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We present a coupled two-way clustering approach to gene mi-
croarray data analysis. The main idea is to identify subsets of the
genes and samples, such that when one of these is used to cluster
the other, stable and significant partitions emerge. The search for
such subsets is a computationally complex task. We present an
algorithm, based on iterative clustering, that performs such a
search. This analysis is especially suitable for gene microarray data,
where the contributions of a variety of biological mechanisms to
the gene expression levels are entangled in a large body of
experimental data. The method was applied to two gene microar-
ray data sets, on colon cancer and leukemia. By identifying relevant
subsets of the data and focusing on them we were able to discover
partitions and correlations that were masked and hidden when the
full dataset was used in the analysis. Some of these partitions have
clear biological interpretation; others can serve to identify possible
directions for future research.

In a typical DNA microarray experiment, expression levels of
thousands of genes are recorded over a few tens of different

samples† (1, 3, 4). This new technology gave rise to a compu-
tational challenge: to interpret such massive expression data
(5–7). The sizes of the datasets and their complexity call for
multivariant clustering techniques (8, 9), which are essential for
extracting correlated patterns and the natural classes present in
a set of N objects, represented as points in the multidimensional
space defined by D measured features.

Gene microarray data are fairly special in that it makes good
sense to perform clustering analysis in two ways (1, 2, 8). The first
views the ns samples as the N 5 ns objects to be clustered, with
the ng genes’ levels of expression playing the role of the features,
representing each sample as a point in a D 5 ng-dimensional
space. The different phases of a cellular process emerge from
grouping samples with similar or related expression profiles. The
other, not less natural, way looks for clusters of genes that act
correlatively on the different samples. This view considers the
N 5 ng genes as the objects to be clustered, each represented by
its expression profile, as measured over all of the samples, as a
point in a D 5 ns-dimensional space.

In previous work (1, 2, 10), samples and genes were clustered
completely independently; here we introduce and perform a
coupled two-way clustering (CTWC) analysis (8).‡

Our philosophy is to narrow down both the features that we
use and the data points that are clustered. We believe that only
a small subset of the genes participate in any cellular process of
interest, which takes place only in a subset of the samples; by
focusing on small subsets, we lower the noise induced by the
other samples and genes. We look for pairs of a relatively small
subset ^i of features (either genes or samples) and of objects 2j,
(samples or genes), such that when the objects in 2j are repre-
sented using only the features from ^i, clustering yields stable
and significant partitions. Finding such pairs of subsets, (2j, ^i),
is computationally hard; the CTWC method produces such pairs
in an iterative clustering process.

CTWC can be performed with any clustering algorithm. We
tested CTWC in conjunction with several clustering methods,
but present here only results that were obtained by using the
superparamagnetic clustering algorithm (SPC) (11, 12), which is

especially suitable for gene microarray data analysis (13) because
of its robustness against noise and its ‘‘natural’’ ability to identify
stable clusters. By ‘‘stable’’ we mean those clusters that are
statistically significant according to some criterion (see below).

CTWC was applied to two data sets, one from an experiment
on colon cancer (1) and the other on leukemia (3). From both
datasets we were able to ‘‘mine’’ partitions and correlations that
have not been obtained in an unsupervised fashion by previously
used methods. Some of these new partitions have clear well-
understood biological interpretation. We do not report here
discoveries of biologically relevant, previously unknown results.
The main point of our message is twofold: (i) we were able to
identify biologically relevant partitions in an unsupervised way,
and (ii) other, not less natural, partitions were also found
(http:yywww.weizmann.ac.ilyphysicsycomplexycompphys),
which may contain new important information and for which one
should seek biological interpretation.

