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Spin Domains Generate Hierarchical Ground State Structure in J 5 61 Spin Glasses
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Unbiased samples of ground states were generated for the short-range Ising spin glass with Jij � 61,
in three dimensions. Clustering the ground states revealed their hierarchical structure, which is explained
by correlated spin domains, serving as cores for macroscopic zero energy “excitations.”
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Mean-field (MF) theory [1] provides a commonly ac-
cepted description of the low-T phase of infinite-range spin
glasses [2]. It predicts many pure states with a hierarchi-
cal ultrametric organization and a nontrivial state overlap
distribution P�q�. Although this structure was suggested
to hold also for short-range spin glasses (SRSG) [3], the
equilibrium properties of these are still controversial. The
main dispute concerns the number of different thermody-
namic (pure) states of the system below Tc. Fisher and
Huse (FH) [4] studied SRSG with continuously distributed
couplings. According to them, a finite region embedded in
an infinite system will be in one of two pure states. They
describe the system’s low energy excitations above the lo-
cal ground state as finite flipped spin domains. By flipping
compact macroscopic domains one can generate other pure
states. This structure of pure states (which we call the FH
scenario) yields, for any finite region of the infinite system,
a trivial P�q� distribution. Numerical evidence for nontriv-
ial P�q� in finite systems [5–7] does not contradict the FH
scenario [8].

We present here evidence for a new picture of the spin
glass phase. It possesses some characteristics of the MF
description, such as nontrivial P�q� and a hierarchical
(but nonultrametric) structure of the pure states; neverthe-
less, it is also consistent with the FH scenario.

The model.—We study the ground states (GS) of the
Edwards-Anderson model [9] of an Ising spin glass

H �
X

�ij�
JijSiSj , Jij � 61 . (1)

�ij� denotes nearest neighbor sites of a simple cubic lat-
tice; the values Jij � 61 are assigned to each bond in-
dependently and with equal probabilities [10]. Although
this model is very special —it has highly degenerate GS
[11]—we expect that its low-T properties are generic,
i.e., not qualitatively different from other �Jij� distributions
(such as Gaussian). On the other hand, the low-T proper-
ties of (1) are most probably dominated by the structure
of its GS. Hence we hope that the GS of the J � 61
model provide insight about the low-T behavior of generic
short-range Ising spin glass. In any case, the GS structure
of this model is interesting on its own merit.
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By combining very efficient algorithms [12] that pro-
duce ground states of this model, with simulated tempering
(ST) [13], we generated unbiased samples of the GS; i.e.,
we “equilibrated” our system at T � 0. We studied the
model (1) with periodic boundary conditions in three di-
mensions, with N � L3 spins, for L � 4, 5, 6, 8. For each
size L we produced 800 to 1000 realizations �J�; for each
realization an unbiased sample of M � 500 GS has been
generated and analyzed.

We now summarize the main results:
(i) For any given �J�, the GS do not cover the hypercube

S � �S1, S2, . . . , SN � uniformly; rather, there is a hierar-
chical structure, as shown schematically in Fig. 1 and in
detail in Fig. 2 (the clustering of spins is shown in Fig. 3).
The set of all GS splits into two state clusters C and C̄ , re-
lated by spin reversal; C splits into C1 and C2, and so on.

(ii) This structure is generated by domains of highly
correlated spins [14], with very different sizes. Separation
of GS into C and C̄ is determined by the largest spin
domain G1, whose size is typically larger than N�2. Two
states in which G1 has the same orientation have a much
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FIG. 1. Schematic representation of our picture; the two
largest spin domains and the first two levels in the hierarchical
organization of the GS are shown. The structure of the GS is
explained by the spin domains’ orientations; e.g., in the GS of
the two sets C1,C2, the spins of G1 have the same orientation,
whereas the spins of the smaller cluster, G2, have flipped.
© 2001 The American Physical Society
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FIG. 2. (a) The dendrogram obtained by clustering the ground
states, for a particular set of Jij , for N � 63 spins. (b) When
the states are ordered according to the dendrogram, a clear block
structure is seen in Dmn , the distance matrix of the GS. Darker
shades correspond to shorter distances.

higher overlap than two states in which the spins of G1 are
inverted. This implies formation of two clusters of states,
C and C̄ , corresponding to the two possible orientations
of G1. The same structure persists at the next level, where
the second largest spin domain G2 determines the partition
of C into C1 and C2 (see Fig. 1). Note that G1 has the
same orientation in these two clusters.

(iii) The hierarchical structure of the GS is due to large
differences between the sizes of the spin domains (typi-
cally jG1j . 4jG2j). For domains of equal sizes no hier-
archy would have been observed.

(iv) This picture differs from MF; the correlated domains
determine the overlap distribution, and the GS do not ex-
hibit ultrametricity. On the other hand, if in the L ! `

limit all but a vanishing fraction of the spins belong to com-
pact [15] macroscopic correlated domains Ga, then any fi-
nite region of the infinite system will exhibit a trivial P�q�,
in agreement with the FH scenario (we have not tested the
compactness of Ga).
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FIG. 3. (a) The dendrogram D obtained by clustering the
spins of the system of Fig. 2. For this realization ga � Ga for
both a � 1, 2. (b) When the spins are ordered according to the
dendrogram, a structure of correlated spin domains emerges;
darker shades correspond to shorter distances and higher
correlations.

