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Background. Transcription factors (TF) regulate expression by binding to specific DNA sequences. A binding event is
functional when it affects gene expression. Functionality of a binding site is reflected in conservation of the binding sequence
during evolution and in over represented binding in gene groups with coherent biological functions. Functionality is governed
by several parameters such as the TF-DNA binding strength, distance of the binding site from the transcription start site (TSS),
DNA packing, and more. Understanding how these parameters control functionality of different TFs in different biological
contexts is a must for identifying functional TF binding sites and for understanding regulation of transcription. Methodology/

Principal Findings. We introduce a novel method to screen the promoters of a set of genes with shared biological function
(obtained from the functional Gene Ontology (GO) classification) against a precompiled library of motifs, and find those motifs
which are statistically over-represented in the gene set. More than 8000 human (and 23,000 mouse) genes, were assigned to
one of 134 GO sets. Their promoters were searched (from 200 bp downstream to 1000 bp upstream the TSS) for 414 known
DNA motifs. We optimized the sequence similarity score threshold, independently for every location window, taking into
account nucleotide heterogeneity along the promoters of the target genes. The method, combined with binding sequence and
location conservation between human and mouse, identifies with high probability functional binding sites for groups of
functionally-related genes. We found many location-sensitive functional binding events and showed that they clustered close
to the TSS. Our method and findings were tested experimentally. Conclusions/Significance. We identified reliably functional
TF binding sites. This is an essential step towards constructing regulatory networks. The promoter region proximal to the TSS is
of central importance for regulation of transcription in human and mouse, just as it is in bacteria and yeast.
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INTRODUCTION
Understanding the manner in which transcription is regulated is

one of the central challenges of the post-genomic era. Since the

most basic regulatory mechanism acts via binding of TFs to the

promoter regions of the genes, considerable efforts have been

devoted to elucidating TF binding to DNA [1,2,3] In spite of very

significant advances that were made during the past years, leading

to development of novel experimental and theoretical methods to

measure and analyze gene expression [4] as well as TF binding

(see reviews in [1,5,6]), several basic questions remain largely

unanswered. One of these concerns the extent to which a TF’s

functionality depends on the location of it’s binding site (BS), and

another-the relative regulatory importance of different regions of

the promoters of higher organisms.

This work makes two distinct but closely related contributions to

our understanding of regulation of expression and TF binding.

First, we study the manner in which the location of a binding site

(BS) affects its functionality. One extreme situation is that of a fully

location–specific TF, one that affects transcription of its various

target genes only if it is bound within a narrow range of distances

from the respective TSSs. On the other extreme there may be TFs

whose functionality is nearly independent of the BS location,

which may vary widely from target to target (most enhancers

belong to this category). Knowing whether a TF belongs to the

first or second kind provides important information on the

mechanism by which it affects transcription (assignment of a TF to

one of these classes may depend on the biological context in which

it acts). The first finding we report here is that many TFs are

functional when bound within a well defined location window. We

also studied the distribution of the BSs of all such location-sensitive

TFs, and discovered that the location-specific functional binding

sites are much more likely to be observed in the interval (100,-200),

i.e. between 100 bp downstream to the TSS and about 200 bp

upstream, than in any window of similar size further upstream (we

searched up to 1000 bp). The second component of the paper is

methodological: we present a novel way of searching for functional

transcription factor BSs on promoter sequences, in a position-

dependent manner. Our method is sensitive enough to reveal the

location bias described above. We now proceed to define the

concepts used, clarify the question, explain the method and

describe how it yields the biological findings.

Functional binding: biological definition
A TF may bind to a site on the DNA but this binding event is not

necessarily functional. The ideal, biologically sound definition of
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a functional binding event is that the TF has been shown to bind at

the site on a gene’s promoter, and this binding has been

demonstrated experimentally to affect the level of transcription

of the gene. Clearly, only functional binding is relevant for

understanding regulation of transcription. Such experimental data

are, however, scarce and difficult to obtain on a scale that covers

all genes and all known transcription factors (and our work poses

questions on this scale, as explained below). In principle, had we

known all functional BSs, as defined above, for every TF and every

gene, we could have provided a definitive answer to the question

posed above, regarding the positional distribution of functional

BSs. In human the number of known TFs is on the scale of

a thousand and the number of genes runs in tens of thousands;

hence there are tens of millions of possible TF-promoter pairs.

Measuring reliably binding events of all possible TF-promoter

pairs is a tall order, but may be forthcoming [7] in a few years.

However, establishing functionality for each bound TF-promoter

combination, or even obtaining a large enough unbiased sampling

of such pairs, is clearly unrealistic. For this reason we work with

a modified ‘‘operational’’ definition of functional binding, that can

be used within a computation-based attempt to identify functional

BSs.

Computational approach
Binding of a TF to DNA at a particular location (BS) is

influenced by a variety of factors that affect the energetics of the

bound TF-DNA complex. The first factor is the binding

sequence–i.e. the sequence of bases that appear at a putative

BS. Another factor is the structure (e.g. bending) of the DNA at

the BS; obviously epigenetic changes (such as methylation of

nucleotides in or near the BS) are very important as well. The

proximity of nucleosomes and the methylation, phosphorylation

or acethylation states of their constituent histones also affect the

chemical environment ‘‘seen’’ by the TF (reviewed in:[8] ) The

same holds for other proteins that may be bound near the BS,

whose presence can either inhibit binding of the TF on which we

focus, or enhance binding by modifying it’s conformation, or that

of the DNA.

Intense recent computational efforts were devoted to identifi-

cation of BSs for various TFs [1,2,9,10,11]. These works focused

largely on few or a single one of the factors listed above, namely

recognizing BSs on the basis of their sequences. These studies

relied on information accumulated from various experiments, that

reported binding of the TF of interest to DNA segments that have

been sequenced [12]. On the basis of simple statistical analysis of

the frequency of appearance of various sequences among observed

binding events, a position specific score matrix (PSSM) is

constructed for the TF, that allows an easy calculation (see

Methods) of a binding score for every DNA sequence. Since

sometimes a set of similar sequences is identified as binding a yet

unidentified TF, in general each PSSM is associated with a motif

M (rather than with a TF). A sequence whose score exceeds

a threshold is defined as a ‘‘hit’’, e.g. as corresponding to a binding

event. Since sequence is only one of the several relevant factors

that govern binding, the accuracy of a PSSM-based method to

predict TF binding is limited.

Predicting functional binding is an even more difficult problem.

A TF may bind to a site on the DNA (one that has a high-scoring

sequence), without this ‘‘stray’’ binding having any effect on

transcription. Since the biological definition of functional binding

can be tested only experimentally, for a bioinformatic analysis we

need to define functional binding in a way that can be used in

silico.

Functional binding: operational definition
To define functional binding in a computation-based manner we

use one or both of two criteria that go beyond the sequence

information contained in the PSSM; conservation of the binding

motif between species and it’s co-occurrence on the promoters of

functionally related genes.

