without utilizing information about the previously identified hierarchical structure of state space, as we now demonstrate.

As described in Sec. IV, the equilibrium ensemble of states, obtained for each realization, is represented by an $N \times M$ data matrix $\{ S_{ij}\}$ [e.g., Fig. 4(a)]. In Sec. IV we treated each of the M states, represented by a column of this matrix, as a “data point” whose coordinates are the components of this N-dimensional vector. Now we view each of the N spins of the system as a data point, represented by a row of the same matrix. Each of these data points is a vector in an M-dimensional space.

The distance on the set of spins should be defined according to the nature of the clusters we are interested in. At this case, we expect highly correlated spins to be in the same cluster, and spins with low correlation to be in different clusters. Thus, we define the distance between a pair of data points i and j as

$$d_{ij} = 1 - c_{ij}^2. \quad (27)$$

This $N \times N$ distance matrix serves as the input for clustering the spins, using Ward’s algorithm. The dendrogram D, obtained when the data of Fig. 4(a) are clustered, is presented in Fig. 11(a). The correlated spin clusters are represented by boxes in the dendrogram—let us denote them by g_a. When the spins are reordered according to the dendrogram, their distance matrix, shown in Eq. 11(b), clearly exhibits a non-trivial structure. There are large, highly correlated spin clusters on the lower levels of the dendrogram.

In order to “see” the manner in which the spins are ordered, we return to the data matrix of Fig. 4(a). We obtained Fig. 4(b) from (a) by reordering the columns according to the state dendrogram in Fig. 3. If we now reorder the rows of Fig. 4(b) according to the spin dendrogram D in Fig. 11, we get Fig. 4(c), which is redrawn as Fig. 12 with labeling of the largest state clusters and spin domains. The cluster structure of the spins can be clearly seen in Fig. 12. Spins in G_1 clearly have the same orientation in the states of C but are inverted in the corresponding states of \bar{C}. Spins in G_2 have opposite orientations in C_1 and C_2 and are inverted in the corresponding states of \bar{C}_1 and \bar{C}_2. One can also see that spins in domain G_3 separate C_2 into two sub-clusters. As to G_3, we point in Fig. 12 to a few (3–4) spins, which have the same sign in all states of C_2 but change sign in C_1.

These data were obtained at $T = 0.2 (< T_c)$. Above T_c the correlation between any two spins is low, and there is no cluster structure, as evident from Figs. 11(e) and 11(f). The relative τ values of this dendrogram are much smaller then those of the dendrograms in Figs. 11(a) and 11(c), and the reordered distance matrix is structureless. If the domains G_a (that were identified in Sec. V A on the basis of the state hierarchy) are not an artifact of our analysis, they should be clearly identifiable in spin space, and appear as clusters in the spin dendrogram D. To check this, for each realization we compared every spin cluster g_a, that appears in the corresponding spin dendrogram D, to every spin domain G_a that was previously found for that realization. The spin cluster g_a...
that was found to be most similar to G_a was identified and denoted by g_a. We used the similarity measure

$$S(g_a, G_a) = \frac{2|g_a \cap G_a|}{|g_a| + |G_a|},$$

(28)

which represents the fraction of shared spins by the “physical spin domain” G_a and the spin cluster g_a. For most realizations we have (at low T) $g_a = G_a$ for both $a = 1, 2$; and when these groups are not precisely equal, they differ by only a few spins (see Ref. 37 for full details).

Figure 12 also provides a convenient, simple “geometrical” interpretation of the two tests for the survival of our picture in the large L limit that we discussed in Sec. V A. Observe the rectangular region corresponding to spin domain G_2 and state cluster C_2. Validity of our picture relies on “survival” of this rectangle as we take the $L \to \infty$ limit. The first test we performed checked whether its vertical side, $|G_2|$ stays finite. If this condition is not satisfied, the relative area of our rectangle goes to zero; a nonvanishing limiting $|G_2|$ does not, however, guarantee that the rectangle stays finite; it may disappear if its horizontal dimension shrinks to zero when $L \to \infty$. The second test, showing that the correlation \overline{c}_{12} does not approach 1, ensures that this does not happen either.

Overall, Fig. 12 summarizes in a convenient pictorial way our picture of the spin glass state in short-range systems.

C. Spin domains and states hierarchy

Now that the spin domains have been well defined, we can examine the manner in which they govern the hierarchical partitioning of state space. Each state cluster at level a of the hierarchy can now be identified with one of two possible configurations of the particular spin domain G_a. We denote these two configurations as \uparrow_a and \downarrow_a. Note that we have avoided the notation $+/-$ for the states of the spin domains, since in each state some of the spins have the $+$ sign and others $-$. For example, in the first level partition G_1 has a certain characteristic configuration, \uparrow_1, over all the states in C, whereas over all the states of \bar{C} it is in the spin inverted configuration \downarrow_1. The value $[\uparrow_1]_i$, taken by spin $i \in G_1$ in the configuration \uparrow_1, is defined by

$$[\uparrow_1]_i = \text{sgn} \left(\sum_{\mu \in C} S_{i\mu} \right).$$

(29)

Our definition of G_1, using Eq. (21) with $\theta = 0.95$, guarantees that the argument of the sign function in the above expression does not vanish. Hence, stating that G_1 takes configuration \uparrow_1 in a certain state μ implies that

$$\sum_{i \in G_1} S_{i\mu}[\uparrow_1]_i > 0.$$

(30)

The configuration assumed by G_1 in any state μ determines that μ is assigned to C if G_1 is in configuration \uparrow_1, or to \bar{C} if G_1 is in configuration \downarrow_1.

