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On the basis of epidemiological studies, infection was
suggested to play a role in the etiology of human cancer.
While for some cancers such a role was indeed demon-
strated, there is no direct biological support for the role of
viral pathogens in the pathogenesis of childhood leukemia.
Using a novel bioinformatic tool that alternates between
clustering and standard statistical methods of analysis, we
performed a ‘double-blind’ search of published gene
expression data of subjects with different childhood acute
lymphoblastic leukemia (ALL) subtypes, looking for
unanticipated partitions of patients, induced by unex-
pected groups of genes with correlated expression. We
discovered a group of about 30 genes, related to the
interferon response pathway, whose expression levels
divide the ALL samples into two subgroups; high in 50,
low in 285 patients. Leukemic subclasses prevalent in
early childhood (the age most susceptible to infection) are
over-represented in the high-expression subgroup. Similar
partitions, induced by the same genes, were found also in
breast and ovarian cancer but not in lung cancer, prostate
cancer and lymphoma. About 40% of breast cancer
samples expressed the ‘interferon-related’ signature. It is
of interest that several studies demonstrated mouse
mammary tumor virus-like sequences in about 40% of
breast cancer samples. Our discovery of an unanticipated
strong signature of an interferon-induced pathway pro-
vides molecular support for a role for either inflammation
or viral infection in the pathogenesis of childhood
leukemia as well as breast and ovarian cancer.
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Introduction

Recent years have witnessed accelerated improvement of
gene expression measurement techniques, and a rapid
growth of their usage, in particular for studies of
malignancies. These technological advances were not
accompanied by a similar rate of improvement in
analysis methods (Yeoh et al., 2002; Ross et al., 2003).
The present publication has two distinct aims. First, we
demonstrate that, when novel methods of analysis are
applied to data that have been previously published and
studied, it is possible to discover important molecular
pathways that have completely eluded previous studies
(Golub et al., 1999; Armstrong et al., 2002; Yeoh et al.,
2002; Ross et al., 2003), that employed standard,
commonly used methods for analysis of gene expression
data. Our second goal is to present the discovery of a
robust signature of a group of interferon-inducible genes
(IIG) associated with childhood leukemia and with
other cancers, and to discuss its intriguing biological and
clinical implications.
As has been discussed in several publications (Cali-

fano et al., 2000; Cheng and Church, 2000; Getz et al.,
2000; Ihmels et al., 2002; Tanay et al., 2002), one of the
main strengths of the modern gene expression techno-
logy also generates a considerable difficulty in inter-
preting the results. The strength is the holistic view
achieved by measuring the expression levels of a very
large number of genes in a single experiment. Typically,
however, the expression signatures of an overwhelming
majority of these genes are not related directly to the
biological process (e.g. cancer) one wishes to study; in
fact, most of the measured genes give rise to a very noisy
background, from which one tries to extract the
relatively weak signal of correlated activity of a small
but relevant group of genes. A straightforward way to
zero in a relevant subset of genes is by means of a
supervised filtering step – for example, identification of
genes whose expression differentiates two or more
groups of samples known to be genetically or clinically
different. However, such a step can never lead to the
discovery of unexpected partitions induced by genes
whose role has not been previously anticipated. AnReceived 6 February 2005; revised 15 April 2005; accepted 28 April 2005
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alternative is provided by a family of methods (Califano
et al., 2000; Cheng and Church, 2000; Getz et al., 2000;
Ihmels et al., 2002; Tanay et al., 2002) that search for
subgroups of genes and samples that satisfy certain
conditions, in an unsupervised manner. In particular, the
coupled two-way clustering (CTWC; Getz et al., 2000)
clusters all genes as the first step, to identify correlated
groups of genes; these gene clusters are then used, one at
a time, to probe and analyse the subjects. We use CTWC
as our starting step, but deviate from this method in that
the search is refined by a combination of more standard
statistical tests (rather than continuing by unsupervised
clustering), to zero in on an apparently interesting group
of genes. Here we show that this mixture of supervised
and unsupervised methodologies benefits from the
advantages inherent to both methodologies and can
lead to the discovery of biologically significant gene
signatures.
The possible role of dysregulated immune or inflam-

matory response in the development of human cancer,
and in particular its association with infectious agents,
was suggested for many years. Several human lymphoid
malignancies are associated with infectious agents:
Burkitt’s lymphoma with Epstein–Barr virus (EBV)
(Henle and Henle, 1966), adult T-cell leukemia (ATL)
with human T-cell lymphotropic viruses (HTLV)-I
(Poiesz et al., 1980), body-cavity lymphoma with human
herpes 8 (Mele et al., 2003), B-cell non-Hodgkin’s
lymphoma with hepatitis C (Mele et al., 2003), and
gastric MALT lymphoma with Helicobacter pylori (Peek
and Blaser, 2002).
It has long been suspected that common childhood

