
Statistical Mechanics Fall 2014 — Problem Set 1

due: Wednesday, November 19, 2014

1.1 1-d gas with interactions (50 points)

Not many statistical mechanics models of interacting particles can be solved ex-
actly. Such solutions are valuable as they allow to check the validity and reliability
of different approximations.

One exactly solvable model, which will be studied in this problem, is a one-
dimensional gas with short range interactions. Consider N (indistinguishable) par-
ticles of mass m confined to a line of length L, in which they are free to move. The
positions of the particles {xi} will be labelled according to their order, i.e.,

0 ≤ x1 ≤ x2 ≤ . . . ≤ xN ≤ L. (1)

(a) First, consider a gas of hard impenetrable rods, each of length a. In the
microcanonical ensemble, calculates the entropy of the gas as a function
of the energy E, the number of particles N and the length L. Obtain the
equation of state of the gas and compare the result to that of an ideal gas.

(b) Now consider a general interaction potential. We will assume that the parti-
cles screen the interactions, and therefore they only interact with their near-
est neighbors. In this case he Hamiltonian can be written as

H =
N∑
i=1

p2
i

2m
+

N∑
i=2

V (xi − xi−1), (2)

where V (x) is the interaction potential. Write down the expression for the
canonical partition function Z(T,N,L). Change variables to δ1 = x, δ2 =
x2 − x1, . . . , δN = xN − xN−1. Be careful with the allowed ranges of
integration.

(c) The trick that allows a general calculation of the expression from (b) is
to move to the constant-pressure ensemble. The partition function of the
constant-pressure ensemble is obtained from the Laplace transformation

Z(T,N, f) =

∫ ∞
0

dL exp(−βfL)Z(T,N,L), (3)
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where f is the force (the pressure in one dimension). Find the standard
formula for f in the canonical ensemble via a saddle point approximation of
equation (3).

(d) Change variables from L to δN+1 = L −
∑N

i=1 δi, and find the expression
for Z(T,N, f) as a product of one-dimensional integrals over each δi.

(e) At a fixed force f , find expressions for the mean length L(T,N, f), and the
density n = N/L(T,N, f) (involving ratios of integrals that should be easy
to interpret). Verify that you recover the known equation of state in the case
of an ideal gas (i.e., when V (x) = 0 for all x).

(f) Calculate the Gibbs free energy and the entropy (as a function of T,N, f )
for the interaction energy given by

V (xi − xi−1) =

{
ε |xi − xi−1| ≤ a
0 |xi − xi−1| > a

. (4)

Verify that you recover the entropy calculated in (a) in the case of hard rods,
i.e., when ε→∞.

1.2 Virial expansion of hard-core particle gas (50 points)

Consider a particle gas with hard core interparticle interaction

u(r) =

{
∞ r < σ
0 r > σ,

(5)

where r is the inter-particle distance.

(a) Compute the second and third virial coefficients for a hard-core gas in d = 1
dimensions.

(b) Do the same in d = 2 dimensions.

(c) Compute the isothermal compressibility κT and the constant-pressure heat
capacity cp for the hard-core gas in d = 1, 2, 3 dimensions using the virial
expansion to third order. The virial coefficients in d = 3 dimensions do not
need to be calculated, they are given byB(3d)

2 (T ) = 2πσ3/3 andB(3d)
3 (T ) =

5π2σ6/18. Discuss the effect of dimensionality on your results.

(d) In question 1.1a you found the equation of state of a 1-dimensional gas of
hard rods. From this expression obtain the general virial coefficient B`(T )
of this gas. Compare with the results of (a).
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1.3 Monte Carlo simulation (10 bonus points) (due: 3/12/2014)

In this question you will use MC simulation to study the magnetization in a two-
dimensional Ising model with Metropolis dynamics. Note that although the Metropo-
lis dynamics is probably not a realistic model of the dynamics of real magnets (as
was stressed in class), it is nonetheless instructive from a theoretical perspective to
explore this dynamics.

Consider a two dimensional Ising model on an L× L square lattice with peri-
odic boundary conditions. The Hamiltonian of the model is given by

H = −J
∑
〈i,j〉

sisj , (6)

where si = ±1 and
∑
〈i,j〉 denotes a sum over all nearest neighbour pairs. This

model undergoes a phase transition at Tc = 2J/ log(1 +
√

2) ' 2.27J . In this
question, set T = 3J to assure that the system is in the disordered phase.

Implement the metropolis algorithm in your favorite programming language.
Work with the largest system for which you can collect enough statistics. In C,
Fortran, Java and similar languages you should be able to reach systems of size
L = 200, while in Matlab you will probably be limited to L ≈ 10. Therefore, it is
preferable that you do not run the simulation in Matlab if possible. You may down-
load from the course website a code example written in C++, which you may alter
to model the Ising dynamics. This code can be easily compiled on the computers
found in the computer lab, as explained in the instructions in the website.

(a) Verify that you are in the disordered phase by measuring that 〈M〉 = 〈
∑

i si〉 =
0 at T = 3J . Attach a plot of M(t).

(b) Measure the correlation function for the magnetization

C(∆t) = 〈(M(t)− 〈M〉)(M(t+ ∆t)− 〈M)〉 , (7)

for several values of ∆t. The correlation function is expected to have an
exponential decay, i.e. C(∆t) ∼ e−∆t/τcorr . Estimate τcorr from C(∆t) and
attach a plot of C(∆t).

(c) Measure the fluctuations in the magnetization by averaging

σ2
M =

〈
(M − 〈M〉)2

〉
(8)

at time steps larger than τcorr. Measure the fluctuations for several system
sizes (smaller than the maximal one you can simulate) and plot a graph which
demonstrate that σM scales withL as you would expect from the central limit
theorem.

Note: Please attach your code to your answer. Make sure to save your code, as
it will be useful for future homework assignments.
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