CTWC
Motivation and Algorithm. The results of every gene microarray
experiment are organized in an expression level matrix !. A row
of this matrix corresponds to a single gene, while each column
represents a particular sample. In a typical experiment simulta-
neous expression levels of thousands of genes are measured.
Gene expression is influenced by the cell type, cell phase,
external signals, and more (14). The expression level matrix is
therefore the result of all these processes mixed together. Our
goal is to separate and identify these processes and to extract as
much information as possible about them. The main difficulty is
that each biological process on which we wish to focus may
involve a relatively small subset of the genes; the large majority
of those present on the microarray constitute a noisy background
that may mask the effect of the small subset. The same may
happen with respect to samples. A straightforward approach to
finding pairs of subsets, (2j, ^i), that lead to ‘‘meaningful’’ (see
above) clusters, could be to take all possible submatrices of the
original data and apply the standard (uncoupled) two-way
clustering procedure to every one of them. By keeping track of
all stable clusters that are formed in this process, and storing the
identity of both genes and samples that define the particular
submatrix, one is guaranteed to find every possible stable
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partition in the data. This approach is, of course, impossible to
implement, because the number of such submatrices grows
exponentially with the size of the problem. CTWC provides an
efficient heuristic to generate such pairs of object and feature
subsets by an iterative process that severely restricts the possible
candidates for such subsets; we consider and test only those
submatrices whose rows (columns) belong to genes (samples)
that were identified (in a previous iteration!) as a stable cluster.

The iterative process is initialized with the full matrix—i.e., the
sets of all genes (g0) and of all samples (s0) are used as (both)
features and objects, to perform standard two-way clustering.
Denote by gi

1 and sj
1 stable clusters of genes and samples found

in this first step.
Every pair (gi

n, sj
m) (made of clusters obtained so far, n, m 5

0, 1) defines a submatrix of the expression data; for every such
submatrix we perform two-way clustering. The resulting stable
gene (or sample) clusters are denoted by gk

2 (or sl
2). Each cluster

is stored in one of two ‘‘registers of stable clusters’’; gene clusters
in register & and sample clusters in 6. Together with each new
cluster we also store pointers that identify the pair of ‘‘parent’’
clusters (gi

n, sj
m) that were used as the object and feature sets in

the clustering process that generated it. These steps are iterated
further, using pairs of all previously found clusters. We make
sure that every pair is treated only once; the process is termi-
nated when no new clusters that satisfy some criteria (such as
stability, critical size, or the criterion used in ref. 8) are found
(unpublished work).

Analyzing the Clusters Obtained by CTWC. The output of CTWC has
two important components. First, it provides a broad list of gene
and sample clusters. Second, for each cluster (of samples, say) we
know which subset (of samples) was clustered to find it, and
which features (genes) were used to represent it. We also know
for every cluster, say s, which other clusters can be identified by
using s as the feature set. We present here some of the possible
ways one can use this kind of information. Particular implemen-
tations are described in Applications.

Identifying genes that partition the samples according to a
known classification. This is a supervised test of clusters that were
obtained in an unsupervised way. Denote by C a known classi-
fication of the samples, say into two classes, c1 and c2. CTWC
provides an easy way to rank the clusters of genes in & by their
ability to separate the samples according to C.

First we evaluate for each cluster of samples s in & two scores,
purity and efficiency, which reflect the extent to which assignment
of the samples to s corresponds to the classification C. These
figures of merit are defined (for c1, say) as

purity ~suc1! 5
us ù c1u

usu ; efficiency ~suc1! 5
us ù c1u

uc1u .

Once a cluster s with high purity and efficiency has been found,
we can use the saved pointers to read off the cluster (or clusters)
of genes that were used as the feature set to yield s in our
clustering procedure. Clustering, being unsupervised, as op-
posed to classification, discovers only those partitions of the data
that are, in some sense, ‘‘natural.’’ Hence by this method we
identify the most natural group of genes that can be used to
induce a desired classification.

One can test a gene cluster g that was provided by CTWC also
by more standard statistics, such as the t test (15) or the
Jensen–Shannon distance (16). Both compare the expression
levels of the genes of g on the two classes of samples, c1 and c2.
Alternatively, one can also use the genes of g to train a classifier
to separate the samples according to C (3) and use the success
of the classifier to measure the relevance of the genes in g to the
classification.

Discovering new partitions. The members of every cluster s
have been linked to each other and separated from the other
samples on the basis of the expression levels of some coexpressed
subset of genes. It is reasonable therefore to argue that the
cluster s has been formed for some biological or experimental
reason.

As a first step to understand the reason for the formation of
a robust cluster s, one should try to relate it to some previously
known classification (for example, in terms of purity and effi-
ciency). Clusters that cannot be associated with any known
classification have to be inspected more carefully. Useful hints
for the meaning of such a cluster of samples may come from the
identity of the cluster of genes that was used to find it. Similarly,
sample clusters can be used to interpret clusters of genes that
were not previously known to belong to the same process.