infections contribute to the etiology of childhood
leukemia, in particular acute lymphoblastic leukemia
(ALL). The infectious etiology hypothesis has been
proposed by two distinct but complementary theories.
The Kinlen (1995) theory, based on transiently increased
rates of leukemia in geographical clusters, suggests that
population mobility and mixing result in infection
occurring in susceptible, previously unexposed indivi-
duals. Several epidemiological studies supported the
population mixing theory (Kinlen and Balkwill, 2001;
Koushik et al., 2001). The alternative ‘delayed infection’
hypothesis (Greaves, 1997, 1988; Greaves and Alexan-
der, 1993) focuses on the timing of common childhood
infections and claims that some leukemia cases, mainly
of the common B-cell precursor subtype of ALL
(cALL), are associated with a lack of exposure in
infancy and a resultant failure of normal immune
modulation. Dysregulated immune response upon de-
layed exposure to microbial infection is suggested to
contribute to leukemogenesis. Studies in identical twins
with leukemia (Ford et al., 1998; Wiemels et al., 1999b),
analysis of archived neonatal blood spots, and screening
of cord blood samples (Gale et al., 1997; Wiemels et al.,
1999a) indicate that cALL is frequently initiated by
chromosomal translocations and nondisjunctions that
occur prenatally, but requires a second ‘hit’ to produce
leukemia. The dysregulated response to infection is
suggested to provide, probably indirectly, proliferative
or apoptotic stress to the bone marrow, leading to the

additional decisive ‘hit’. The exposure is predicted to
occur proximally to clinical disease, suggesting that a
‘smoking gun’ can be identified when leukemia cell
samples are studied. Despite intense research (MacK-
enzie et al., 1999; MacKenzie et al., 2001), no direct
biological evidence, such as identification of microbial
sequences, was found. Similarly, no epidemiologic data
linking specific pathogens to ALL development were
described. Several anecdotal reports described rare cases
of ALL diagnosis preceded by a preleukemic phase
known as pre-ALL in association with EBV or parvo
B19 infection (Hasle et al., 1995; Tabori et al., 2001).
We describe here the identification of a gene expres-

sion signature in a subset of patients suggestive of a
deregulated immune response to some pathogen. We
show that this signature occurs with highest frequency
(one third) in the hyperdiploid ALL cases and as a
smaller fraction in the other childhood leukemia
subtypes. The finding of this gene expression profile in
childhood leukemia, in particular in those cases that are
over-represented in the early childhood cALL peak,
supports the role of an infectious agent, most probably a
virus, in the pathogenesis of leukemia.
We looked for the same gene expression signature in a

variety of data sets of other human cancers. While in the
majority of cancer samples no significant overexpression
of the IIG was observed, it was detected in 40% of
breast cancer and 20% of ovarian cancer samples.
Indeed, some epidemiological studies have previously
suggested a role for infection in the pathogenesis of
ovarian (Ness et al., 2003) and breast (Ford et al., 2003)
tumors. Additionally, molecular studies identified
mouse mammary tumor virus (MMTV)-like sequences
in about 40% of breast cancer samples (Wang et al.,
1995; Ford et al., 2003). The ‘interferon signature’ may
reflect the activation of this pathway in the transformed
cells themselves. Alternatively, it can reflect the response
of the cancer cells to nonmalignant cells of the immune
system.

Results

Analysing the data of Yeoh et al. (2002)

Our aim was class discovery: to identify new partitions
of the samples, into subgroups with no previously
known common label, on the basis of the expression
profiles of a group of genes with correlated expression
levels. To this end we used the CTWC method (see
Materials and methods section). The expression levels of
3000 probe sets that passed a variance filter were used in
this analysis. We applied the algorithm on each of the
ALL subtypes separately, in order to avoid ‘inter-
subtype’ noise. ALL subtypes with large numbers of
samples were the first to be analysed. When we applied
the algorithm on TEL-AML1, a group of 16 probe sets
representing 15 genes (Table 1) separated the TEL-
AML1 subtype very clearly into two subgroups (Fig-
ure 1): in eight TEL-AML1 samples these probe sets had
high expression levels, whereas in the remaining 71
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samples their expression level was relatively low.
The distinct group of eight samples shared no clinical
label (such as same protocol of treatment or same
prognosis). Strikingly, the majority (12 of 15) of the
differentiating genes were IIGs. This constitutes step (i)
of our analysis.
Next, in step (ii), we refined the list of these genes,