The spin domain G_2 determines, in a similar way, the partition of C into C_1 and C_2 (and the partition of \bar{C} into \bar{C}_1 and \bar{C}_2). G_2 is in configuration \uparrow_2 in states C_1 and C_2, and in \downarrow_2 in states \bar{C}_1 and \bar{C}_2 (see Fig. 1 for a schematic illustration of this point).
Each spin domain C_a defines a partition of the states, at level a, into two groups—one in which C_a is in the \uparrow_a configuration and the other with \downarrow_a. Picking a pair of states μ and ν, one from each group, the set of spins $G_{\mu \nu}$, that are flipped in the transition between them, will always include G_a.42 Thus, the distance $D_{\mu \nu} = |C_{\mu \nu}| / N$ between two such states will almost always be larger then $|G_a| / N$.

By our definition of G_a, the probability that a large part of its spins will lose their relative orientation is small. Considering local dynamics, the time it will take G_a to flip is exponential in its size. If G_a is macroscopic (as we have shown for $a = 1, 2$) it may be associated with a macroscopic free energy barrier. In an infinite system it will take an infinite time to flip, thus inducing a separation of the phase space into two ergodic subspaces (or valleys).

The clear hierarchical organization of the state clusters suggests that the average distance (15) between state clusters formed at a high level of the hierarchy is significantly larger then the average distance between clusters formed at a lower level. Indeed, we show in Table II that in general $D(C, \tilde{C}) \gg D(C_1, C_2)$. We relate this characteristic of the state structure to the large variability of the spin domain sizes $|G_a|$. Indeed, we have seen that typically $|G_1| > 8|G_2|$ for $T = 0.2$, $D = 3.4$.

Now we have a complete picture, supported by our numerical findings, of a hierarchy of state clusters. The valleys are the leaves of this hierarchy.43 At each level a of this hierarchy the partition of the states is refined according to the orientation of macroscopic spin domains G_a. At different nodes of a certain level of the hierarchy there might be different correlated domains that determine their partition. Take, for example, the states in C_1 (where G_1 is in configuration \uparrow_1 and G_2 is in configuration \downarrow_2). Over these states the largest unlocked44 correlated domain is $G_3 = G_3(\uparrow_1, \downarrow_2)$. The two possible configurations of G_3 inside C_1 may be denoted as $\uparrow_3(\uparrow_1, \downarrow_2)$ and $\downarrow_3(\uparrow_1, \downarrow_2)$. Over the states of C_2 we expect to find a different unlocked correlated domain $G_3 = G_3(\uparrow_2, \downarrow_2)$. We calculated the part of each domain which is included in the other. The results are given in Table IV. We see that G_3 and G_1 share in general less than a fifth of their spins.

Note that in the ideal case (corresponding to $\theta = 1$), a spin domain $G_a(\uparrow_1, \downarrow_2, \ldots, \uparrow_k)$, that appears at a particular level of the hierarchy, cannot share spins with the higher level domains $b = 1, 2, \ldots, k$, whose orientation is fixed while G_a flips. For $\theta = 0.95$ such sharing was also practically excluded. On the other hand, two domains such as G_3 and G'_3 can have shared spins, namely those that are free to flip in both the (\uparrow_2, \uparrow_3) and $(\uparrow_2, \downarrow_3)$ situations.

Going all the way down the states hierarchy, we find that each valley can be characterized by a specific list of domain configurations, e.g., $\{\uparrow_1, \uparrow_2, \uparrow_3(\uparrow_1, \uparrow_2), \downarrow_3(\uparrow_1, \downarrow_2), \uparrow_3, \ldots\}$. An additional insight is obtained from a PCA of the spins, which is to be distinguished from the PCA of the states in Fig. 5. To perform the PCA of the spins we form the covariance matrix

$$ R_{\mu \nu} = \frac{1}{N} \sum_{j=1}^{N} \delta S_i^\mu \delta S_i^\nu, \tag{31} $$

which is analogous to Eq. (11), and project the two largest eigenvectors of R onto the spin configurations S_i for each site i.

The results for three realizations, labeled A, B, and C, are shown in Fig. 13. Each data point represents one spin. Realization A is the one whose data matrix is shown in Figs. 4 and 12.