We explain how this picture of GS structure and spin
clusters has been found; we present evidence that substan-
tiates our findings, investigate their dependence on system
size, and discuss their implications.

Generating unbiased samples of ground states.— For
every realization �Jij� we used the genetic cluster exact
approximation (CEA) algorithm [12] to sample the GS.
Samples obtained by CEA are, however, biased [16], over-
weighting GS from small valleys (a valley V consists of
all the GS that can be traversed flipping one spin at a
time)— therefore the probability to miss a valley is lower
than that of an unbiased method. We used three meth-
ods to overcome this bias. For L � 4, 5, and 6 we suc-
ceeded, for most realizations �J�, to enumerate exactly all
GS within each valley; selecting at random M of the GS
ensures that each valley is represented according to its size.
For some �J� enumeration was not possible; then we used
ST [13] to generate samples (our Glauber dynamics had a
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decorrelation time of less than two sampling periods for
each spin). For L � 8 we estimated the size of each valley
by the method of [17] and generated a sample of GS in a
valley by a Metropolis Monte Carlo procedure. To test that
this method [17] indeed yields unbiased GS, we sampled
60 realizations with ST and ascertained that for the quanti-
ties of significance for our claims (the size of G2 and the
average correlation c̄12 of the domains —see below) the
estimates obtained by the two ways did not differ signifi-
cantly and systematically.

Clustering methodology.—Clustering is a powerful way
to perform an exploratory analysis of all kinds of data.
In general, one calculates a distance matrix dij between
the i � 1, . . . , n data points and determines the underly-
ing hierarchy of partitions (clusters) in the data. We used
Ward’s agglomerative algorithm [18]; it starts with each
data point as a separate cluster and at each step fuses the
pair of clusters a, b that are at the shortest effective dis-
tance rab from each other, stopping when all points are
in one cluster. Initially rab � dab; when two clusters
a, b are fused, the distances of the new cluster a0 to all
unchanged clusters g fi a, b are updated [18]:

ra0g �
�na 1 ng�rag 1 �nb 1 ng�rbg 2 ngrab

na 1 nb 1 ng

,

(2)

where nx is the number of points in cluster x. The algo-
rithm produces a dendrogram such as Fig. 2(a). Leaves
represent individual data points. The boxes at the nodes
represent clusters; they are ordered horizontally in a way
that reflects their proximity. The vertical coordinate of
cluster a0 is t�a0� � rab , i.e., the effective distance be-
tween the two clusters that were fused to form a0. For the
initial (single state) clusters we set t � 0. When we fuse
two “natural” clusters, whose separation exceeds signifi-
cantly their linear extent, the branch above them is long.
Hence we can identify natural subpartitions of a cluster; as
is evident from Fig. 2(a), C1, C2 are such natural subpar-
titions of C, and also C, C̄ are natural subclusters of the
set of all GS. For each realization we analyzed the data
in two ways: (a) viewing the GS as M data points and
(b) viewing the spins as N data points.

Clustering the ground states.—Define Dmn � �1 2

qmn��2 as the distance between states Sm and Sn; qmn �P
i S

m
i Sn

i �N is their overlap. The dendrogram obtained
by clustering 500 GS for a system with 63 spins is shown
in Fig. 2(a). Hierarchical GS structure is evident. To
provide a quantitative measure of the extent to which a
partition (of, say, C to C1 and C2) is natural, we evaluate
the average distance between points in C and C̄ ,

D�C , C̄ � �
1

jC j jC̄ j

X

m[C

X

n[C̄

Dmn , (3)

and compare it to D�C �, the average distance within C .
In the same manner we define D�C1,C2�, D�C1�, and
D�C2�. For L � 6 we obtained D�C � � 0.094�mean� 6
3150
0.067�standard deviation�; D�C , C̄ � � 0.906 6 0.067;
D�C1� � 0.057 6 0.045; D�C2� � 0.058 6 0.036;
D�C1,C2� � 0.178 6 0.143. For L � 8 we obtained
D�C � � 0.078 6 0.050; D�C , C̄ � � 0.921 6 0.050;
D�C1� � 0.049 6 0.028; D�C2� � 0.049 6 0.020;
D�C1,C2� � 0.162 6 0.135. The results clearly show
that the hierarchical structure is real and not a mere artifact
of Ward’s algorithm.

A striking demonstration of this point can be seen in
Fig. 2(b), which shows the distance matrix Dmn between
the GS that were ordered in Fig. 2(a). Dark shading rep-
resents short distances and light shading represents long
distances. If we cluster states with Si � 61 at random,
the reordered distance matrix is a greyish square. Only
when the clustered states form a real, well defined hierar-
chy does the reordered distance matrix reveal the structure
so clearly seen in Fig. 2(b). To understand this hierarchy
of GS we investigated the organization of the N spins in
the M GS.