The conservation-based approach is to compare the regulatory

regions of orthologous genes in different species to identify

functionally conserved motifs [13,14,15,16,17,18]. If a TF is

bound at a certain location and the binding is not functional, the

probability for conservation of the binding sites across several

species is low. Using this method, Xie et al [16] showed that BS

conserved in four mammalian species exhibited a strong location

bias relative to the TSS. However, for a genomic region to be

functional, evolutionary conservation is neither necessary [19,20]

nor sufficient [21,22]. Furthermore, their method is restricted to

genes that have orthologues over four species, and have TF

binding sites with conserved consensus sequences over all these

species. For these reasons conservation is a hard test and

imposing it is believed to lead to many false negatives (missed

functional BSs). For example, their failure to identify the TATA

box (see Fig 1D) as a conserved motif at a specific distance from

the TSS is indicative of the limitations of relying on conservation

alone.

The other criterion we use is based on the premise or hypothesis

[23,24] that functionally related genes tend to be co-regulated,

and hence if BSs of a TF are highly represented on the

promoters of such a group of genes, there is a good chance that

this TF is involved in their regulation, and hence these BSs are

functional. In order to implement this criterion in a genome-wide

study, we have to produce lists of functionally related and co-

regulated genes and to test, in a statistically reliable manner, for

over-representation of BSs of a TF on their promoters. Such

a group of genes may be obtained, for example, from cluster

analysis of expression data, which yields groups of co-expressed

genes. It is standard procedure [25,26,27,28] to perform on such

a group of genes a Gene Set Enrichment Analysis (GSEA) [29]

to search for functional Gene Ontology (GO) [30] classes whose

member genes are over-represented in the expression-based gene

group. This way one produces a list of genes with the desired

property–they are co-expressed and functionally related, and

hence are likely to be co-regulated. If a high fraction of these

genes’ promoters contains BSs of a TF, it is a likely regulator of

these genes. The problem with implementing this standard

approach in our context is that expression data are available only

for a limited number of special conditions, cell types and tissues,

and are mostly biased towards several pathologies and diseases.

As a result, there are no available experiments and correspond-

ing co-expression lists for all genes and all functional groups. In

order to overcome this problem and generate comprehensive and

less biased gene lists, we make a key assumption: the genes that belong to

a functional GO class as our putative co-regulated group G. We

introduce and implement a novel algorithm that searches for

binding sites on the promoters of the genes of such a GO-based

group. If the genes that do have a particular binding site are

over-represented in the group, this is viewed [31] as indicative of

functionality of the corresponding BSs.

Outline of our method and main differences from

existing ones
Existing techniques [9,26,32,33,34] search for BSs by scanning

one by one the promoters of various genes and comparing the

PSSM-based score of every sequence to a threshold, which is

Binding Sites Location Bias
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fixed for the entire genome. We follow a different strategy: we

execute the search for BSs associated with a motif M simultaneously

for a group G of (probably) co-regulated genes, but the analysis is

carried out separately for each location window W, obtained by

dividing the promoters to short (100, 200 etc bp long) windows.

A threshold value T is set, and we count the number of genes in

G that scored a hit in W–i.e. a score above T has been recorded,

using the PSSM of the tested motif M. Next, a hypergeometric

test is used to calculate an enrichment p-value, p(T,G,W,M), for

the number of hits in G, compared to the number of hits

expected in W, using the same T, for a reference group of

promoters. The reference group contains all known promoter

sequences of the genome. It is very important to use the same

window on the promoters of the reference group, since there is

a significant systematic variation of the GC content within the

region on which we focus (21000 to +200 bp). For further

details, including control of the false discovery rate (FDR), see

Methods. Using this method, we performed a comprehensive

bioinformatic analysis that encompassed promoters of the 8110

most annotated human genes, 23,400 mouse genes and the

known [35] PSSMs of 414 motifs M, using all functional GO

groups to define the gene sets G that are scanned for enrichment.

To reduce false positives further, we repeated the same analysis

for the orthologue genes of mouse. Requiring that the same motif

is overrepresented in the same location window on the mouse

orthologues of the same GO-based genes, is a demanding filter

[16]; hence passing it increases significantly our confidence in the

validity of the hit.

Nevertheless, as stated above, the only way to prove functionality

of a BS is by a series of careful experiments. This, unfortunately,

cannot be done in the context of a wide-scale search for binding

sites. The best one can do is to present a large number of

supporting pieces of evidence and consistency checks; our work is

to be viewed in this spirit.

Figure 1. The TATA box score and GC content versus location on the promoters. A. Each 11bp-long sequence, located in the interval [+200, 21000]
bp with respect to the TSS on the promoters of 22,000 human genes, was scored using the PSSM of the TATA box. Scores above 210.4 were
identified as hits and marked by a point whose horizontal coordinate represents the location of the hit and the vertical coordinate represents the
value of its score. The high density of hits at about 25 and 35bp upstream from the TSS identifies these locations as most likely to be functionally
relevant. The 3 colored dotted lines represent 3 different thresholds (T) and the numbers next to each one of them are the % of TATA BS that were
found in the location window [2100,TSS]. B. The GC content as a function of location in the interval [+200, 21000] bp with respect to the TSS. The
vertical axis represents the percentage of promoters of 22,000 human genes that have a G or a C at each location. Pronounced dips are observed at
the TATA box and at the TSS. C. Distribution of identified hits obtained for various values of the threshold, marked by red, green and blue horizontal
lines on Fig 1A, with the % of hits found within the proximal peak also given there, for each threshold. As the threshold increases, the overall number
of hits decreases, but the relative weight of the proximal peak increases from 8% (for threshold T = 210.6) to 27% (for T = 26.5). D. Our method
identified BSs on 55 out of 81 promoters known to have proximal TATA BSs (see text), in the window [TSS, 2100], and none in any of the other
location windows (red dot). The threshold selected by our method was 210.27; if this threshold is used uniformly in the entire [200, 21000] interval,
about 250 hits are found outside the first upstream interval. The black dots denote the number of hits in and outside the first window, with the
numbers next to each point indicating the value of the uniform threshold used. The blue point shows the hits found by Xie et al, demonstrating that
their conservation-based method is also effective in eliminating false positives, but has a much larger number of false negatives than our method.
doi:10.1371/journal.pone.0000807.g001
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The biological finding and its relevance
We found that there are many position-specific TFs, with BSs

that satisfy our operational criteria of functionality only within

a particular window. The most significant pattern that arises

from our analysis is that these location-specific functional BSs are

concentrated in a distinct region of about 300 bp that includes

the TSS; the abundance of such BSs further upstream is

significantly lower. The bioinformatic analysis is supplemented

and supported by substantive experimental evidence from the

literature on a variety of biological systems [36,37], as well as by

a direct experimental test of the dependence of the efficacy of

regulation on the distance of the BS from the TSS. There is

consensus in prokaryotes on the central regulatory role played by

the region close to the TSS, based on evidence from studies in

E.Coli [38]. As to eukaryotes, arguments supporting the special

role of the proximal region have been presented for yeast

[38,39]. For higher eukaryotes such as human, the difference in

terms of functionality between BS found close to the TSS and

those found far has still not been fully addressed [38]. Several

papers showed positional bias towards the TSS by applying the

standard approaches; however, most of them dealt with small

numbers of particular TFs or targets genes [2,9,11,28,34]. As

opposed to these studies, several others suggested that remote

regions of the mammalian genomes play decisive regulatory roles

[40,41]. Howard et al [42] suggested that cis-regulatory elements

exert their influence over a distance of 100kb; Pfeifer et al [40]

and Kimura-Yoshida et al [41] argued that the genomic region

harboring functionally important regulatory elements can stretch

as far as 1Mb in both directions from the TSS, and most recent

evidence identified a regulator of transcription that binds to

a different chromosome [43].