using supervised analysis. We took the separation into
the two groups of eight versus 71 samples as ‘ground
truth’ and searched for genes that differentiate between
these two groups. This search was performed on an
extended set of 6500 genes. In all, 184 probe sets passed
the threshold number of misclassifications (TNoM) as
differentiating, with P-values below 0.05. To overcome
the problem of multiple comparisons we applied the
false discovery rate (FDR) method; 23 probe sets,

representing 19 genes, were identified as separating at an
FDR level of 5%. The practical meaning of this
statement is that out of these 23 probe sets we expect
about one to be a false positive, present due to random
fluctuations.
Step (iii) of our iterative refinement process was again

unsupervised; we used the expression levels of the 23
probe sets found in step (ii), to characterize all samples,
and clustered them using superparamagnetic clustering
(SPC). This way we identified a group of 50 samples,
selected from all the ALL subtypes; these 50 have high
expression levels of the 23 probe sets (Figure 2). This
group of samples consists mainly of hyperdiploid>50,
but contains almost all other subtypes as well (Table 2).
The hyperdiploid>50 subtype was significantly over-
represented among the 50 samples with high expression;

Table 1 Genes that separate the ALL samples into two subgroups

Gene probe ID Title Gene symbol TEL-AML1
CTWC step

(i)a

TNoM 1
step(ii)b

(P-value)

TNoM 2
step(iv)c

(P-value)

36927_at Chromosome 1 open reading frame 29 C1orf29 + 0.000115 6.69E�35
925_at Interferon, gamma-inducible protein 30 IFI30 + 2.51E�32
915_at (32814_at) Interferon-induced protein with tetratricopeptide repeats 1 IFIT1 + 6.06E�06 2.51E�32
37641_at Interferon-induced protein 44 IFI44 + 6.06E�06 4.44E�31
37014_at Myxovirus (influenza virus) resistance 1 MX1 + 6.06E�06 7.40E�30
38584_at Interferon-induced protein, tetratricopeptide repeats 4 IFIT4 + 0.000115 1.17E�28
1107_s_at (38432_at) Interferon, alpha-inducible protein (clone IFI-15K) G1P2 + 6.06E�09 3.41E�25
38389_at 20,50-Oligoadenylate synthetase 1, 40/46 kDa OAS1 + 0.000115 4.43E�24
39263_at (39264_at) 20,50-Oligoadenylate synthetase 2, 69/71 kDa OAS2 + 0.000115 5.51E�23
38014_at Adenosine deaminase, RNA-specific ADAR 6.06E�09 6.57E�22
38517_at Interferon-stimulated transcription factor 3, gamma ISGF3G 8.76E�19
1358_s_at + 6.06E�09 8.35E�16
38662_at Homo sapiens, clone IMAGE:4074138, mRNA sequence 6.06E�06 7.67E�15
37360_at Lymphocyte antigen 6 complex, locus E LY6E 6.06E�06 3.94E�11
35718_at SP110 nuclear body protein SP110 2.35E�09
33339_g_at
(32860_g_at)

Signal transducer and activator of transcription 1, 91 kDa STAT1 + 1.74E�08

464_s_at Interferon-induced protein 35 IFI35 0.000115 8.77E�07
914_g_at (36383_at) v-ets erythroblastosis virus E26 oncogene like (avian) ERG 5.98E�06
40054_at KIAA0082 protein KIAA0082 5.98E�06
37352_at
(3753_g_at)

Nuclear antigen Sp100 SP100 + 6.06E�06 5.98E�06

34947_at (41472_at) Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-
like 3G

APO-
BEC3G

3.97E�05

36845_at Nuclear matrix protein NXP-2 NXP-2 3.97E�05
40505_at Ubiquitin-conjugating enzyme E2L 6 UBE2L6 0.000115 3.97E�05
41841_at Homo sapiens clone 23718 mRNA sequence 0.000257
39061_at Bone marrow stromal cell antigen 2 BST2 0.000257
32800_at Retinoid X receptor, alpha RXRA 0.000257
38805_at TGFB-induced factor (TALE family homeobox) TGIF 0.000257
890_at Ubiquitin-conjugating enzyme E2A (RAD6 homolog) UBE2A 0.000257
40852_at Tudor repeat associator with PCTAIRE 2 PCTAIR-