In the upper left frame of Fig. 13 we see the results of the PCA analysis of the spins for realization A. We want highly correlated spins to be close on the plot. Since a spin S_i is fully correlated with its inverse $-S_i$, each point (x, y) with $y < 0$ is projected on the plot to $(-x, -y)$. The spins of G_1 are highly correlated with each other and all have the same values for the first two principal components of the spin space. Therefore they fall on top of each other, and we see only one marker which represents all of them. The same is true for the spins of G_2, marked by \triangle. As seen from Fig. 12 the spins of G_1 are not correlated with the spins of G_2 over the M states, and indeed the two domains are far from each other on the plot.

In column (b) of Fig. 13 we used only the states of C_1 in the analysis. We can see in Fig. 12 that over C_1 the spins of G_1 and G_2 are correlated, together with some of the spins of G_1', marked by \times. In the plot (the middle frame on the upper row of Fig. 13) we can see that indeed these spins are all plotted at the same coordinates. The spins of G_3, marked as \bigcirc, are highly correlated, but are not correlated with G_1 and G_2. Note that the spins of G_3 are separated into two different sets, and are not correlated over C_1.

When we perform the analysis using only the states of C_2 we get the results presented in column (c) of Fig. 13. In the matrix of Fig. 12 we see that the spins of G_1, G_2, and G_3 are correlated together over C_2, and indeed they all fall on top of each other in the plot. We also see G'_3 as a separated correlated domain.

In the second row of Fig. 13 we give the results for realization B, in which G_3 and G'_3 share some of their spins. Those spins are marked by \otimes. In column (c) we see these spins inside G'_3. The rest of the spins of G_3 are not correlated with them. Some of them are correlated with G_1 and G_2, and others seem to be in another domain.

In the third row of Fig. 13 we present the results for realization C in which $G_1 \subset G'_3$. Here spins of G'_3 seem to form a correlated set also over C_1, though the correlations are not high enough for it to be considered as a domain by our definition.

VI. STATE OVERLAP

We have presented a description of the system in its low T phase, relating state space behavior to the microscopic structure in spin space. Most of the previous literature, however, did not directly measure the microscopic features of the system but examined their indirect implications on other parameters, such as the widely addressed overlap distribution $P(q)$. Beyond making contact with the literature, which concentrates on measuring $P(q)$, the aim of this section is twofold: (i) we show how our methods allow a useful decoupo-
sition of this function into its physically relevant constituent parts, and (ii) we demonstrate that our picture provides a microscopic interpretation of the observed $P_j(q)$. To this end we focus here on $P_j(q)$, the overlap distribution for a specific realization $\{j\}$ of the bonds, whereas earlier works presented results for the average over the disorder, $P(q) = \langle P_j(q) \rangle_f$.

Two technical comments should be first made. First, because of overall spin-flip symmetry, the function $P_j(q)$ is symmetric and hence we can limit our attention to $q > 0$. Second, since for most realizations $|\mathcal{G}_i| > N/2$, we have

$$P_j^{\mathcal{G}_i}(q) = \begin{cases} P_j(q), & q \geq 0, \\ 0, & q < 0, \end{cases}$$

where by $P_j^{\mathcal{G}_i}(q)$ we denote the distribution of overlaps between pairs of states $\mu, \nu \in \mathcal{C}$, so that we have to deal only with such pairs.

A. Decomposition of $P_j(q)$ and $P(q)$

The overlap distribution for a specific realizations of the randomness, $P_j(q)$, is expected to be the sum of two main parts

$$P_j(q) = P_j^i(q) + P_j^o(q),$$

where $P_j^i(q)$ is the overlap distribution within a valley (and between a valley and its spin reversed counterpart), and $P_j^o(q)$ is the overlap distribution between states that belong to two different valleys. $P_j^i(q)$ converges to $\delta(|q| - q_{EA})/2$ in the thermodynamic limit, where q_{EA} is the Edwards-Anderson order parameter, which will also be denoted as the “self-overlap.” $P_j^o(q)$ is the sum of several contributions, corresponding to different pairs of valleys.

In the thermodynamic limit this separation is unambiguous; if two microstates μ and ν are separated by a macroscopic energy barrier, they belong to two different valleys and their overlap $q_{\mu\nu}$ contributes to $P_j^o(q)$. For finite systems this separation is problematic; our picture and method, however, does allow us to estimate $P_j^o(q)$ or, to be more precise, to calculate a function $\bar{P}_j^o(q)$ defined below, which is a lower bound to it. In our picture, the transition between such pairs of microstates (that belong to different valleys) is associated with flipping a specific set of spin domains. Consequently, having identified the relevant spin domains, we can identify when μ and ν belong to different valleys and also the level in the states’ hierarchy at which they differ.