The main novelty of our findings is in their generality, as opposed

to other works that describe positional bias and specificity of TF

binding sites for particular TFs or targets genes [2,9,11,28,34,44].

The study of Xie et al [16] does make a fairly general statement

that complements nicely our findings (see above). Their claims are,

however, restricted to genes that have orthologues over four

species, and have TF binding sites with conserved consensus

sequences over all these species. We claim that positional bias is

not limited to strongly conserved sequences; rather, it is a more

general and much stronger effect than reported in previous work.

Overview of the Results
First, by studying the example of the TATA-box, we demonstrate

the difficulties encountered when standard BS search methods

are used; difficulties which our approach was designed to

overcome. Next we apply the method on more than 8000

human promoters, searching for BSs of all tabulated human TF

motifs, in a location and functional GO-group dependent

manner. This analysis reveals two distinct classes of GO

group–TF motif combinations. The BSs of one of these groups

exhibit a strong location bias; analysis of experimental data on

cell cycle motifs and their target genes (that belong to this group),

confirm our finding of pronounced abundance of the functional

BSs in the (0,-200) bp interval. Next we present an experiment

that was designed and carried out to test our prediction of

location bias. The final result contains re-analysis of another

experiment, on NF-kB-regulated genes; here we show how

location dependence of functionality explains observed differen-

tial expression of genes with similar PSSM-based scores and

human-mouse conservation. Furthermore, since new NF-kB

targets are also identified, the predictive power of our findings

can be put to further experimental test.

RESULTS

Positional bias: the TATA-box as a case study
The TATA-box provides a very simple example that demon-

strates the advantage of two main components of our method:

testing many promoters simultaneously and the need for

a position-dependent background. Fig 1 demonstrates several

problematic aspects of searching for BSs using standard methods,

and it also presents the manner in which our method deals with

them, yielding improved robustness and reliability. The PSSM of

the TATA motif (see Table S1), as provided by MatIspector

[35], was used to score each 11bp long window in the interval

[+200, 21000] bp with respect to the TSS of a gene. This was

done (see Methods) for the promoters of 22,000 human genes,

which had been derived from the UCSC genome browser.

Scores (see Methods) above 210.4 were identified as hits (i.e.

putative binding sites) and marked by a point whose horizontal

coordinate represents the location of the hit and the vertical

coordinate-the value of its score. The threshold of 210.4 was

chosen, as it gave rise to hits in 60% of the promoters, but any

higher value of the threshold can be studied. The most striking

feature is a high density of hits at about 25 and 35 bp upstream

from the TSS, which immediately identifies these locations as

most likely to be functionally relevant. Clearly, this would not

have been evident had we analyzed the promoter of a single

gene-which is the strategy used by nearly all BS search methods

[33,35,45]. Simultaneous viewing of a group of genes is essential to

highlight in a robust way locational bias, which in this case has

a very clear meaning: the TATA box is functional only when it

appears near the TSS. The second feature is the non-uniform

spatial distribution of hits; their density becomes significantly

higher as the distance from the TSS increases. This is due to the

increase of the GC content (in human promoters) from 47%

(beyond 1000 bp upstream to the TSS) to 55% (at 300 bp), up to

64% GC in the region between100 bp upstream, to 200

downstream from the TSS (Fig 1B). Hence AT rich motifs tend

to be concentrated in the GC poor area, distant from the TSS,

and as a result, the number of motifs discovered in the

functionally irrelevant ranges, of 100–1000 bp upstream and

TSS to 200 bp downstream, may exceed by a factor of 3 to 20

(depending on the threshold used, see Fig 1A and 1C) the

proximal functionally relevant motifs. Whereas existing methods

use the same threshold for the entire promoter [9,32,33] and

hence generate in this case many false positives, we control this

bias by setting position-dependent thresholds, using as our background

model genome sequences from windows of the same location

(e.g. TSS to 2100 bp). Finally, most methods set the threshold

value by a uniform criterion for all genes and motifs tested (e.g.

set to get a fixed % of hits in the genome [9,32,33]); obviously,

this will generate many false positives for rare motifs and false

negatives to very common ones (such as the TATA box). Our

method overcomes this: we applied it on the union of two gene

sets, which are known to contain proximal TATA motifs. The

first set [46] contains 18 genes that appear in Fig 1A and the

second [47] 66 genes (3 genes appear in both sets). By determining

the threshold separately for each location (see below), we show that

only in the first [0,-100] window we get over-representation of

the TATA motif (p-value,10214), with 55 out of the 81 genes

passing the threshold. As shown in Fig 1D, if the same value of

threshold (210.27) is used, but in a fixed, location independent

manner, in addition to these 55 functional (i.e. proximal) BSs one

identifies about 250 stray ones that are not at the functional

location. The results obtained by the conservation based method

[16] are also shown–as expected, it identifies only 12 proximal
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BSs, and has a relatively large number of false negatives (7 BSs

were found out of the window [2100 ,TSS] ).

Global analysis of Motif, GO and Location

Combinations (MGLC)
Having demonstrated the advantages of our method in a case

when the association between location and functionality is very

clear, we turn now to present our central results, based on a large-

scale analysis. Here we use our operational definition of

functionality (see Introduction), to investigate the location bias of

the functional BSs associated with 414 vertebrate motifs with

known PSSMs [35], in the promoters of 8110 human and 23,400

mouse genes. As described in the Introduction, we used the GO

annotation database [30] to assemble groups of 30 or more unique

functionally related genes (smaller groups will not yield good

enrichment statistics); there were 134 such different functional GO

classes. In total, 7062 human genes (promoters) were assigned to at

least one GO group. For each motif M and GO group G, we

performed enrichment analyses [29,48] in 12 consecutive location-

dependent windows W, each of length 100bp, from 200bp

downstream from the TSS to 1000bp upstream. In addition to

the 100bp long windows analysed here, we examined also

windows of different sizes (of 200 bp ,300 bp, 400 bp and

700 bp), with and without overlap (Table S2). We found that

irrespective of the window size we use, in windows that did not

contain the region [100,-200] (or part of it) almost no over

represented motifs were found for most of the GO groups. It is

important to note that as the window size increases, a larger part

of the important functional location range [100, 2200] is covered

by one window. Because of this reason the number of identified

significant BSs increased. On the other hand, using small window

gives better location specificity and better control on the GC

content of the background–which reduces the number of false

positives and yields better location resolution. We decide to focus

on the 100bp window but the results for all the windows are

presented in Table S2. Hence 4146134612 = 665,712 separate

tests were carried out, one for every (M,G,W) combination,

represented as a path through the top three layers of boxes in

Fig 2A. The score threshold was determined independently for every

(M,G,W) combination, as described in Methods and in Fig. 2B.