E2BP
+

32775_r_at Phospholipid scramblase 1 PLSCR1 +
36412_s_at Interferon regulatory factor 7 IRF7 + 2.36E�07
41745_at Interferon-induced transmembrane protein 3 (1–8U) IFITM3 6.06E�06
676_g_at 6-Pyruvoyltetrahydropterin synthase PTS 0.000115
1184_at (41171_at) Proteasome (prosome, macropain) activator subunit 2 (PA28 beta) PSME2 6.06E�06

aIn the ‘TEL-AML CTWC step (i)’ column, we mark by + the genes that were obtained by the initial CTWC (step (i) of our analysis); two out of
the 16 probe sets correspond to the same gene and hence only 15 genes are marked. bThe ‘TNoM1 step (ii)’ column gives P-values of the genes that
separate eight versus 71 TEL-AML1 samples according to the TNoM test, at FDR¼ 0.05. Only 19 genes are indicated (out of 23 probe sets), again
because of multiple representations. cThe ‘TNoM2 step (iv)’ column indicates 28 probe sets that separate all the ALLs into two subgroups of 50
versus 285 samples (see text). The genes that are known to be part of the interferon-JAK/STAT pathway are in bold face. In cases when two probe
sets represent the same gene symbol, the lower P-value was taken
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no other clinical label, specific to these samples, was
found. Finally, to complete the refinement process,
supervised analysis was performed again in step (iv),
using TNoM on 6500 probe sets, revealing 28 genes
that most significantly separate the new subgroup of 50
samples from the remaining 285 samples (see Table 1).
Each of the four steps yielded its own list of

separating probe sets (genes). Although not identical,
these gene lists have significant overlaps, which can also
be inferred from Table 1. Out of the total 30 of known
genes (whose symbols are given in the table), 17 are
known to be induced by interferon; most of these have
never been associated with leukemia.

Analysis of other data sets (Golub et al., 1999;
Bhattacharjee et al., 2001; Ramaswamy et al., 2001;
Staunton et al., 2001; Welsh et al., 2001a, b; Armstrong
et al., 2002; Shipp et al., 2002; Singh et al., 2002; van ‘t
Veer et al., 2002; Rozovskaia et al., 2003)

We now turned to search for other types of cancer in
which a similar finding may hold; we tested whether we
can find a subdivision of samples in other data sets on
the basis of the expression levels of genes from the same
pathway. However, in each of the following data sets,
we had to use a different subgroup of the separating
genes, since some genes did not appear in these data sets
and others had too many missing values. We ran the
SPC algorithm for each data set, using the appropriate
subgroups of our gene list. Our aim was to find a distinct
group of samples, in which these genes were over-
expressed. In addition, we checked the sample labels in
order to find common clinical indicators, shared by the
members of the selected subgroup.
We applied the same method of analysis to the more

recent leukemia data of the same group (Yeoh et al.,
2002; Ross et al., 2003), where the Affymetrix HG-U133
microarrays, containing 45 000 probe sets representing
33 000 genes, were used on a much smaller number of
samples, 132 representative cases. Although the genes
and their representation on these microarrays are
different, we did find a subset of the IIG (14 genes)
that appears on both chips and clearly identifies a small
subgroup (18% of the samples) with high IIG expression
levels. Among these, the hyperdiploid >50 samples were
very significantly over-represented.
We then turned to analyse the leukemia data (Table 3)

of Golub et al. (1999), Armstrong et al. (2002) and
Rozovskaia et al. (2003). In each of these data sets we
also found clear subgroups (containing about 10% of
the samples), with overexpressed levels of these genes.
Again, no common label was shared by the subgroup
members.
Next, we ran SPC on data sets of other types of cancer

(Table 3): lymphoma (Shipp et al., 2002), prostate
(Welsh et al., 2001a; Singh et al., 2002), various tumors
(Ramaswamy et al., 2001; Staunton et al., 2001), ovary
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Figure 1 Expression values of the cluster of 16 genes, found by
CTWC, in 79 TEL-AML1 samples. The values are centered (mean
expression of each gene¼ 0) and normalized (std¼ 1). These genes
are overexpressed in a group of 8 (out of 79) TEL-AML1 samples
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Figure 2 Expression values of the group of 23 genes in 335 ALL
samples. The values are centered (mean expression of each
gene¼ 0) and normalized (std¼ 1). These genes are correlated
and overexpressed in a group of 50 ALL samples, that consist
mainly of hyperdiploid>50 and TEL-AML1 subtypes

Table 2 The number of samples from each subtype in the Yeoh et al.
(2002) data set and in the new subgroup

Subtype name Number of
samples

Number in
subgroup

Hyperdip >50 65 24
TEL-AML1 79 10
Pseudodip 29 4
Normal 19 4
Hyperdip 47–50 23 3
T-ALL 45 2
BCR-ABL 16 2
MLL 21 1
Hypodip 11 0
E2A-PBX1 27 0
Total 335 50