A remaining apparent ambiguity concerns the level of the state hierarchy at which we “stop” and decide whether a particular pair of microstates belongs to different valleys or not. Suppose we stop the decomposition of \mathcal{C} at some level n and denote by \mathcal{C}_n the clusters obtained at this level. The overlaps obtained from pairs of microstates that belong to different valleys at this level are assigned to the distribution $P_j^{n,n}(q)$, and pairs from the same valleys to $P_j^{n,n}(q)$:

$$P_j^{n,n}(q) = \sum_{\alpha} P_j^{n^a \alpha^o}(q),$$

$$P_j^{n,n}(q) = \sum_{\alpha + \beta} P_j^{n^a \beta^o}(q),$$

where, from Eq. (33),

$$P_j(q) = P_j^{n,n}(q) + P_j^{n,n}(q) \text{ for } q \geq 0.$$

Clearly, by going down a level further, to $n+1$, some pairs that were assigned to $P_j^{n,n}(q)$ will be reassigned to $P_j^{n,n+1}(q)$, but if a pair was in $P_j^{n,n}(q)$ it will stay in $P_j^{n,n+1}(q)$. This argument clearly shows that $P_j^{n,n}(q)$ obtained at any level is a lower bound to $P_j^{o}(q)$. This point is explained again below for the particular case of $n = 2$.

To demonstrate how natural is the separation of Eq. (33), we consider pairs of states $\mu \in \mathcal{C}_1$ and $\nu \in \mathcal{C}_2$, i.e., pairs taken from state clusters that appear at the second ($n = 2$) level of the states’ hierarchy. According to our picture such pairs con-
tribute a nonvanishing part of \(P_j(q) \), which we denote by \(P_j^{C_1C_2}(q) \). Note that \(P_j^{C_1C_2}(q) = P_j^{C_2}(q) \) for \(q > 0 \), since for \(n = 2 \) \(C \) has only these two subclusters. This function, as well as its complement \(P_j(q) - P_j^{C_1C_2}(q) \) are presented, for \(T = 0.2 \) and \(L = 8 \) in Fig. 14, for four realizations of the randomness. The figure shows clearly that the separation is natural, and not just an artifact of our analysis.

For all these four realizations the spin domain \(G_2 \) is clearly identifiable and is “macroscopic” (note that this holds for more than 80% of the realizations, see Table III). In all these cases the states \(\mu \) and \(\nu \) belong to different valleys, and contribute to \(P_j(\mu) \). There may be, however, pairs of states which also contribute to \(P_j(\mu) \), but are not included in \(P_j^{C_1C_2}(q) \). This happens when (at least) one of the state clusters \(C_1, C_2 \) has internal structure and decomposes into subclusters (i.e., higher level valleys). Say \(C_1 \) contains two such subclusters, \(C_{1a}, C_{1b} \). The overlap of a pair of states \(n \in C_{1a} \) and \(n \in C_{1b} \) contributes to \(P_j(\mu) \), and is not included in \(P_j^{C_1C_2}(q) \); hence the latter function is a lower bound on the former. As discussed above in Sec. V, such internal structure of \(C_1 \) (or \(C_2 \)) is associated with a spin domain \(G_3 \) (or \(G_4 \)).

This structure is clearly present for the realizations in Figs. 14(a) and 14(d), as evident from the multiplet structure of \(P_j^{C_1C_2}(q) \) which is discussed further below.

We now generate a distribution \(\bar{P}_j^{C_1C_2}(q) \) which is a lower bound on the contribution of \(P_j^{C_1C_2}(q) \) to the average distribution \(P_j(q) \). In order to assure that \(\bar{P}_j^{C_1C_2}(q) \) constitutes a lower bound to \(P_j^{C_1C_2}(q) \), we included in \(\bar{P}_j^{C_1C_2}(q) \) only contributions \(P_j^{C_1C_2}(q) \) from those realizations \(J \) in which \(G_2 \) was relatively large, namely \(|G_2| > 0.5N \). For the other realizations we set the contribution to the average \(J \) to zero; hence our \(\bar{P}_j^{C_1C_2}(q) \) is a lower bound to the true \(P_j^{C_1C_2}(q) \) [which, in turn, is a lower bound to \(P_j(q) \)]. In Fig. 15 we show the distributions \(P_j(q) \) and \(\bar{P}_j^{C_1C_2}(q) \). The data indicates that the weight in the tail for small \(q \) stays finite with increasing \(L \) (at least for this range of sizes), in agreement with earlier studies19,20,24,45 which just measured \(P_j(q) \). For systems with Gaussian couplings \(P_j(q) \) has a very small contribution at \(|q| < 0.7 \) and \(\bar{P}_j(q) \) is the dominant part of \(P_j(q) \) in this range. For an Ising spin glass with binary couplings, however, the difference between the distributions is significant and proper care must be taken when delicate issues, such as triviality of \(P_j(q) \), are investigated.31