Controlling the False Discovery Rate [49] (FDR, see Methods) at

the level of 0.10, we identified 6331 statistically significant

(M,G,W) combinations (134 GOs and 414 M’s appear in

4130 M,G pairs, as listed in Table S2). Statistical significance of

such an (M,G,W) combination means that motif M is over-

represented in window W on the promoters of the genes that

belong to the human functional GO group G. We refer to such

a significant (M,G,W) as a Motif, GO-group and Location

Combination (MGLC).

Since some of our assumptions may not always hold (e.g. our

operational definition of functionality, the assumption that

functionally related genes are likely to be co-regulated, etc),

a significant fraction of these 6331 MGLCs may be false

positives. As explained in the Introduction, conservation constitutes

an independent and rather strict filter. We submitted our

MGLCs to a test of co-appearance for human and mouse

[16,50], risking overshoot and producing now a list of MGLCs

with many false negatives. By repeating the same analysis for the

mouse orthologues of the human genes that had been tested

above, we found 785 MGLCs in mouse. The lower number of

MGLCs in mouse, compared to human, is probably caused by

translation to orthologues; as a result, the GO groups of mouse

were of 15%–30% smaller size. 333 (M,G) pairs (see Table S2)

had an MGLC in human and mouse, albeit not necessarily at the

same location windows. Each row of Fig 3A corresponds to one

of these 333 (M,G) pairs, with each bar representing an MGLC.

The corresponding 159 motifs (38% of the total 414 motifs in the

analysis–see Table S2) are associated with 56 GO gene groups

(42% of the 134 GO gene groups that were examined). A black

bar represents a conserved MGLC, one that appears in human and

mouse, at the same location window; a grey bar–an MGLC in

human only or mouse only. There are 337 conserved (black)

MGLCs, out of the maximal possible number of 785 (p-

value,102320); they correspond to 114 different motifs. On the

basis of their affiliation with GO groups we assign the MGLCs to

one of two classes: the majority belong to a ‘‘general GO group’’

(see below); the distribution of these conserved MGLCs

according to location windows (see Fig 3B) reveals a strong bias

towards the TSS. The second class of conserved MGLCs are

spread somewhat further upstream from the TSS (see Fig 3C).

The division of the MGLCs into these two classes is a result of

our analysis and is seen clearly in Fig 3A: we noticed that the

MGLCs that belong to the second class are based on four

functional GO groups, and the (M,G) pairs were grouped in

Fig 3A accordingly.

The very strong location bias of the MGLCs that belong to the

general GO group is our central finding: it has been validated (for

those genes that have orthologues in human, mouse and rat) using

a very different method and a different database of TF binding

sites (see Text S1, Figure S3 and Table S3).

The ‘‘General GO Group’’; locational bias and

experimental verification for cell cycle motifs
This group contains 177 conserved MGLCs that belong to 93%

(52/56) of the significant GO groups: these include cell cycle,

immune response, protein biosynthesis as well as others (see Table

S2). This group shows a strong location bias relative to the TSS:

86% (153/177) of the conserved MGLCs were found in the two

promoter windows 0–200 upstream to the TSS, while only 3% (5/

177) were found in windows [2200,21000], and the remaining 19

MGLCs are downstream to the TSS (see Fig 3B). As a further

demonstration of our general claim of association between

proximal location-specificity of the BS and functionality, we show

for the cell cycle related functional class and associated TFs (for

which experimental expression data are available), that proximal

BSs are much more likely to be functional than those located further

upstream.

We focused on the five cell-cycle associated motifs: CHR,

CAAT, and three NFY-family motifs, whose MGLCs were

overrepresented close to the TSS in both human and mouse. To

test functionality in cell cycle, we used 3,308 genes for which we

had both expression data measured during three cell cycles [36] in

HeLa cells, as well as promoter sequences. We calculated the cell

cycle periodicity index CCP [51] of each of these genes from the

expression data, and searched their promoter sequences, from

+200 to 21000 bp from the TSS, for every one of the 5 motifs. A

high CCP indicates strong cell-cycle dependence. We assembled

(see Methods) 5612 = 60 groups of genes (one for each of 5 motifs

M studied over 12 non-over lapping windows W of 100 bp). Each

such group had NMW genes on whose promoters we registered a hit

(see Methods for details) for the motif M in window W. Next, for

each MW combination, the distribution of the CCP scores of the

NMW target genes was calculated and compared to the background

distribution of the CCP scores over all the 3,308 genes studied. A

sequence of these distributions (see Figure S1), demonstrates that

the distribution of the CCP scores associated with those genes,
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Figure 2. Our method of search for BSs. A. Schematic method of search: we used groups of human genes that belong to 134 different functional GO
classes G, to search for each one of 414 motifs M in twelve 100bp-long windows W in the interval [+200, 21000] bp with respect to the TSS. In total,
4146134612 = 665,712 independent analyses were carried out, one for every (M,G,W) combination, represented as a path through the top three
layers of boxes. Each analysis produced the number of genes of G for which the score of M in the window W exceeded a threshold T. The extent of
over-representation of such hits was assessed by the hypergeometric test, which compared their number with similar hits in a random selection of |G|
out of all 8,110 human genes used. A variation of the resulting p-values p (M,G,W) with the threshold T was studied. All resulting p-values were
submitted to FDR analysis, and the statistically significant (M,G,W) combinations were intersected with those that were found significant also in
mouse. B. The dependence of –log[ p (M,G,W)] on the score threshold T is shown for 12 windows, for G = Mitosis GO class and M = NFY1. For the
window [TSS, 2100] bp we get a very prominent peak, for the windows in [2100, 2300] bp the peak is much smaller and broader, and for the other
windows it is within the noise. We find significant enrichment for the [TSS,2100] window, with the optimal threshold derived from the location of the
peak.
doi:10.1371/journal.pone.0000807.g002
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whose CHR motif is found in the [2100,0] and [0,100] windows,

differs significantly from the background distribution (of all the

genes), with an enhanced number of genes with CCP scores as

high as 5–10. A quantitative measure of the difference between

distributions associated with each MW versus the background was

produced by the Kolmogorov-Smirnov test, yielding a p-value for

each MW. As seen in Fig 4A, 12 CCP distributions (out of the 60)

had p-values below 0.05 and 9 differed from the background at

10% FDR. These include all the 5 motifs that were tested, with

windows located near the TSS.