Novel subtype (as found by Yeoh et al.) 14 6
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(Welsh et al., 2001b), lung (Bhattacharjee et al., 2001),
and breast (van ‘t Veer et al., 2002). We found very
small or negligible subgroups of samples that co-
expressed the unique subgroup of IIG in the lymphoma,
prostate and lung cancers. Analysis of the data
published by Ramaswamy et al. (2001), which contains
samples from various types of cancer, revealed a small
subgroup, seven out of 280, that also contains samples
from other types of cancer, but mainly from leukemia,
lymphoma and even from normal peripheral blood
samples. In the lung cancer data set of Bhattacharjee
et al. (2001), a clear separation ofB1.5% of the samples
was detected. The most significant signal came from the
breast cancer data of van ‘t Veer et al. (2002), where
40% of the samples overexpressed these genes (Figure 3),

and the ovary cancer data set of Welsh et al. (2001a), in
which the interferon-related genes were overexpressed in
about 20% of the samples.

Confirmation of differential gene expression by RQ–PCR

For an independent verification of this bioinformatic
analysis, we have examined by real time quantitative
PCR (RQ–PCR) the expression of two of the IIGs
IRIFT4 and IRF7 (Table 1) in RNA derived from
diagnostic bone marrow samples of 63 children with B-
cell precursor ALL. These patients were not part of the
cohort included in the original microarray analysis of
Yeoh et al. (2002). Despite the limitations imposed by
the analysis of only two genes, using SPC, we have
identified a cluster comprised from 10 patients with
significantly higher expression of both genes. Interest-
ingly, the average age of these patients was 4.45 years at
the time of diagnosis, lower than 7.73, the average age in
the low expression levels subgroup. The P-value for this
age difference, assigned by the Student’s t-test, was
P¼ 0.011. All patients but one in the small subgroup are
in the age range of 2–6. There were no statistical
significant differences in other clinical parameters
(although this is a too small group to identify survival
patterns). Thus, an analysis of gene expression by a
different methodology (RQ–PCR) in an independent set
of patients identified a similar cluster of IIGs, in a
similar fraction (15.8%) of patients with B-cell precursor
ALL.

Discussion

In this work, we analysed the recently published gene
expression data of different subtypes of childhood ALL
by means of an unsupervised approach, using the SPC
and CTWC clustering methods, in order to search for a
set (cluster) of genes, whose expression profile separates
the samples into two (unanticipated) distinct groups.
Such a gene cluster was found, and extended using the

Table 3 Data sets that were examined by the CTWC algorithm using the interferon-related set of genes

Data sets Type of samples Overexpressed samples

Golub et al. (1999) 60 Leukemic samples of ALL and AML Five samples, four of them are MLL
Armstrong et al. (2002) 72 Leukemic samples: 24 ALL, 20 AML and 28 MLL Seven samples (four ALL, two MLL, one AML)
Rozovskia et al. (2003) 60 Leukemic samples of ALL, MLL and CD10� ALLs Six MLL and ALL
Shipp et al. (2002) Lymphoma samples from 58 DLBCL patients and 19

FL patients
None

Prostate (Welsh et al., 2001) 55 Prostate cancer samples None
Singh et al. (2002) 102 Prostate cancer samples None
Staunton et al. (2001) 60 Samples from various types of cancer Poor separation of three samples (taken from breast

cancer, renal cancer and leukemia patients)
Ramaswamy et al. (2001) 280 Samples from various types of cancer Seven samples: one lymphoma sample, two leukemia

AML samples, one breast cancer sample, one
bladder cancer sample and two samples taken from
normal peripheral blood

Ovary (Welsh et al., 2001) 49 Ovary cancer samples B10 samples
Bhattacharjee et al. (2001) 203 Lung cancer samples Six samples. Other B40 samples expressed inter-