B. Interpretation of \(P_j(q) \) in terms of spin domains

Our aim is to interpret the distribution \(P_j(q) \), obtained for a particular realization, in terms of the state clusters \(C \) and spin domains \(G \) that were discussed in the previous sections. Before going into a detailed discussion and analysis, we state the interpretation that arises, for the four realizations whose \(P_j(q) \) was shown in Fig. 14. The first of these, Fig. 14(a), corresponds to a system in which \(C_2 \) has internal structure, due to a sizeable domain \(G_3 \); its counterpart \(G_4 \) is too small to have a clear signature. The size of \(G_3 \) governs the splitting of the peak drawn with a solid line and also of the peak at high \(q \) (dashed line). In the systems of Figs. 14(b) and 14(c) neither \(C_1 \) nor \(C_2 \) have noticeable internal structure; the domains \(G_3, G_3' \) are too small. The system of Fig. 14(d) has internal structure for both \(C_1 \) and \(C_2 \), induced by domains \(G_3 \) and \(G_3' \), respectively. The sizes of these two domains govern the observed splitting of both the solid and dashed curves.

One can associate each peak of \(P_j(q) \) with the overlaps of pairs of states that are related by flipping one or more of the previously identified spin domains. In this regard our interpretation resembles the RSB picture3 which also relates the peaks of \(P(q) \) (Ref. 20) to overlaps between configurations in different valleys.

To substantiate these claims and make them more precise we consider in detail the realization whose (ordered) state and spin data matrix is given in Fig. 12, and whose \(P_j(q) \) [shown in Fig. 14(a)] is reproduced and magnified in Fig. 16. For this realization we clearly identified three spin domains; \(G_1, G_2 \) and \(G_1' \). Disregarding the splitting induced by \(G_3 \) (if present) we identify two main peaks that dominate \(P_j^{CC}(q) \). We performed a fit of \(P_j^{CC}(q) \) to a sum of two Gaussians,

\[
P_j^{CC}(q) = b_1 \exp[\frac{(q-q_1)^2}{2a_1^2}] + b_2 \exp[\frac{(q-q_2)^2}{2a_2^2}],
\]

with \(a_i, b_i \), and \(q_i \) as fit parameters, yielding the dotted curves in the upper part of Fig. 16. The center of the (split) peak at low \(q \) is \(q_1 \) and the high-\(q \) data is centered at \(q_2 \).

To see how these \(q_i \) are related to our state clusters and spin domains, note that the overlap \(q_{\mu\nu} \) between states \(\mu \) and \(\nu \) is related to the size of the set \(G_{\mu\nu} \) (defined in Eq. (20)), of spins that flip when passing from state \(\mu \) to \(\nu \):

\[
q_{\mu\nu} = 1 - 2|G_{\mu\nu}|/N.
\]
These pairs contribute to \(P_J^{C_1 C_2}(q) \) as its weight in the total \(P(q) \). For clarity only a few representative error bars are shown. (b) The distribution \(P(q) \) for the same systems as in (a), \(C_1 C_2 \) as in (a) but for \(D=4, L=3,4,5 \). (d) \(P(q) \) for the same systems as in (c).

For all state pairs \(\mu, \nu \in C \) the domain \(\mathcal{G}_1 \) is in the state \(\mathcal{G}_1 \); hence \(|\mathcal{G}_1\rangle |N - |\mathcal{G}_1\rangle \), so that \(q_{\mu \nu} = 2|\mathcal{G}_1\rangle |N - 1 \). The state pairs belong to one of two types.

1. Pairs in which \(\mathcal{G}_2 \) flips between \(\mathcal{G}_2 \) or \(\mathcal{G}_2 \) or vice versa. These pairs contribute to \(P_J^1(q) = P_J^{C_1 C_2}(q) \) (this equality holds for \(q > 0 \)). The definition of \(\mathcal{G}_2 \) yields that in most such cases \(\mathcal{G}_2 \in \mathcal{G}_\mu \), and hence \(2|\mathcal{G}_1\rangle |N - 1 \leq q_{\mu \nu} \leq 1 - 2|\mathcal{G}_2\rangle |N \).

2. Pairs in which neither \(\mathcal{G}_1 \) nor \(\mathcal{G}_2 \) flip contribute to \(P_J^2(q) = P_J^{C_1 C_2}(q) + P_J^{C_2 C_1}(q) \). For these pairs in most cases \(|\mathcal{G}_{\mu \nu}\rangle = |N - \mathcal{G}_1\cup\mathcal{G}_2\rangle \) and hence \(q_{\mu \nu} = 2(|\mathcal{G}_1\rangle |N - 1 \).

The peak centered at \(q_1 \), is attributed to state pairs of the first type, and hence

\[
2|\mathcal{G}_1\rangle |N - 1 \leq q_1 \leq 1 - 2|\mathcal{G}_2\rangle |N - 1.
\]

(38)

The other peak, centered at \(q_2 \), is attributed to state pairs of the second type, and thus we expect

\[
q_2 \geq 2(|\mathcal{G}_1\rangle |\mathcal{G}_2\rangle |N - 1.
\]

(39)

These two inequalities yield \(q_2 - q_1 \geq 2|\mathcal{G}_2\rangle |N \). Evidently, this structure of \(P_J(q) \) is completely consistent with our picture of spin domains that govern partition of state space into well defined clusters. By a detailed analysis\(^{37}\) we have shown that the (at least) two-peaked structure of \(P_J(q) \) survives for large \(L \).