CTWC is a sensitive tool to identify subpartitions. Sample clusters
that emerged from clustering a subset s of the samples reflect a
subpartition of s. When clustering the full sample set, this
subpartition may be missed.

CTWC reveals conditional correlations among genes. The CTWC
method collects stable gene clusters in &. In many cases the same
groups of genes may be added to & more than once. This is
caused by the fact that some genes are coregulated in all cells,
and therefore are clustered together, no matter which subset of
the samples is used as the feature set. For example, ribosomal
proteins are expected to be assigned to the same cluster for any
set of samples that is not unreasonably small.

Some gene clusters, however, are different; they are coregu-
lated only in a specific subset of samples. We call this situation
conditional correlation. The identity of the sample cluster that
reveals the conditionally correlated gene cluster is clearly im-
portant to understand the biological process that makes these
genes correlated.

All of the features listed above were tested on artificially
generated expression data into which correlations, partitions,
and subpartitions were incorporated and masked. CTWC suc-
cessfully unraveled all of the hidden structure from these ‘‘toy
data’’ (17).

Clustering Method, Statistical Significance, and Similarity
Measures
Any reasonable clustering method can be used within the
framework of CTWC. The optimal algorithm for analysis of gene
expression data should have the following properties: the num-
ber of clusters should be determined by the algorithm itself and
not externally prescribed [as is done when using self-organizing
maps (SOMs) and K-means]; stability against noise; generating
a hierarchy (dendrogram) and providing a mechanism to identify
in it robust stable clusters; and ability to identify a dense set of
points, which form a cloud of an irregular nonspherical shape, as
a cluster. SPC, a hierarchical clustering method recently intro-
duced by Blatt et al. (11), is the algorithm that best fits these
requirements. The intuition that led to it is based on an analogy
to the physics of inhomogeneous ferromagnets. Full details of
the algorithm and the underlying philosophy are given in refs. 12
and 18.

The input for SPC is a distance or similarity matrix dij between
the objects 2, calculated according to the feature set ^. A
tunable parameter T (‘‘temperature’’) controls the resolution of
the performed clustering. One starts at T 5 0, with a single
cluster that contains all the objects. As T increases, phase
transitions take place, and this cluster breaks into several
subclusters that reflect the structure of the data. Clusters keep
breaking up as T is further increased, until at high enough values
of T each object forms its own cluster. As opposed to most
agglomerative algorithms, SPC has a natural measure for the
relative stability of any particular cluster: the range of temper-
atures, DT, over which the cluster remains unchanged. The more
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stable a cluster is, the larger the range DT through which it is
expected to ‘‘survive.’’ For a stable cluster s, the corresponding
DTs constitutes a significant fraction of Tmax, the temperature at
which the data break into single-point clusters. Inspection of the
gene dendrograms of Fig. 3 reveals stable clusters and stable
branches.

In this work we chose the value of DTc, above which a cluster
is considered as stable, in the following way. We permuted at
random elements of the expression matrix under investigation,
and applied SPC to the randomized matrix. DTc was selected so
that for 500 different random permutations no clusters that
survived for DT . DTc were found. This gives a bound on the
probability that clusters that we labeled as stable were in fact an
artifact of noisy data.

Normalization of the Gene Expression Array. The Pearson correla-
tion is commonly used as the similarity measure between genes
or samples (1, 2, 19). This measure conforms with the intuitive
biological notion of what it means for two genes to be coex-
pressed; it captures similarity of the ‘‘shapes’’ of two expression
profiles, and ignores differences between their magnitudes (2).
The correlation coefficient is high between two genes that are
affected by the same process, even if each has a different gain due
to the process, over different background expression levels
(caused by other processes). Note, however, that a positive
correlation between two highly expressed genes is much more
significant than the same value between two poorly expressed
genes. By using correlations one ignores this dependence of the
reliability on the absolute expression level.

As to samples, correlations do not always capture their
similarity. Consider two samples, taken at different stages of
some process, with the absolute expression levels of a family of
genes much below average in one sample and much higher in the
other. Even if the expression levels of the two samples over these
genes are correlated, one would like to assign them to different
clusters.