mediate mRNA level
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Figure 3 Expression values of 12 genes in 96 breast cancer
samples (van ‘t Veer et al., 2002). The values are centered (mean
expression of each gene¼ 0) and normalized (std¼ 1). Approxi-
mately 40% of the samples, to the right of the black dotted line,
overexpress these genes. The differentiating genes are: IFI35,
IFI30, STAT1, LY6E, OAS2, OAS1, IFIT1, UBE2L6, IFIT4,
PLSCR1, IRF7, MX1
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TNoM supervised method. The search for the char-
acteristic gene set was performed in a totally unpreju-
diced ‘blind’ way regarding either the separating gene set
or the resulting partition of the samples. Surprisingly, a
special set of genes was found to be highly expressed in a
small minority (0–14%) of samples of the various
leukemia subtypes, and in a relatively high percentage
(37%) of the hyperdiploid (>50) ALL subgroup that
constitutes a large part of the cases in the early
childhood peak of leukemia. Out of the 30 known
genes, 17 that appear in Table 1 are IIGs. These include
signal transducer and activator of transcription 1
(STAT1) and interferon regulatory factor 7 (IRF7),
both involved in signal transduction downstream to
interferon receptors, as well as many interferon alpha-
induced proteins such as interferon-induced protein 44,
interferon-induced transmembrane protein 3, interfer-
oninduced protein 35, 20,50-oligoadenylate synthetase 1
and 2, myxovirus resistance 1 interferon-inducible
protein 78 and adenosine deaminase RNA specific.
Interferon gamma-induced proteins such as protein 30
and interferon gamma-induced transcription factor 3
were also found in the special gene cluster. Interestingly,
several ubiquitin-conjugating enzymes such as E2L6 and
E2A and proteasome system components such as
activator subunit 2 (PA28 beta), some of them known
to be induced by interferon, were also present in the
cluster. Such proteins are involved in the generation of
antigenic peptides that are presented to CD8þ T cells
by MHC class I molecules. Taken together, many genes
relevant to the immune response were found to be
present in the special cluster of IIG that are highly
expressed in the hyperdiploid leukemia variant. Of great
interest is the presence of apolipoprotein B mRNA
editing enzyme, catalytic polypeptide-like 3G (APO-
BEC3G), in the interferon-related gene cluster. This
enzyme was shown lately to confer antiretroviral defense
against HIV and other retroviruses through lethal
editing of nascent reverse transcripts (Mangeat et al.,
2003; Zhang et al., 2003a). Hypermutation by editing
mediated by this enzyme was shown to be an innate
defense mechanism against retroviruses. One may
speculate that the expression of this gene is an indication
for retrovirus involvement in childhood leukemogenesis.
The existence of the IIG cluster in B-cell precursor

childhood leukemia was confirmed in independent
cohort using RQ–PCR. This RQ–PCR validation is
preliminary and therefore the size of the examined gene
set was limited. We plan to extend this analysis to a
larger cohort with additional genes included in the IIG
cluster.
The search for the IIG cluster in other data sets of

several malignant diseases (Table 3) indicates that in
other data sets of leukemia about 10% of the samples
expressed the special gene set. In lymphomas, prostate,
lung and data sets of a variety of tumors, none or a very
low percentage of the samples expressed the set. The
exceptions are the data set of 49 ovarian cancer samples
and 96 breast cancer samples; a subset of B20% of the
ovarian cancers and B40% of the breast cancers
overexpressed the gene set. It is of interest that some

epidemiologic studies suggested a role for infection in
the pathogenesis of other cancers, in addition to
leukemia, among them both ovarian (Ness et al., 2003)
and breast (Ford et al., 2003) tumors. The lack of the
IIG set in the majority of nonleukemic samples supports
the significance of the finding in the leukemic samples.
In particular, the prominent appearance of hyper-

diploid leukemic samples (that occur in early childhood,
when viral infection is most likely to occur) and the
significant lower age of the subgroup of patients from
the independent cohort strengthen the hypotheses of
Greaves and Kinlen.
The finding that about 40% of breast cancer samples

displayed the ‘infection-associated’ gene signature is of
special significance. Retrovirus-like particles were de-
monstrated in a breast cancer cell line (Keydar et al.,
1984) and MMTV-like gene sequences were detected by
PCR in about 40% of breast cancer samples in several
studies (Wang et al., 1995; Ford et al., 2003). Interest-
ingly, the percentage of cases where retroviral gene
sequences were identified is very similar to the percen-
tage of cases where the interferon gene signature was
identified (B40%). The experiment to be carried out is
to look at the same tumor samples for both interferon-
associated gene expression and for the MMTV-like gene
sequences,
The samples with high expression of the IIG

constitute a minority of the malignant samples. In the
leukemia hyperdiploid subgroup, only one-third of the
samples were positive and in the breast cancer cases
40% were positive. Several explanations can be sug-
gested for this finding. First, infection can represent only
one type of causative factor or ‘second hit’ event and
other mechanisms may operate in the rest of the cases.
Second, the role of infection may be indirect, via the
dysregulated immune response. Under such a scenario,
the infectious agent can contribute to leukemogenesis in
a transient ‘hit and run’ fashion and its fingerprints may
not be found at the time of diagnosis. In addition, it can
be expected that in different populations the involve-
ment of viruses can vary, due to environmental and
genetic factors, as was recently suggested in the case of
differential expression of MMTV-like sequences in
breast cancer patients from Australian and Vietnamese
origin (Ford et al., 2003).
An immune response to viral infection is by no means

