
Statistical Mechanics 2011-12 — Problem Set 2

due: December 8, 2011

2.1 Ionization in the grand-canonical ensemble (20 points)

Consider M ions A+, and ne electrons. The ionization energy of the A atom
is denoted by ε. For simplicity, the Coulomb interactions shall be ignored.
All experiments considered below are done in a container of volume V at
temperature T .

(a) Assume first that the A+ ions are fixed in space. The electrons are
now divided into two components - a classical gas of free electrons,
and a ’gas’ of bounded electrons. Calculate the fraction of electrons
in the free gas by equating the chemical potentials of the two gases.

(b) Now consider the case where the A+, e− and A particles are all moving
freely in the container. Compare your result here to those of (a).

2.2 Idea Bose gas in two dimensions (10 points)

Consider the relation that determines the chemical potential: the number
of atoms equal to the sum of the Bose distributions over all momenta - see
first paragraph in section 3.2.4 in the lecture notes. Is there a condensation
at finite temperature in two dimensions ?

2.3 BEC in harmonic potentials (27 points)

Experimentally, Bose-Einstein condensates are usually created (here in the
Weizmann institute and elsewhere) with particles trapped in an external
potential (rather than free particles in a box). The trapping potential can
often be considered harmonic to excellent approximation. In this question
we will study the Bose-Einstein condensation under such a potential.

Consider a gas of N bosons in an anisotropic three-dimensional harmonic
potential
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The different frequencies wi represent the fact that the trapping potential
may be anisotropic.
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(a) Calculate a general expression for the critical temperature of conden-
sation. What would be the temperature for the experimental values
of N = 106, ω1 = 800Hz, ω2 = 600Hz, ω3 = 50Hz and the mass of
Rubidium-87 atoms.

(b) Calculate the occupation number of the condensate as a function of
temperature.

(c) Generalize the above result for an arbitrary dimension d. Is there a
condenstation for d = 2 ? Does this result agree with the result of
question 2.2 under the proper limit ?

2.4 Pauli paramagnetism (27 points)

In this question you will calculate the contribution of the spin of electrons
to their magnetic susceptibility. Consider non-interacting electrons, each
subject to a Hamiltonian

H1 =
p2

2m
− µ0~σ · ~B, (2)

where µ0 = eh̄/2mc, and the eigenvalues of ~σ · ~B are ±B.

(a) The electrons pointing parallel and anti-parallel to the field may be
considered as two separate gases that can exchange particles. Cal-
culate the average number of particles N± in each of the gases as a
function of the fugacity z and the temperature T , using the expression

fν(z) =
1

Γ(ν)
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(3)

(you can read about the properties of fν(z) in most standard text-
books, e.g., Pathria, appendix E, p. 508). For a gas of N electrons,
how can z be determined from N?

(b) Obtain the expression for the magnetization M = µ0(N+ −N−), and
expand the result for small B.

(c) Calculate the leading behavior of the zero field susceptibility χ(T,N) =
∂M/∂B|B=0 at high and low temperatures, and sketch χ(T,N)/N as
a function of T .

2.5 Intermediate statistics (16 points)

Consider a hypothetical system where each quantum state can be occupied
by no more than p particles. Find the mean occupation number of the state
with the energy ε when the chemical potential of the system is µ (system is
considered within the grand-canonical ensemble). Check how the resulting
formula goes into the Fermi or Bose distributions at the proper limits.
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