It is gratifying to note the agreement between the statistically

significant MW combinations, obtained here from the expression-

based CCP distributions, and the results obtained from the

sequence-based hyper-geometric over-representation scores

(Fig 4B). This agreement demonstrates (a) the reliability of our

BS detection method to identify functionally important MGLCs

Figure 3. Summary of our main results. A. Using FDR of 0.1 we identify the over-representation of motif M on promoters of genes of functional GO
class G, in location window W. Each row corresponds to one of 333 (M,G) pairs, composed of 56 GO classes and 159 motifs. Each bar represents an
MGLC: grey–either human only or mouse only, and black-human and mouse. The 56 GO clusters divide into two groups, a ‘‘general GO group’’ of 52
GO classes and a ‘‘transcriptional GO group’’ of 4 GO classes. The motifs M of the latter are GC-rich–see first column, where orange denotes GC
content above 60%, blue–below 30% and white–between both these values. B. Number of conserved MGLCs of the General GO group, in each
window. 93% are in the [2200,0] bp range. C. Same for the transcriptional GO group. The distribution is broad and peaks between 300–500bp
upstream from the TSS. D. Distributions of BSs according to their GC content, plotted separately for BSs associated with the two GO groups.
doi:10.1371/journal.pone.0000807.g003
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and (b) the functional role of windows that are no more than

300bp upstream of the TSS. These findings concur with our

previous observation, that the influence of cell cycle motifs on

a cluster of genes obtained from cancer progression is limited to

a very specific region, close to the TSS [28].

The ‘‘transcriptional GO group’’ contains 160 MGLCs

that belong to the following four GO classes: transcription,

regulation of transcription, DNA-dependent regulation of tran-

scription and development (Table S2). The promoters of the

‘‘transcriptional GO group’’ are enriched with motifs that belong to

zinc finger proteins (like ZF5, ZF9, ZBP89, ZNF202); with EGR/

nerve growth factor induced protein C (such as CKROX, EGR1,

EGR3, NGFIC and WT1) and also with some other motifs, like

the GC-box motifs NRF, MAZ and MYCMAX. The transcrip-

tional GO group differs from the general GO group in several

aspects. Firstly, its motifs are distributed over a much wider region

(see Fig 3C), peaking at 2300 to 2500 bp from the TSS. Secondly,

the GC content of its motifs (see Methods) is 68% on average, with

a minimum of 47%, while the motifs in the general GO group

have lower GC content (see the first column of Fig. 3A), with an

average of 48% and a minimum of 22% (Fig 3D). Motifs with high

GC content are more likely to be found on GC-rich promoters;

indeed, the GC content of promoters of the genes that comprise

each of the GO classes in the transcriptional GO group is

significantly higher (p,0.0001) than expected within a random

group of genes (see Methods).We generated two ‘‘artificial’’

PSSMs that contain G/C or C with high probability (Table S1)

and found that both were over-represented in human and mouse,

generating 35 MGLCs in the 4 GO classes that comprise the

transcriptional GO group (see Fig. 3A and Figure S2). These

results suggest that the high GC content in their promoters plays

an important regulatory role for genes of the transcriptional GO

group. Thirdly, for each of the four transcriptional GO classes we

found a relatively high number of significantly over-represented

TF binding sites. The average of the four numbers was 18,

compared to 5 motifs per class in the general GO group. Nearly all

these motifs have GC content above 60%.

Single gene binding sites
Although our method identifies overrepresentation of a binding

site in a GO-based functional group, we can use the information

also for identification of BSs on particular promoters. We prepared

a database where for every human gene in our analysis we provide

the putative BSs found on it’s promoter (including score, location

and sequence). In order to get a conservative data base, the

putative BSs for each gene were filtered, based on the parameters

obtained from the GO groups to which the gene belongs. We

register a hit for motif M of a TF on the promoter of a gene if three

conditions are satisfied: first, motif M should be significantly over

represented in at least one of the GO groups G to which our gene

belongs (i.e. there is a corresponding MGLC). Second, the putative

BS for motif M that was found on the promoter of our gene should

be in the location window of this MGLC, and third; the score of M

must pass the corresponding threshold value (that was determined

based on the comprehensive GO group analysis). We used 2

different thresholds in this database: 1. ‘FDR’-we used the most

permissive score threshold that passed FDR,0.1 for the over

representation analysis. 2. ‘PEAK’–the score threshold that got the

best enrichment p-value was used (this score is more conservative).

In addition, BSs that belong to MGLCs that are conserved also in

mouse where marked as ‘motif and location enriched in murine

MGLC’. The database can be downloaded from: http://www.

weizmann.ac.il/complex/compphys/downloads/tabach/BS_da-

tabase.zip

Direct Experimental verification of our main finding
We believe that if functionality of a particular TF’s binding is

position dependent in a given biological context, its functional BSs

will be close to the TSS. Hence we predict that when a functional

proximal binding site is moved away from the TSS, it will become

less effective. The experiment described below was performed in

order to test this prediction directly.

We designed an experiment to measure transcriptional activity

of a TF as a function of the distance between its BS and the TSS.

We used the motif M = SRF.01 which binds Myocardin,

a transcription co-factor with highly potent ability to activate

a set of differentiation-related genes [52,53]. We focused on the

target gene SM22, whose expression increased significantly in

response to Myocardin [54], and whose transcriptional activation

by Myocardin depends on the integrity of specific regulatory

motifs called CArG boxes, two of which are present within the

SM22 promoter, at distances of ,105 bp and ,240 bp upstream

of the TSS. The proximal motif was shown [53] to be significantly

more important for the expression of SM22. Here we performed

a controlled experiment to eliminate factors such as the possible

impact of the large differences between the neighboring regulatory

sequences of the two motifs and the (small albeit present)

differences between the motif sequences themselves. We generated

Figure 4. Testing our results for human cell cycle expression data. A.
For 60 groups of genes (each group defined by BS found for one of the
5 cell cycle associated motifs in one of the 12 location windows, see
text) the distribution of the expression-based CCP scores [51] was
compared to a reference background distribution. The resulting 60 p-
values are plotted for the different motifs versus their location window.
All 5 motifs get p-values less than 0.05 and also pass at FDR of 0.10. Two
windows, [0, 2100] and [2100, 2200] bp, are most significantly over-
represented. B. Significant sequence-based hyper-geometric over-
representation scores for each of the motif-window combinations. A
grey bar represents a significant score (MGLC) for human or mouse, for
at least one of the cell-cycle related GO classes. A black bar stands for an
MGLC in both human and mouse.
doi:10.1371/journal.pone.0000807.g004
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a set of four plasmids encoding a luciferase reporter gene (luc)

under the regulation of three tandem repeats of a segment from

the SM22 promoter, each of which contained either an intact (wt)

CArG box, approximately at its center, or a mutated one (m). The

resulting four constructs thus had identical architectures; while the

intact motif is placed at different distances from the TSS (see Fig 5

A).