the only reasonable explanation for the IIG signature
discovered in these cancer samples. Since interferons are
known to be produced by a variety of inflammatory cells
(Ernst, 1999; Colonna et al., 2002; Dalgleish and
O’Byrne, 2002), the induction of interferon-responsive
genes may reflect the degree of tumor inflammation.
This may hold particularly for solid tumors, rather than
leukemias. Tumor-infiltrating lymphocytes are com-
monly found in breast and ovarian cancers (Liyanage
et al., 2002; Georgiannos et al., 2003; Nzula et al., 2003;
Reome et al., 2004). Thus, the upregulation of IIGs in a
fraction of specific tumors may reflect the response
of the cancer cells to interferon secreted by host im-
mune cells. Since some of the genes presented in
the IIG signature are associated with growth-inhibitory
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properties (Sangfelt, 2001; Chawla-Sarkar M, et al.,
2003; Wall et al., 2003; Zhang et al., 2003b), it is
tempting to speculate that this signature may be
associated with improved prognosis. Accordingly, hy-
perdiploid ALL is associated with the best response to
chemotherapy and increased rate of apoptosis (Ito et al.,
1999; Pui et al., 2004). Interestingly, it has been recently
demonstrated that the presence of intratumural T-
lymphocytes correlated favorably with survival of
patients with ovarian cancer (Zhang et al., 2003b).
A minority of the genes in the IIG signature, for

example, STAT1 and IFIT4 may be induced by other
cytokines or by retinoic acid or chemotherapy (Ihle and
Kerr, 1995; Yu et al., 1997). However, most of the genes
present in this signature are known to be induced
principally by interferons. Also, all the analysed
databases included only diagnostic samples prior to
exposure to chemotherapy. Thus, our finding of a highly
expressed ‘interferon cluster’, combined with the epide-
miological evidence, most likely implies an immune
response, either to viral infection or to the tumor cells,
leading to interferon secretion, activation of interferon
receptors and STAT signaling, resulting in the activation
of many interferon-regulated genes. Nevertheless, an-
other possibility, that the pathway was activated by a
mutation in the cancer cells, independent of a response
to the host environment, cannot be completely ruled
out. Interestingly, three interferon receptor genes are
located on chromosome 21, a chromosome that is
always amplified in hyperdiploid leukemia (Heerema
et al., 2000). The role of aberrant STAT signaling
(mainly STAT3 but not the interferon induced STAT1)
and constitutive STAT activation in leukemia is the
subject of several recent publications (Benekli et al.,
2003). It is unclear whether constitutive STAT activa-
tion itself is the cause or the result of a transforming
process.
We have demonstrated that applying a novel blind

unsupervised subgroup discovery approach to publicly
available gene expression databases allows identification
of previously unrecognized biologically meaningful
molecular signatures. Specifically, we identified a set of
interferon-regulated genes characterizing mainly the
hyperdiploid lymphoblastic leukemia, breast cancer
and ovarian cancers (and, possibly, in other types of
cancer that were not studied here). The various
hypotheses raised by the finding of this novel gene
signature in cancers can be tested experimentally by the
research groups that published the original gene
expression data sets. For example, it could be interesting
to examine the interferon levels in stored serum from
patients with childhood ALL or to correlate the
presence of retroviral particles or the degree of infiltra-
tion of lymphocytes in breast cancer specimens with the
interferon-induced genes’ signature, as well as searching
for activating mutations or polymorphisms in interferon
receptor genes in patients with hyperdiploid childhood
ALL. Clearly, this finding generates several biologically
testable hypotheses whose potential implications on
diagnosis, therapy and prevention of childhood leuke-
mia, breast cancer and other malignancies are evident.

Materials and methods

Patients and specimens

Microarray data There are several publicly available gene
expression data sets on leukemia (Golub et al., 1999;
Armstrong et al., 2002; Yeoh et al., 2002; Rozovskaia et al.,
2003). We analysed the data of Yeoh et al. (2002), that tested
diagnostic bone marrow samples from 327 ALL patients using
Affymetrix U95A microarrays containing 12 533 probe sets.
The samples were collected at the time of discovery of the
disease, prior to administering any therapy. Expression levels
were measured for 335 samples of bone marrow and peripheral
blood representing several different ALL subtypes (T-ALL,
E2A-PBX1, BCR–ABL, TEL-AML1, MLL, hyperdiploid >50
chromosomes, hyperdiploid 47–50 and hypodiploid). We
expanded the analysis to other publicly available data sets of
leukemia (Golub et al., 1999; Armstrong et al., 2002;
Rozovskaia et al., 2003) and other cancers including:
lymphoma (Shipp et al., 2002), prostate (Welsh et al., 2001a;
Singh et al., 2002), ovary (Welsh et al., 2001b), lung
(Bhattacharjee et al., 2001) and breast (van ‘t Veer et al., 2002).