Figure 2(b) resembles the state distance matrix of the
MF picture. There is, however, one crucial difference. In
the MF scenario the off-diagonal submatrices of the dis-
tance matrix are uniform, which leads to ultrametricity [1].
For example, if the submatrix D̃ij for i [ C1 and j [ C2

is uniform, the width w�C1,C2� of the distribution P�D̃ij�
should vanish as L ! `. We performed a fit of the form
w�C1,C2, L� � w` 1 AL2y , with A and y as fit parame-
ters. The minimum of x2 � 6.7 3 1027 was found for
w` � 0.025�2� with y � 3.4�8�. Setting w` � 0 we get
a worse fit, with x2 � 1.9 3 1025. Our data supports a
nonvanishing value of w`, in disagreement with the ultra-
metricity of the MF picture.

Clustering the spins.—We cluster i � 1, . . . , N spin
vectors Si � �S1

i , S2
i , . . . , SM

i �, looking for correlated spin
domains. Define a distance between spins i and j by
dij � 1 2 cij

2, where cij � Si ? Sj�M is the correlation
between spins i and j. Note that cij

2 is the relevant
measure of correlations in a spin glass. A typical outcome
of clustering the spins with this distance matrix is the
dendrogram D of Fig. 3(a), obtained for the same system,
whose GS were studied in Fig. 2. In Fig. 3(b) we show
the distance matrix obtained after the spins have been
reordered according to D . Nontrivial structure in spin
space is evident; dark squares along the diagonal represent
highly correlated clusters.

Identifying G1 and G2.— In order to identify G1, the
largest domain of correlated spins, we go over all pairs
of GS, m, n, with m [ C and n [ C̄ , and identify Gmn ,
the set of spins that have opposite signs in m and n. For
all L and �J�, the set Gmn is contiguous for more than
99.5% of the pairs. Thus, Gmn can be related to the low
energy excitations found for SRSG with Gaussian cou-
plings [5,15].

For a given �J� we identify as G1 the largest contiguous
group of spins shared by at least a fraction u � 0.95 of
the sets Gmn . Thus, inside G1 cij

2 $ 0.81 (for L � 8 the
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FIG. 4. The average sizes of G1�u� and G2�u�. The thin
solid line presents only ST data for L � 8, which are unbi-
ased but highly noisy due to the relatively small number of (60)
realizations.

average correlation inside G1 is always larger 0.94). The
second largest spin domain, G2, is found in a similar way,
by scanning all pairs of GS with m [ C1 and n [ C2. As
seen in Fig. 4, the average sizes of G1,G2 do not change a
lot for 0.60 , u , 0.95.

According to our picture we expect jGaj ~ Ld for both
a � 1, 2. We present the distributions of jGaj�L3 for 4 #

L # 8 in Fig. 5. Our results show that the sizes of the two
largest spin clusters do scale as L3.

We turn now to identify those clusters g1, g2 in our
spin dendrogram, which can be associated most naturally
with the domains G1,G2. g1 is that cluster which is most
similar to G1, i.e., has the largest fraction of shared spins
S �g1,G1� � 2jg1 > G1j��jg1j 1 jG1j�. The similarity is
high: for L � 8 on the average we have S �ga,Ga� �
0.99�1� for a � 1 and 0.97(4) for a � 2. This means that
G1 and G2 do have a meaningful role in spin space and are
not just an artifact of our analysis.

Overlap distribution.—Figure 5 strongly suggests that
G2 does not vanish as L increases, as one can conclude
from [5]. Still, the distribution may become trivial if

c̄12 �
1

jG1j jG2j

X

i[G1

X

j[G2

c2
ij ! 1 as L ! ` . (4)

In this case G1 and G2 will always flip together. We carried
out fits of the form c̄12�L� � c̄12�`� 2 AL2f with A and
f as fit parameters. The minimum of x2 is 1.7 3 1024

for c̄12�`� � 0.54. For c̄12�`� � 1 we have x2 � 3.4 3

1024. Our result c̄12�`� , 1 should be tested further for
larger systems. The results jG2�`�j . 0 and c̄12�`� , 1
yield a nontrivial P�q� [19].

Summary.—The ground states of the 6J short-range
Ising spin glass have a hierarchical, treelike structure. This
structure is induced by correlated spin domains, which are
the cores of macroscopic zero energy excitations, taking
the system from one state-cluster to another. This struc-
ture of the GS and the associated barriers has some fea-
tures of the MF picture but is inconsistent with it, since it
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FIG. 5. Size distribution of G1 and G2. Note that the distribu-
tion of G2 seems to converge already for L � 8. The distribution
of G1 converges for sizes between 0.5N and 0.7N .

lacks ultrametricity. It is, however, consistent with the FH
scenario.

Note that evidence for low energy macroscopic excita-
tions has been found by [5]; we presented here detailed
statistics of these domains, investigated their correlations,
and demonstrated that they produce a hierarchical structure
in state space.
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