In some realizations, such as the ones that yield Figs. 14(a) and 14(d) \(P_J(q) \) has more peaks, since \(P_J^{C_1 C_2}(q) \) \((= P_J^{C_2 C_1}(q))\) exhibits two or more peaks; this splitting is due, as mentioned above, to spin domains \(\mathcal{G}_3 \) and \(\mathcal{G}_4 \). We analyzed \(P_J^{C_1 C_2}(q) \) in the same way as we did for \(P_J^{C_1 C_2}(q) \), using the same form of fit as in Eq. (36). For example, in the middle part of Fig. 16, \(\mathcal{G}_1, \mathcal{G}_2 \) denote the centers of the two Gaussians, with \(\mathcal{G}_3 \) and \(\mathcal{G}_4 \) playing the previous roles of \(\mathcal{G}_1 \) and \(\mathcal{G}_2 \).

For much larger systems, for which the state hierarchy is expected to have more than two clear levels, we expect to find a finer structure in \(P(q) \). It will exhibit multiple peaks, each related to different domain sizes. The heights and widths of the peaks are expected to be governed by the sizes of the state clusters that contribute to it which, in turn, are determined by the correlations between the spin domains that generate these clusters. Each of these peaks can be isolated and measured separately by observing the overlap of states of the corresponding clusters.

The shape of \(P(q) \) we describe above resembles the one assumed by RSB. It is important to reemphasize, however, that our \(P(q) \) was obtained for finite systems; its resemblance to the form predicted by RSB does not necessarily mean that the latter picture is the correct one. In fact, previous studies\(^{12,14,24,26}\) of the link overlap [defined in Eq. (2)] indicate that it is trivial, which contradicts the RSB scenario, though this conclusion has been disputed in Refs. 27–29. In fact, our picture and results also do not appear to be consistent with RSB since we find a nonultrametric state structure, as we show in Sec. VII.

VII. ULTRAMETRICITY

Ultrametricity is one of the main characteristics of the mean field RSB picture. Efforts to establish\(^{46}\) or dismiss\(^{47}\) the existence of ultrametricity in short range spin glasses did not yield conclusive results. We presented in Sec. IV indications for which \(Q_J(q) \) was obtained for finite systems; its resemblance to the form predicted by RSB does not necessarily mean that the latter picture is the correct one. In fact, previous studies\(^{12,14,24,26}\) of the link overlap [defined in Eq. (2)] indicate that it is trivial, which contradicts the RSB scenario, though this conclusion has been disputed in Refs. 27–29. In fact, our picture and results also do not appear to be consistent with RSB since we find a nonultrametric state structure, as we show in Sec. VII.

For \(D=3 \) at \(T=0.2 \) we measured \(\bar{p} \), the fraction of realizations for which \(\mathcal{G}_3 \) or \(\mathcal{G}_4 \) were large enough to induce two clearly separated peaks of \(P_J^{C_1 C_2}(q) \) [see Sec. VI B]. We found, for \(L=4,5,6,8 \) the values \(\bar{p} = 0.006,0.026,0.056,0.090 \), respectively. At \(D=4 \) the similar fractions, at \(T=0.2 \) and for \(L=3,4,5 \) are \(\bar{p} = 0.02,0.030,0.080 \). Note that for both \(D=3,4 \), \(\bar{p} \) increases with the size of the system.

Our method of analysis allows us to identify the realizations that do contain such triangles of states and use exclu-
sively them to investigate whether ultrametricity does or does not hold. In this way we avoid many finite size effects that might obscure the results.

A set of objects with a distance measure D is ultrametric if any three objects a, b, and c form an isosceles triangle, with the base equal to or smaller than the two equal sides. This demand can be formulated as the requirement that the inequality

$$D_{ab} \leq \max\{D_{ac}, D_{bc}\} \quad (40)$$

be satisfied for all three choices of the distance placed on its left side.

When the system is in the high T paramagnetic phase all triangles will be equilateral, since, as $L \to \infty$ the probability distribution of distances will be $P(D_{\mu\nu}) = \delta(D_{\mu\nu} - 1/2)$. Similar behavior occurs inside a specific valley at $T > T_c$, since for two states μ and ν inside the valley $P(D_{\mu\nu}) \to \delta(D_{\mu\nu} - (1 - q_{EA})/2)$, where q_{EA} is the Edwards-Anderson order parameter.

The nontrivial result of RSB is that the valleys themselves are ultrametric. In order to investigate this claim, we have to focus on triplets of states, each chosen from a different valley. For large systems with many valleys this does not require special care, since almost all triplets of states will belong to three different valleys. For small systems, however, a large fraction of the possible triplets will have at least two states from the same valley. Such triplets should be disregarded.