We therefore used the following normalization scheme. De-
note by @ the matrix of the raw data. @ is an ng 3 ns matrix,
where ng is the number of genes and ns is the number of samples.

We normalize @ in two steps. First, divide each column by its
mean: @9ij 5 @ijy@# j; @# j 5 (1yng)¥i51

ng @ij, and then normalize
each row, such that its mean vanishes and its norm is one:

!ij 5
@9ij 2 @# 9i

i@9ii
,

where @# 9i 5 (1yns)¥j51
ns @9ij and i@9ii2 5 ¥j51

ns (@9ij 2 @# 9i)2.
For both genes and samples we used the Euclidean distance as

the dissimilarity measure. For two genes (rows of !) the
Euclidean distance is closely related to their Pearson correlation.

Applications
We applied CTWC to data from two experiments. Here we
report only the results that were obtained by CTWC and could
not be found by using a straightforward clustering analysis. We
highlight a small subset of the partitions that we were able to
extract from the data and for which satisfactory biological
explanation was found. We do not report here new discoveries
of biologically relevant, previously unknown results. Rather, we
claim to have discovered a method that is capable to mine such
information out of the available data. New, relevant information
may be contained in the new partitions that were found, to which
we were not yet able to assign biological meaning. Some new,
uninterpreted results are also reviewed briefly; full lists of the
corresponding clusters and their constituent samples or genes
can be found at our website (http:yywww.weizmann.ac.ily
physicsycomplexycompphys).

Analysis of Leukemia Samples. Golub et al. (3) obtained data from
72 samples collected from acute leukemia patients at the time of
diagnosis. Forty-seven cases were diagnosed as acute lympho-
blastic leukemia (ALL) and the other 25, as acute myeloid
leukemia (AML). RNA prepared from the bone marrow mono-
nuclear cells was hybridized to high-density oligonucleotide
microarrays, produced by Affymetrix (Santa Clara, CA), con-
taining 6,817 human genes.

After rescaling the data in the manner described in ref. 3, we
selected only those genes whose minimal expression over all
samples is greater than 20. Only 1,753 genes survived this
thresholding operation (http:yywww.weizmann.ac.ilyphysicsy
complexycompphys). The resulting array was then normalized as
described above, to give a 1753 3 72 expression level matrix !
(see Fig. 1).

Two iterations of CTWC sufficed to converge to 49 stable gene
clusters (LG1–49) and 35 stable sample clusters (http:yy
www.weizmann.ac.ilyphysicsycomplexycompphys) (LS1–35).
We highlight here four of our findings, which demonstrate the
power of the method to solve problems listed above.

Identifying genes that partition the samples according to a
known classification. First we use the known ALLyAML classi-
fication of the samples to determine which gene clusters can
distinguish between the two classes. We found a single cluster
(LG1) of 60 genes that, when used as the feature set, induces a
stable separation of the samples into AMLyALL clusters. (A
cluster is identified with a certain class if both its purity and
efficiency exceed 3y4.) This finding demonstrates the idea
behind CTWC and its power. When SPC was applied, using the
entire set of 1,753 genes, we did not find robust clusters that
could be identified as AML or ALL tissues. Apparently, the two
clouds of points in the 1,753-dimensional space, which contain
the two groups of tissues, are displaced relative to each other, but
they do have a region of overlap—the data in fact form a single
cloud! In such a case SPC will not identify ALL and AML as
separate clusters. Using only the genes of LG1 apparently
eliminates this overlap of the points.