We transfected HT1080 fibrosarcoma cells that express very

low levels of Myocardin, with each of these constructs and

measured their transcriptional activity (see Methods). As evident in

Fig 5B, co-transfection of Myocardin with the ‘‘m-m-wt-luc’’

reporter resulted in dramatic promoter activity increase. In

contrast, the Myocardin-dependent activation of ‘‘m-wt-m-luc’’

and ‘‘wt-m-m-luc’’ constructs that also contain a single CArG box,

but at more distal locations, was significantly weaker. Notably,

some CArG box-independent activation of transcription exists

since even the ‘‘m-m-m-luc’’ reporter was activated ,5 fold by

Myocardin even though it harbors no functional CArG box. Our

results indicate clearly that the transcriptional activity mediated by

a regulatory DNA motif is strongly dependent on the distance of

this motif from the TSS. The results of the experiment, of

decreasing transcriptional effectiveness of the TF with increasing

distance of the BS from the TSS, are consistent with our

expectations, providing yet one more piece of consistent evidence

of their validity.

Transcriptional efficiency of NF-kB depends on the

BS-TSS distance
Recently Rashi-Elkeles et al [37] identified NF-kB as the most

significantly overrepresented motif in the promoters of a cluster of

138 ATM-dependent genes. They focused on 11 out of these 138

genes; on those that have putative NF-kB motifs (associated with

the general GO group) in both mouse and in their 11 human

orthologues. Ionizing radiation was used to activate ATM, and the

measured ATM-induced expression levels of these 11 genes were

validated using RT–PCR. All 11 genes belong to the ATM

dependent gene cluster reported by Rashi-Elkeles et al [37], and

NF-kB binding sites were identified, using PRIMA [9], as

a significant [37] on all 11 promoters. Nevertheless, the

experimental results show a wide variation of the corresponding

11 expression fold changes, ranging from 1.6 to 153 fold induction

by ATM activity.

We suggest that BS location and score information distinguishes

between genes that are highly induced versus those that have been

poorly induced by ATM. Using our algorithm we searched the

promoters of all 138 genes for NF-kB binding sites. We found

significant over representation of the NF-kB motif in both human

and mouse only between the TSS to 2200 bp (peaking between

250 and 2150, for score threshold between 23 and 25.2; see

Fig 6A for the results for mouse). These location bias results fully

agree with a specific analysis on NF-kkB-regulated immune genes,

that examine the positional distribution of NF-kkB binding sites [11]

In order to examine the influence of both the location and score

threshold on the expression of the 138 ATM-dependent genes

[37], we examined all their putative NF-kB BSs (see Fig 6B). A

group of BSs is clustered at high scores (23 to 25.2) and in the

location window [2200,0] (see box defined by dashed line in

Fig 6B). The scores and location windows are almost identical to

those found in our over-representation analysis. Inspection of the

BSs in this region shows that this group includes those seven genes

(out of the 11 marked by solid filled symbols validated by PCR)

that had the highest fold induction [37], ranging between 153 and

3.4 , whereas the 4 genes that are outside the box had fold changes

between 2.6 and 1.6. With the exception of one gene, ranking the

7 genes in the box by their scores gives the same ordering as the

fold induction. The p-value for finding the 7 genes with the highest

fold change out of the 11 that were examined in this ‘‘location

score area’’ is 0.003. In addition to these 7 genes, we found in the

marked location-score box high scoring NF-kB BSs on the

promoters of 7 more genes, marked by blank symbols. We predict

that these genes are also NF-kB targets and will produce a high

fold change. Csf1[55] and Nfkbiz [56] are two of these 7 genes

and, indeed, both are known targets of NF-kB. Three others, Irf1,

Ifngr2 and Naf1 are involved in the immune system and hence are

likely NF-kB targets. These results demonstrate clearly the

importance of the location of the BS, and that our method is

able to differentiate between genes that are genuine targets of NF-

kB on the one hand and the apparent false positives that were

identified by another method.

DISCUSSION
We introduced a novel method to identify TF binding sites in

a location and biological function–dependent manner. Using an

operational definition of functional binding sites, we showed that

for a large number of TFs, functional binding is location sensitive.

These functional binding sites tend to concentrate close to the

TSS–within an interval of a few hundred bp. Clearly we cannot

rule out that there are functional binding sites also far from this

region, but these are most probably not location dependent. These

results were demonstrated for both human and mouse.

We found that binding sites that pass the simple test of scoring

above a threshold, using the PSSM alone, are much more likely to

be conserved across species if they are close to the TSS. They also

are more likely to pass both our tests of functionality: over-

Figure 5. Direct experimental test of the effect of BS distance from
the TSS. A. A graphic representation of four constructs encoding
a luciferase reporter (luc) gene under the regulation of three tandem
repeats of a region from the SM22 promoter, each of which contained
either an intact (wt in yellow ) or a mutated (m in red) BS of the
Myocardin transcription factor. The intact motif is placed at different
distances from the TSS in each construct. B. Fold activation of the
luciferase construct, calculated as the ratio of promoter activity in the
presence of Myocardin to the promoter activity in the absence of
Myocardin. The ‘‘m-m-wt-luc’’ reporter was strongly activated by
Myocardin. In contrast, the Myocardin-dependent activation of ‘‘m-wt-
m-luc’’ and ‘‘wt-m-m-luc’’ was significantly weaker.
doi:10.1371/journal.pone.0000807.g005
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representation in the promoters of a functional GO class and

conservation across species.

A possible point of criticism concerns ‘‘discovery bias’’: the

known transcription factor motifs used here represent probably

only a small fraction of all transcription factors that exist in the

human genome. Because of the ways these factors are discovered,

these motifs are almost certainly biased towards proteins that bind

to proximal promoter regions of genes. However, our results

cannot be attributed to this bias. Simply stated, since the

traditional experimental analysis of promoters typically covers

regions of about 1000–2000 bp, there is no discovery bias that

prefers the first 200 nucleotides upstream to the TSS over say the

next window of 200–400 bp, or even 400–600, whereas our main

results indicate a very strong bias to the first 200 bp, not the first

2000. Had we claimed overrepresentation of binding sites in the

first 2000 bp, discovery bias would have been a valid concern.

Our main finding was obtained by a new motif-discovery

method introduced here. The method is characterized by several

novel features which make it both flexible and sensitive, identifying

hits in a way that takes into account the location, genomic

background and a group of potentially co-regulated genes. We

performed a high throughput wide scale analysis, for all commonly

used motif PSSMs in a large variety of biological functional classes.