Our way of analysis provides us with tools to examine ultrametricity for small systems. We utilize the state hierarchy obtained in Sec. IV to carefully choose triplets of states from different state clusters. We chose three clusters: C_2, C_{1a}, and C_{1b}. The last two clusters are the “children” of C_1 in the state dendrogram, i.e., $C_1 = C_{1a} \cup C_{1b}$. According to our picture a triplet of states, one from each of these three clusters, belong to three different valleys, since we have to flip a correlated domain with a macroscopic number of spins in order to move from one cluster to another. To move from C_2 to C_1 we have to flip G_2 from configuration \uparrow_2 to configuration \uparrow_1. Similarly, when moving from C_{1a} to C_{1b} we have to flip G_3 from $\uparrow_1 = \uparrow_1(\uparrow_1, \uparrow_2)$ to $\downarrow_3 = \downarrow_3(\uparrow_1, \uparrow_2)$ (see Sec. V C). Due to the small sizes studied, in this paper we do not present any conclusive evidence that G_3 is indeed macroscopic. However, if (in the $L \to \infty$ limit) it is not macroscopic, our method predicts that there are only four valleys (determined by G_1 and G_2) and hence the RSB picture clearly does not hold.

In order to have a quantitative measure of ultrametricity we define an index K in the following manner. Let μ, ν, and ρ be three states, so that $D_{\mu\nu} \geq D_{\mu\rho} \geq D_{\nu\rho}$. We define

$$K_{\mu\nu\rho} = \frac{D_{\mu\nu} - D_{\mu\rho}}{D_{\nu\rho}}. \quad (41)$$

The triangle inequality requires $D_{\nu\rho} \geq D_{\mu\nu} - D_{\mu\rho}$ so we have $0 \leq K_{\mu\nu\rho} \leq 1$. Ultrametricity demands $D_{\mu\nu} = D_{\mu\rho}$ so if there is ultrametricity we expect $P(K) \to \delta(K)$ as $L \to \infty$.

We measured $P(K_{\mu\nu\rho})$ for $\mu \in C_2$, and ν, ρ from C_{1a} and C_{1b}. We used our samples for $T = 0.2$; since as the temperature is lower and more distant from T_c, the state structure should be clearer and less blurred by finite size effects. We measured the distribution of K for each realization, and then obtained $P(K)$ by averaging over the disorder $\{J\}$. In all systems we found with high probability that $K_{\mu\nu\rho} = 1$ exactly (see Table V). This happens when $G_{\mu\nu}$, the set of spins one has to flip when going from μ to ν, coincides precisely with $G_{\mu\rho} \cup G_{\nu\rho}$, the union of the two sets that are flipped when we go from ρ to μ and to ν. This is, however, clearly a finite size effect; as L increases the probability $P(K = 1)$ decreases dramatically. Therefore we do not include this part of the distribution in our estimation of $P(K)$. If this part of $P(K)$ broadens as L increases, its exclusion cannot be achieved by

<table>
<thead>
<tr>
<th>D</th>
<th>L</th>
<th>$P(K = 1)$</th>
<th>$P(0.9 \leq K < 1)$</th>
<th>mean(K)</th>
<th>var(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>0.78</td>
<td>0.0007</td>
<td>0.385</td>
<td>0.073</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.57</td>
<td>0.0082</td>
<td>0.426</td>
<td>0.066</td>
</tr>
<tr>
<td>6</td>
<td>0.35</td>
<td>0.0126</td>
<td>0.447</td>
<td>0.068</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.08</td>
<td>0.0269</td>
<td>0.476</td>
<td>0.066</td>
<td></td>
</tr>
</tbody>
</table>

The fifth and sixth columns give the mean and variance of the distribution of $P(K|K < 1)$. All systems are sampled at $T = 0.2$.

FIG. 16. (Top) The distribution $P_{\mu\nu\rho}^{C_2}(q)$ for the same 3D realization whose data were presented in Fig. 12. The dotted line is a fit to the sum of two Gaussians (see text). (Middle) The partial distribution $P_{\mu\nu\rho}^{C_1}(q)$ for the same realization. The dotted line represents a fit to the sum of two Gaussians. (Bottom) The difference between the two previous distributions.
simply ignoring the triangles with $K=1$. This, however, is clearly not the case: we present in Table V the probability $P(0.9<K<1)$, and show that its increase with L is much too small to compensate for the decrease in $P(K=1)$.

In order to disregard this finite size effect we truncated $P(K=1)$ from $P(K)$ and renormalized to get the distribution

$$P(K|K<1) = \begin{cases} P(K)/P(K<1), & K<1, \\ 0, & K=1. \end{cases} \quad (42)$$

For large L we expect $P(K=1)$ to vanish, and $P(K)$ will approach $P(K|K<1)$. The results are plotted in Fig. 17. In Table V we give the mean and variance of $P(K|K<1)$. Though we deal with small systems, it seems that $P(K|K<1)$ converges to a distribution with nonvanishing mean and variance, indicating breakdown of ultrametricity for the three levels of the state hierarchy that were studied.