In such a situation, methods such as K-means and SOM may

Fig. 1. The expression level matrix of the leukemia experiment is shown on
the Left. Rows correspond to different genes, ordered by clustering them
using all of the samples. The two boxes contain expression data from ALL
patients (A) measured on one gene cluster and AML patients (B), on another
gene cluster. On the Right, clustering the ALL samples, using the data in box
A, yields good separation between T cell ALL (black) and B cell ALL (white).
Clustering of AML samples, using the data in box B, yields a stable cluster,
which contains all patients who were treated, with results known to be either
success (black) or failure (gray). The vertical axis is the ‘‘temperature’’ param-
eter T, and on the horizontal axis the samples are ordered according to the
dendrogram.
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assign two centroids to the data, so that proximity to these
centroids can be used to characterize the two different kinds of
tissues. In such cases, however, it is important to preset the
number of clusters into which one wishes to break the data.
Indeed, Golub et al. (3) showed that two-cluster SOM analysis
on a subset of the data did separate the AML and ALL tissues
in a robust manner. They also identified two groups, of 25 genes
each, whose expression levels differ between these two clusters.
Of the 25 genes that had higher expression levels in the AML
patients, only 12 survived our thresholding and were included in
our set of 1,753. Of these 12 genes, 5 indeed reside in our
separating cluster LG1.

Discovering new partitions. Next, we search the stable sample
clusters for unknown partitions of the samples. We focus our
attention on sample clusters that were repeatedly found to be
stable. One such cluster, denoted LS1, may be of interest; it
includes 37 samples and was found to be stable when either a
cluster of 27 genes (LG2) or another unrelated cluster of 36
genes (LG3) was used to provide the features. LG3 includes
many genes that participate in the glycolysis pathway. Because of
lack of additional information about the patients we cannot
determine the biological origin of the formation of this sample
cluster.

Identifying subpartitions. Using a 28-gene cluster (LG4) as
features, we tried to cluster only the samples that were identified
as AML patients (leaving out ALL samples). A stable cluster,
LS2, of 16 samples was found (see Fig. 1, box B); it contains most
of the samples (14y15) that were taken from patients that
underwent treatment (with known results—success or failure).
For none of the other AML patients was any information about
treatment available in the data. Some of the 16 genes of this
cluster, LG4, are ribosomal proteins and some others are related
to cell growth. Apparently these genes can partition the AML
patients according to whether they did or did not undergo
treatment.

This result demonstrates a possible diagnostic use of the
CTWC approach; one can identify different responses to treat-
ment, and the groups of genes to be used as the appropriate
probe.

We repeated the same procedure, but discarding AML and
keeping only the ALL samples. We discovered that when any one
of five different gene clusters (LG4–8) are used to provide the
features, the ALL samples break into two stable clusters; LS5,
which consists mostly of T cell ALL patients and LS4, which
contains mostly B cell ALL patients (see Fig. 1, box A). When
all of the genes were used to cluster all samples, no such clear
separation into T cell ALL vs. B cell ALL was observed. One of
the gene clusters used, LG5, with TyB separating ability, con-
tains 29 genes, many of which are T cell related. Another gene
cluster, LG6, which also gave rise to TyB differentiation, con-
tains many HLA histocompatibility genes.

It is important to understand the difference between our
results and those of ref. 3, where Golub et al. applied the SOM
algorithm to a subset of 38 mixed AML and ALL samples. The
number of desired clusters K has to be used as an input to SOM.
Setting K 5 2, Golub et al. report finding AMLyALL separation;
results for K 5 3 were not reported; for K 5 4 the clusters were
identified as a single AML cluster, a T cell ALL cluster and two
B cell ALL clusters. Our method, on the other hand, is com-
pletely unsupervised; it identified the T cell ALLyB cell ALL as
a robust partition of the ALL samples, and also revealed that the
genes that induce this partition are connected to the immune
system.

These results demonstrate how CTWC can be used to char-
acterize different types of cancer. Imagine that the nature of the
subclassification of ALL had not been known. On the basis of
our results we could predict that there are two distinct subclasses
of ALL; moreover, by the fact that many genes that induce

separation into these subclasses are either T-cell-related or HLA
genes, one could suspect that these subclasses were immunology
related.

As a different possible use of our results, note that some of the
genes in the T-cell-related gene cluster LG5 have no determined
function, and may be candidates for new T cell genes. This
assumption is supported both by the fact that these genes were
found to be correlated with other T cell genes and by the fact that
they support the differentiation between T cell ALL and B cell
ALL.

Analysis of Colon Cancer Data. The data set we consider next
contains 40 colon tumor samples and 22 normal colon samples,
analyzed with an Affymetrix oligonucleotide array complemen-
tary to more than 6,500 human genes and expressed sequence
tags (ESTs). Following Alon et al. (1), we chose to work only with
the 2,000 genes of greatest minimal expression over the samples.
We normalized the data to get a 2000 3 62 expression level
matrix !.