Quantification by RQ–PCR The expression of IRF7 and
IRFIT1 was quantified in RNA derived from diagnostic bone
marrow samples given with an informed consent by 63
children with B-cell precursor ALL. RNA isolation, cDNA
synthesis and RQ–PCR were performed as described by us
(UO) before (Akyerli et al., 2005). For every sample the
amount and the quality of RNA were normalized by dividing
by the corresponding arrythmetic median of beta-2-micro-
globin (B2M) and c-Abl ‘housekeeping’ genes. Primer
sequences (50–30) were: IRFIT1: forward CACATGGGCA
GACTGGCAG, reverse GCGGAAGGGATTTGAAAGCT;
IRF7 forward TCCCCACGCTATACCATCTACC, reverse
CAGGGTTCCAGCTTCACCAG; B2M forward TGCCGT
GTGAACCATGTGAC, reverse ACCTCCATGATGCTGCT
TACA; c-ABL forward CCCAACCTTTTCGTTGCACTGT,
reverse CGGCTCTCGGAGGAGACGTAGA.

Microarray data analysis

Preprocessing and filtering the data We worked with an
expression matrix organized in 335 columns (samples) and
12 533 rows (genes). Each value in the matrix is the expression
level of a certain gene in a certain patient. Rows (genes) in
which more than 20% of the values were lower than some
threshold (T¼ 10) were removed. After this filtering, 6653
genes remained. In these rows the values that were lower than
T were replaced by estimates based on the values of the 13
nearest neighbors’ genes (Troyanskaya et al., 2001). Next, the
logarithm (base 2) of each entry was taken, and the genes were
filtered on the basis of their variation across the samples. Two
sets, of 3000 and of 6500 genes, were chosen, on the basis of
their standard deviations, for the CTWC step and for the
TNoM test, respectively. Similar procedures were followed for
each of the additional data sets.

Unsupervised analysis: clustering In order to separate the
ALL samples into unanticipated subgroups, we searched for a
cluster (e.g. correlated set) of genes with a distinct expression
profile in one part of the samples, and another profile in the
other part. Since hypothesis testing cannot reveal unexpected
partitions, unsupervised techniques, such as clustering, are
more suited for such a task. The CTWC method (Getz et al.,
2000) focuses on correlated groups of genes, one group at a
time. Relevant subsets of genes and samples are identified by
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means of an iterative process, which uses at each iteration level
stable gene and sample clusters that were generated at the
previous step. The ability to focus on stable, statistically
significant clusters that were generated by the underlying
clustering operation is essential for the CTWC method. Since
SPC (Blatt et al., 1996) provides a reliable stability index, it is
the method of choice to use in the CTWC scheme. The SPC
algorithm is based on the physical properties of inhomo-
geneous ferromagnets (Blatt et al., 1996, 1997; Getz et al.,
2000). The unsupervised CTWC step yields a list (cluster) of
genes, whose expression levels separate the samples into two
groups, which constitute the starting point of the next,
supervised steps of the analysis.

Supervised analysis We used supervised methods in order to
expand and refine the list of genes that was obtained by the
unsupervised CTWC step. Using hypothesis testing (TNoM)
(Ben-Dor et al., 2000), we tested genes, one at a time, to see
whether their expression differentiates the two groups of
samples that were identified by CTWC. This step provides an
extended set of genes, which is now used to identify, in an
unsupervised manner, samples that belong to classes of
relatively high expression. This procedure is reminiscent in
spirit of the signature method (Ihmels et al., 2002), albeit the
latter uses a known set of genes (or conditions) as it is seed and
does not switch to supervised statistical tests to refine the genes
it found.
For binary class comparisons we used a nonparametric

statistical test, TNoM (Ben-Dor et al., 2000), which tests
whether the expression value of a certain gene can predict the
class of the sample. An informative gene is expected to have

quite different values in the two classes, and thus we should be
able to separate these by a threshold value. TNoM provides an
appropriate score according to the quality of separation. For
each score we calculate its P-value, as described in Ben-Dor
et al. (2000). In order to control contamination with false-
positive genes associated with multiple comparisons, we used
the method of Benjamini and Hochberg (1995) that bounds the
average FDR; namely, the fraction of false positives among
the list of differentiating genes.

Abbreviations

ALL, acute lymphoblastic leukemia; IIG, interferon-inducible
genes; CTWC, coupled two-way clustering; ATL, adult T-cell
leukemia; HTLV, human T-cell lymphotropic viruses; TNoM,
threshold number of misclassifications; EBV, Epstein–Barr
virus; SPC, superparamagnetic clustering; FDR, false discov-
ery rate; MMTV, mouse mammary tumor virus.
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