Again one should address the question: do these results remain valid in the large L limit? We have to show that the state triplets we used, from C_2, C_{1a} and C_{1b}, have a finite statistical weight as $L \to \infty$. In Sec. VI we showed that $|C_2|/N$ remains finite if the average correlation \bar{c}_{12} between G_1 and G_2 does not approach one. From the same argument we conclude that if the correlation of G_1 with $G_1 \cup G_2$ does not approach one then both $|C_{1a}|/N$ and $|C_{1b}|/N$ do not vanish and the weight of such state triplets remains finite, and the system does not exhibit ultrametricity. We do have evidence that the average correlation $\bar{c}(G_1, G_1 \cup G_2)$ of G_1 with $G_1 \cup G_2$ in fact decreases as L increases, but it is not conclusive.

VIII. SUMMARY AND DISCUSSION

We have presented a picture of the spin glass phase in finite dimensional systems. This picture—state hierarchy induced by correlated pinn domains (SHICS)—is consistent with numerical findings of a nontrivial overlap distribution and macroscopic spin domains which cost only a finite energy to flip. Our results differ from the conventional interpretations of the droplet picture; nevertheless, the scenario presented in the original work of Fisher and Huse, and also the work of Newman and Stein, is of sufficient generality to allow consistency with our findings.

In the spin glass phase, the system consists of macroscopic spin domains of variable sizes. By ordering the domains according to their sizes and assigning them one of two orientation (starting with the largest and continuing by decreasing size), we generate valleys whose free energies differ by finite amounts. The variability in domain sizes gives rise to a hierarchical structure in state space. At each level in the hierarchy some state clusters split; each such splitting is associated with a spin domain. The first (highest) level splitting (to C, \bar{C}) is associated with the largest domain G_1; at the next level the two observed splittings $(C\rightarrow C_1, C_2$ and $\bar{C}\rightarrow \bar{C}_1, \bar{C}_2)$ are related by symmetry and hence governed by the same, second largest domain G_2. At each level, the state clusters are labeled according to the orientation of the corresponding domains.

Below the second level, different spin domains are involved depending on which state cluster is being subdivided, e.g., G_3 is the domain whose orientation splits the states in C_1, while a different domain G'_3 is involved in splitting C_2. Although $G_3 \neq G'_3$, in general they may share some of their spins. The state space structure in the lower levels of the hierarchy has to be further investigated for larger systems. Specifically, one has to verify that G_3 and G'_3 do not vanish as $L \to \infty$.

Some details of our hierarchical picture do not appear to be consistent with RSB. According to the RSB scenario, the states have an ultrametric structure, which implies that for any two state clusters defined at a certain level of the hierarchy, e.g., C_1 and C_2, the distribution of overlaps q_{ij} between $i \in C_1$ and $j \in C_2$ should approach a delta function for large L. We presented in Sec. IV indications that the width of the distribution $P(\bar{D}_{ij})$, of values in \bar{D}, may not vanish for $L \to \infty$, indicating absence of ultrametricity. We also presented direct evidence for lack of ultrametricity in Sec. VII. However, studies on larger sizes are needed to verify that the test which indicates lack of ultrametricity will still yield the same conclusion as $L \to \infty$.

In Secs. VI and VII we demonstrated how, by separating the state space into its components, we can calculate various quantities using only a chosen part of this space, thus obtaining more reliable numerical results and reducing finite size effects.

Clustering analysis can be applied also to other systems with a nontrivial phase space structure, i.e., which have several valleys which are not related by any apparent symmetry, such as random field models, see, e.g., the discussion in Ref. 7, or other models with random anisotropy. It can help not only in the investigation of the macroscopic properties of a system, but also in understanding the microstructure that gives rise to its properties.
ACKNOWLEDGMENTS

The research of E.D. was partially supported by grants from the Germany-Israel Science Foundation (GIF); his stay at the ITP, UCSB was supported in part by the NSF under Grant No. PHY99-07949. A.P.Y. acknowledges support from the NSF through Grant No. DMR 0086287. We thank A. K. Hartmann, I. Kanter, E. Marinari, and M. Mézard for most helpful discussions.

*Electronic Address: fedonarcy@wicc.weizmann.ac.il
39Strictly, it is not an equilibrium canonical ensemble, since for each state in the ensemble we have also its exact inverse, but this does not affect our results.
41If say G_i, the spin domain that flips, consists of two disjoint parts G_i^a and G_i^b, one can flip each of these separately, one at a time. In such a case we identify the largest of the two subdomains as our G_i, whereas the smaller induces the finer level splitting in the state hierarchy.
42Except maybe a small part of G_a, that may lose its relative orientation due to local thermal excitations.
43The leaves of the hierarchy discussed here are not the individual states S of the state dendrogram of Sec. IV.
44The largest locked correlated domain over the states of C_i includes $G_i \cup G_2$.
48Ultrametricity is trivially violated if we include in the same triangle states with negative and positive overlaps.