CTWC was applied to this data set. Seventy-six stable sample
clusters (CS1–76) and 97 stable gene clusters (CG1–97) were
obtained (http:yywww.weizmann.ac.ilyphysicsycomplexy
compphys) in two iterations. One of the latter was a cluster of
ribosomal genes, similar to the one identified in ref. 1.

Identifying genes that partition the samples according to a
known classification. Again we search first for gene clusters that
differentiate the samples according to the known normalytumor
classification. We found four gene clusters (CG1–4) that parti-
tion the samples this way (CG4 contains CG1). The genes of
these clusters can be used if one wishes to construct a classifier
for diagnosis purposes (see Fig. 2, box A). Alon et al. (1)
calculated a muscle index, which can distinguish normal from
tumor tissues. Of the 17 smooth muscle genes that contributed
to their index, only 4 were included among the 2,000 that we used
in our analysis. All of these were included in CG1 (and CG4).

Discovering new partitions. Five clusters of genes (CG2, CG4-
CG7) generated very stable clusters of samples. Two of the five
(CG2 and CG4) differentiated tumor and normal; two others
were less interesting because the clusters they generated con-

Fig. 2. The expression level matrix of the colon experiment is shown on the
Left. Rows correspond to different genes, ordered by clustering them using all
of the samples. The two boxes contain expression data of all samples for two
gene clusters. On the Right, when the genes of the first cluster (A) are used,
clear separation between tumor samples (white) and normal ones (black) is
obtained. Another separation of the samples is obtained by using the second
gene cluster (B). This separation is consistent with two distinct experimental
protocols, denoted by short and long bars. The vertical axis is the ‘‘tempera-
ture’’ parameter T and on the horizontal axis the samples are ordered accord-
ing to the dendrogram.
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tained most of the samples. The gene cluster CG5, however, gave
rise to a clear partition of the samples into two clusters, of 39 and
23 tissues (see Fig. 2, box B). Checking with the experimentalists
(U. Alon, K. Gish, D. Mack, and A. Levine, personal commu-
nication), we discovered that this separation coincides almost
precisely with a change of the experimental protocol; 22 RNA
samples were extracted by using a poly(A) detector (‘‘protocol
A’’), and the other 40 samples were prepared by extracting total
RNA from the cells (‘‘protocol B’’). Cursory examination did not
yield any obvious common features among the 29 genes of the
cluster CG5 that gave rise to this separation of the tissues.

Identifying conditionally correlated genes and subpartitions.
Finally, we turn to identify conditionally correlated genes by
comparing stable gene clusters formed when using different
sample sets as features. We found that most gene clusters form
irrespectively of the samples that are used. We did find, however,
four special groups of genes (CG8–11) that formed clear and
stable clusters when we used only the tumor samples as features,
but were relatively uncorrelated—i.e., spread across the den-
drogram of genes—when clustering was based on all of the
samples or only the normal ones.

One of these four clusters (CG9), breaks up, at a higher
resolution, into two subclusters, as shown in Fig. 3 Right. One of
these subclusters (CG12), consists of 51 genes, all of which are
related to cell growth (ribosomal proteins and elongation fac-
tors). The other subcluster (CG13), contains 17 genes, many of
which are related to intestinal epithelial cells (e.g., mucin,
cathepsin proteases). Interestingly, when the genes are clustered
on the basis of either all samples or only the normal ones, both
clusters (CG12 and CG13) appear as two uncorrelated distinct
clusters, and their positions in the dendrogram are quite far from
each other (Fig. 3).

The high correlation between growth genes and epithelial
genes, observed in tumor tissue, suggests that it is the epithelial
cells that are rapidly growing. In the normal samples there is
smaller correlation, indicating that the expression of growth
genes is not especially high in the normal epithelial cells. These
results are consistent with the epithelial origin of colon tumor.

Two other groups of genes formed clusters only over the tumor
cells. One (CG11, of 34 genes) is related to the immune system
(HLA genes and immunoglobulin receptors). The second
(CG10, of 62 genes) seems to be a concatenation of genes related

to epithelial cells (endothelial growth factor and retinoic acid),
and of muscle- and nerve-related genes. We could not find any
common function for the genes in the fourth cluster (CG8).