We found that the GO classes are divided into two groups: the

Figure 6. Testing our method on ATM-induced expression data. A. Analysis of G = 138 ATM-dependent genes [37] for M = NF-kB.01 over
representation. The dependence of –log[ p (M,G,W)] on the score threshold T is shown for 23 overlapping windows. Three upstream windows, (TSS-
100), (50–150) and (100–200) passed the hypergeometric test at an FDR of 10%. B. putative NF-kB.01 BSs of the 138 ATM-dependent genes; score
(vertical axis) versus location (horizontal axis). Our algorithm identifies the location and scores that are indicative of functionality of the BS (rectangle
enclosed by the red dashed line). Solid colored symbols mark genes whose expression was validated by PCR. The other genes in the box are marked
with blank colored symbols, those that are likely targets of NF-kB outside the box–by X. We list next to the gene names the fold change as measured
by the microarray and by PCR (in parentheses). The black dots are belong to the rest of the 138 genes,with putative BS outside the area indicative of
functionality.
doi:10.1371/journal.pone.0000807.g006
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‘‘transcriptional GO group’’ of 1476 genes, whose promoters have

relatively high GC concentrations upstream of 200bp from the

TSS (giving rise to a broad distribution of BSs, peaking at ,
2400 bp), and a ‘‘general GO group’’, of 6646 genes (with BSs

concentrated in the first 200bp upstream of the TSS). The

information about the different GO groups and the motifs that

were found to be over represented in each are listed in Table S2

These results were substantiated by showing agreement between

our sequence-based analysis with an expression based identifica-

tion of BSs that are functional in cell cycle regulation.

Furthermore, we were able to show, using only NF-kB BS

locations and scores, that NF-kB BSs tend to lose their regulatory

effect when found at a distance beyond several hundred bp from

the TSS, and demonstrated that BS location and score are

predictive of the relative expression level of the activated gene.

The principal role played by the proximal region to the TSS

emerged also from analysis of BSs that were classified as conserved

over human, mouse and rat. Finally, we carried out an experiment

whose aim was to test our prediction in the most direct way. By

measuring the transcriptional activity of the TF Myocardin when

its binding site is placed at several distances from the TSS on the

promoter of the SM22 gene, we demonstrated that the effect of the

TF on transcription of the target decreases significantly as the

distance of its BS from the TSS increases. Whilst the result of this

experiment cannot be viewed as a proof of our very general claims,

it is consistent with a necessary condition for our main finding, and

hence provides a robust opportunity to falsify our conclusions.

Had we found that Myocardin’s transcriptional activity is position

dependent, but peaks far (say 5–600 bp downstream) from the

TSS, this would have contradicted our prediction. Several recent

diverse studies strongly support our results that the first 200 bp

upstream to the TSS are different, especially in terms of

functionality; e.g. the conservation of promoters and BS between

species [16,57]; the high percentage of functional promoter

polymorphisms found within the first 100 bp [58]; the central

importance of the first 300 bp upstream to the TSS for core

promoter activity [59]; pronounced depletion of repeatable

element concentration near the TSS [57,60]; identification of

about 200 bp long nucleosome-free regions on either side of the

TSS in yeast [61,62] and in higher Eukaryotic genomes [62].

TFs are proteins that in order to be functional should be in

a physical, contact-based interaction with the transcriptional

machinery they regulate, which must have components near the

TSS. Therefore, the simplest way to produce such physical

interactions is to bind at a location near the TSS, and our findings

are consistent with this ‘‘Occam’s razor’’. This does not imply,

however, that all functionally important BSs appear near the TSS.

Regulatory regions, such as enhancers, that extend many

thousands of bp from the TSS may create complicated stable

3D structures that influence expression by physical interaction

with the proximal promoter. Our analyses do indicate, however,

that the most prevalent transcriptionally functional mechanisms

involve binding in the vicinity of the TSS.

METHODS

Identifying promoter sequences
DNA sequences upstream of human ORFs were downloaded from

the GoldenPath server at UCSC http://genome.ucsc.edu/gold-

enPath/hg16/bigZips/. Putative regulatory regions for the

different genes were obtained (+200 to 21000 bp with respect to

the TSS). We used as our working set of genes the GeneChip

Human Genome Focus Array (Affymetrix, Santa Clara, CA, USA)

that represents over 8,500 verified human sequences from the

NCBI RefSeq database. Focus chip genes are very suitable for our

analysis since they are highly annotated, have low redundancy and

their putative promoters are assigned (We identified promoters for

8,110 genes out of the 8,500 of the Human genome Focus chip).

Scoring a Binding Site
The score S (M; {n}) of a putative binding sequence of L

nucleotides, (n1,n2,…,nL), for a particular motif M is the log-

likelihood score calculated from the motif’s PSSM. The entries mi

(n) of the PSSM are the probabilities of finding nucleotide

ni = C,G,A,T at site i :

S(M; n1,::,nL)~
XL

i~1

log (mi(ni))

Determining the threshold T(M,G,W)
set some low initial value for T for the threshold, and count

N(M,G,W), the number of genes (of the GO group G) for which

motif M registered a hit (score.T) in the window W. Now repeat

the process for the same motif, window and T, but use the

promoters of all the 8,110 human genes to count the number of

hits in the same window, N0(M,W). Now we determine (by the

hypergeometric test [48,63] p(M,G,W), the p-value for over-

representation, i.e. the probability of finding more than N(M,G,W)

hits for motif M within window W for |G| genes selected at

random from the 8,110. Finally, increase T (steps of 0.1) and

repeat the procedure; plots of p(T) are shown in Fig 2B for

G = mitosis GO group and the motif M = NFY1, for all 12

windows. For each of the a = 1,2, …665,712 (M,G,W) combina-

tions we choose as the corresponding threshold Ta the value of T

which gives the largest enrichment, i.e. maximal -log pa(T).

Evidently, for the window (TSS-100bp upstream) we get a clear

prominent peak, for the next two windows (2100bp–2300bp) the

peak is much smaller and broader, and for all the more distal

windows it is within the noise. This way we get the optimal

thresholds and corresponding p-values, pa(Ta), as well as the full

set of pa(Ta), for each M,G,W. On the average, 500 different values

of T were used for each M.

Controlling the False Discovery Rate
We assembled the full set of values pa(T) and applied on it the FDR

controlling procedure [49]. The test-statistics corresponding to all the

tests cannot be assumed independent of each other, due to several

aspects: First, there is an overlap in the genes assembling the different

GOs such that two different GO could contain almost the same

genes. Second, each score S comprises all the binding sites equal to S

or better. As a result, the score S contains all binding sites obtained

using more conserved scores. Third, there is spatial correlation

among neighboring motifs that are tested with regard to the distance

from the TSS. Forth, different PSSM could be very similar and by

that to assign the same promoter sequence as a ‘‘hit’’. Since all these

imply common biological factor affecting the test, these types of

dependencies are potential causes of positive correlation between the

test-statistics. The procedure we applied has been shown to control

the FDR also for positively correlated test-statistics [64].

Assigning genes to an (M,W) group to test the CCP

score distribution
A hit was recorded for gene g when the score of M exceeded

a threshold. We described above how the threshold T (M,G,W)
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was derived. For each gene we have to identify the proper G to be

used. For genes that do not belong to any cell cycle related GO

class we used the T that was calculated for the cell cycle GO class.