Clustering the genes on the basis of their expression over only
the normal samples revealed three gene clusters (CG14–16) that
did not form when either the entire set of samples or the tumor
tissues were used. Again, we could not find a clear common
function for these genes. Each cluster contains genes that
apparently take part in some process that takes place in normal
cells, but is suppressed in tumor tissues.

Summary and Discussion
We proposed a new method for analysis of gene microarray data.
The main underlying idea of our method is to zero in on small
subsets of the massive expression patterns obtained from thou-
sands of genes for a large number of samples. A cellular process
of interest may involve a relatively small subset of the genes in
the dataset, and the process may take place only in a small
number of samples. Hence when the full data set is analyzed, the
‘‘signal’’ of this process may be completely overwhelmed by the
‘‘noise’’ generated by the vast majority of unrelated data.

We are looking for a relatively small group of genes, which can
be used as the features used to cluster a subset of the samples.
Alternatively, we try to identify a subset of the samples that can
be used in a similar way to identify genes with correlated
expression levels. Identifying pairs of subsets of genes and
samples that produce significant stable clusters in this way is a
computationally complex task. We demonstrated that the
CTWC technique provides an efficient method to produce such
subgroups.

The CTWC algorithm provides a broad list of stable gene and
sample clusters, together with various connections among them.
This information can be used to perform the most important
tasks in microarray data analysis, such as identification of
cellular processes and the conditions for their activation, estab-
lishing connection between gene groups and biological pro-
cesses, and finding partitions of known classes of samples into
subgroups. CTWC is applicable with any reasonable choice of
clustering algorithm, as long as it is capable of identifying stable
clusters. In this work we reported results obtained by using the
SPC algorithm, which is especially suitable for gene microarray

Fig. 3. Clustering genes of the colon cancer experiment, using all samples (Left) and using only tumor samples (Right) as the feature sets. Each node of this
dendrogram represents a cluster; only clusters of size larger than 9 genes are shown. The last such clusters of each branch, as well as nonterminal clusters that
were selected for presentation and analysis, are shown as boxes. In each dendrogram the genes are ordered according to the corresponding cluster analysis. The
two circled clusters of the Left dendrogram are reproduced also in the Right, but there the two share a common ‘‘parent’’ in the tree. Note that the stability of
a cluster is easily read off a dendrogram produced by the SPC algorithm.

Getz et al. PNAS u October 24, 2000 u vol. 97 u no. 22 u 12083

G
EN

ET
IC

S
CE

LL
BI

O
LO

G
Y



data analysis because of its robustness against noise, which is
inherent in such experiments.

The power of the CTWC method was demonstrated on data
obtained in two gene microarray experiments. In the first
experiment the gene expression profile in bone marrow and
peripheral blood cells of 72 leukemia patients was measured by
using gene microarray technology. Our main results for these
data were the following: (i) The connection between T-cell-
related genes and the subclassification of the ALL samples, into
T cell and B cell ALL, was revealed in an unsupervised fashion.
(ii) We found a stable partition of the AML patients into two
groups: those who were treated (with known results), and all
others. This partition was revealed by a cluster of cell-growth-
related genes. This observation may serve as a clue for a possible
use of the CTWC method in understanding the effects of
treatment.

The second experiment used gene microarray technology to
probe the gene expression profile of 40 colon tumor samples and
22 normal colon tissues. Using CTWC, we find a different, less
obvious, stable partition of the samples into two clusters. To find
this partition, we had to use a subset of the genes. The new

partition turned out to reflect two different experimental pro-
tocols. We deduce that the genes that gave rise to this partition
of the samples are the ones that were sensitive to the change of
protocol.

Another result that was obtained in an unsupervised manner
by using CTWC is the connection between epithelial cells and
the growth of cancer. When we looked at the expression profiles
over only the tumor tissues, a cluster of cell growth genes was
found to be highly correlated with epithelial genes. This corre-
lation was absent when the normal tissues were used.

These features, discovered in data sets that were previously
investigated by conventional clustering analysis, demonstrate the
strength of CTWC. We find CTWC to be especially useful for
gene microarray data analysis, but it may be a useful tool for
investigating other kinds of data as well.
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