If g belongs to a single cell-cycle related GO class, we use this as

our G. For genes that belong to more than one cell-cycle related

GO class we use the one that was most enriched in M.

The GC content of a motif was obtained for a PSSM by

calculating for each position the probability to get G or C, and

averaging it over the L positions of the PSSM. For a GO class of n

genes we calculate the percent (P) of G and C along the n

promoters. The p-value for being GC rich was obtained by

selecting randomly, 10000 times, groups of n genes and

calculating the fraction of such groups that had GC percentage

higher than P.

Construction of reporters for Myocardin from SM22

promoter
SM22-luciferase reporter constructs were generated by cloning

a genomic fragment of the SM22 gene spanning from 166 to

257 bp relative to the TSS into a pGL3 luciferase reporter

vector (Promega). Briefly, the genomic region was amplified from

human genomic DNA using the primers 59 agcatgcagagaatgtctcg

39 and 59 acagacaggatggggcgctg 39 and ligated into pGEM-T

easy vector (Promega). Recognition sequences for either BglII,

SmaI or NheI restriction enzymes were added to each primer at

the 59 end for the following steps. The Myocardin BS, known as

CArG box within the cloned SM22 region, was mutated using

QuikChange Site–Directed Mutagenesis kit (Stratagene) and the

primers 59 ggtgtCctttcccGaaTtCtggagcc 39 and 59 ggctcca-

GaAttCgggaaagacacc 39 (Capital letters designate mutated base

pairs). The SM22 fragments that contained either an intact

Myocardin motif or one which was mutated were then cloned in

three consecutive steps into pGL3 vector using the BglII, SmaI

and NheI restriction enzymes. Four final luciferase reporters

were constructed, all of which contained three tandem repeats of

the ,220bp of SM22 regulatory region upstream of the

luciferase coding sequence, but each harboring an intact or

mutated Myocardin motif in a different order or distances from

the luciferase TSS.

The transcriptional activity of these constructs was measured in

the HT1080 fibrosarcoma cell line, in which Myocardin is not

expressed [65]. The reporters were transiently transfected into

these cells either in the absence or the presence of a small amount

of a Myocardin expression vector. To control for the transfection

efficiency in each sample, the activity of a cotransfected construct

coding for the Renilla-luciferase under the regulation of a CMV

promoter was measured.

Transfections and Reporter Assays HT1080 fibrosarco-

ma cells were plated at 26104 cells/well in a 24-well plate,

24 hours prior to transfection. Cells were transfected using

FuGene transfection reagent (Roche), with 500ng/well of

luciferase reporter construct, 5 ng/well of CMV-Renilla expres-

sion vector for normalization of transfection efficiency, and either

with or without 2.5ng/well pcDNA3 expression plasmid coding

for the mouse Myocardin gene (E.Olson). Cell extracts were

prepared 24 hours following transfection Luciferase and Renilla

activities were determined using commercial reagents and

procedures (Promega). All experiments were conducted in

triplicate.

SUPPORTING INFORMATION

Figure S1 Distributions of the CCP scores of 12 groups of genes

that contain the CHR binding motif in their promoters, at 12

different location windows (of 100bp) with respect to the TSS. The

black curve is our background: the CCP score distribution of all

the genes in the experiment(Whitfield et al. 2002).

Found at: doi:10.1371/journal.pone.0000807.s001 (2.60 MB TIF)

Figure S2 Over representation of GC and C rich ‘‘artificial’’

motifs The hits found in various windows for two ‘‘artificial’’

PSSMs that contain G/C or C with high probability (Table S1)

were over represented in human and mouse. MGLC analysis was

done for the different windows and for all GO classes (Table S2) as

explained in the text. Thirty five MGLCs were found, all of which

are associated with one of the 4 GO classes that comprise the

transcriptional GO group.

Found at: doi:10.1371/journal.pone.0000807.s002 (4.23 MB TIF)

Figure S3 Location distribution of conserved BSs, with high

similarity in human, mouse and rat. Location bias analysis of

conserved BSs, with high similarity in human, mouse and rat,

that were downloaded from the UCSC browser[65] and are

based on PSSMs obtained from the Transfac Matrix Data-

base v8.3 created by Biobase [66] . The motifs were aligned

according to their distance from the closest TSS and the

histogram of these distances was plotted. The total number of

conserved binding sites of these motifs is 39829; 11829 (30%) of

these were found in the first 200bp, compared to about 4%

found in each of the other 200bp long windows between 400bp

to 3000bp upstream.

Found at: doi:10.1371/journal.pone.0000807.s003 (1.51 MB TIF)

Table S1 PSSMs used in our work: TATA PSSM provided by

MatIspector (Quandt et al. 1995), and two artificial motifs that

were generated by us: poly C motif and GC rich motif. The rows

are the different nucleotides; the columns represent the nucleo-

tides’ position j in the motif. Each entry mj (n) is the probability to

find nucleotide n at position j.

Found at: doi:10.1371/journal.pone.0000807.s004 (0.01 MB

PDF)

Table S2 Full results for over-representation of binding sites.

Comprehensive study of the appearances of 414 vertebrate BSs

with known PSSMs [34] in the promoters of 8110 human and

23,400 mouse genes. We used groups of human genes that belong

to 134 different functional GO classes G, to search for each one

of 414 motifs M in twelve 100bp-long windows W in the interval

[+200, 21000] bp with respect to the TSS. We examined

windows of different sizes (200bp ,300bp, 400bp and 700bp), with

and without overlap between the windows. In this paper we

focous mainly on the analysis of the 100bp window since its gave

us better location specificity and better control on the background

GC content. In total, for the 100bp windows,

4146134612 = 665,712 independent analyses were carried out,

one for every (M,G,W) combination. The analysis was carried out

for human and mouse, and the statistically significant (M,G,W)

combinations are shown. Each row represents an (M,G) pair (first

two columns) with a statistically significant over-representation

score (passed FDR of 0.10-see text), in at least one location

window in Human (grey with the letter H) or Mouse (grey with

the letter M) or in both (black box). The BS symbol and its GC

content are also given.

Found at: doi:10.1371/journal.pone.0000807.s005 (0.87 MB

PDF)

Table S3 Analysis of conserved BS in human mouse and rat.

39829 conserved BS in human mouse and rat from 409 Transfac

PSSMs (v8.3 created by Biobase) (Wingender et al. 2000) were

downloaded from UCSC browser (Kent et al. 2002). For each

motif (first column) the number of BS found in the first 3000bp
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from the closest downstream TSS is given in the second column,

the number of BSs found in the first 200bp upstream of the TSS

are presented in the third column and the corresponding

percentage and P-value for this over-representation (derived using

the binomial distribution) are given in the fourth and fifth columns

Found at: doi:10.1371/journal.pone.0000807.s006 (0.03 MB

PDF)

Text S1

Found at: doi:10.1371/journal.pone.0000807.s007 (0.03 MB

DOC)
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