Statistical Mechanics Fall 2014 — Problem Set 5

due: Wednesday, January 14, 2015

5.1 Recursion relations of \mathbf{n}-vector model ($\mathbf{1 5}$ points)

Consider the Landau-Ginzburg Hamiltonian of the n-vector model

$$
\begin{align*}
\beta \mathcal{H}= & \int d^{d} r\left[\frac{t}{2} \vec{m} \cdot \vec{m}+\frac{1}{2}(\nabla m)^{2}+u(\vec{m} \cdot \vec{m})^{2}\right], \tag{1}\\
& \text { with }(\nabla m)^{2}=\sum_{i=1}^{n} \sum_{\alpha=1}^{d}\left(\partial_{\alpha} m_{i}\right)^{2}, \tag{2}
\end{align*}
$$

where \vec{m} is an n components vector. The recursion relations of this model to leading non-trivial order in u are

$$
\begin{align*}
\frac{d t}{d l} & =2 t+\frac{A_{n} K_{d} \Lambda^{d}}{t+\Lambda^{2}} u \tag{3}\\
\frac{d u}{d l} & =(4-d) u+\frac{B_{n} K_{d} \Lambda^{d}}{\left(t+\Lambda^{2}\right)^{2}} u^{2} \tag{4}
\end{align*}
$$

In class we have derived these recursion relations for the Ising model ($n=1$), yielding $A_{1}=12$ and $B_{1}=36$. Demonstrate that for general n,

$$
\begin{equation*}
A_{n}=4(n+2) \quad ; \quad B_{n}=4(n+8) . \tag{6}
\end{equation*}
$$

Show how these factors are derived using the appropriate diagrams counting.

5.2 Anistotropic criticality (45 points)

In this question we shall consider the Landau-Ginzburg theory of an anisotropic materials, such as liquid crystals, which behave differently along distinct directions, which shall be denoted parallel and perpendicular. Let us assume that the d spatial dimensions are grouped into n parallel directions $x_{\|}$and $d-n$ perpendicular directions x_{\perp}. Consider a one-component field $m\left(x_{\|}, x_{\perp}\right)$ subject to Landau-Ginzburg Hamiltonian, $\beta \mathcal{H}=\beta \mathcal{H}_{0}+U$, with

$$
\begin{align*}
\beta \mathcal{H}_{0} & =\int d^{n} x_{\| \mid} d^{d-n} x_{\perp}\left[\frac{K}{2}\left(\nabla_{\|} m\right)^{2}+\frac{L}{2}\left(\nabla_{\perp}^{2} m\right)^{2}+\frac{t}{2} m^{2}-h m\right] \tag{7}\\
U & =u \int d^{n} x_{\|} d^{d-n} x_{\perp} m^{4} . \tag{8}
\end{align*}
$$

(Note that $\beta \mathcal{H}$ depends on the first gradient in the $x_{\| \mid}$directions, and on the second gradient in the x_{\perp} directions.) In this question we shall treat only the unperturbed Hamiltonian \mathcal{H}_{0} (namely $u=0$).
(a) Write $\beta \mathcal{H}_{0}$ in terms of the Fourier transforms $m\left(q_{\|}, q_{\perp}\right)$.
(b) Construct a renormalization group transformation for $\beta \mathcal{H}_{0}$, by rescaling coordinates such that $q_{\| \mid}^{\prime}=b q_{\| \mid}$and $q_{\perp}^{\prime}=c q_{\perp}$ and the field as $m^{\prime}\left(q^{\prime}\right)=m(q) / z$. Note that parallel and perpendicular directions are scaled differently. Write down the recursion relations for K, L, t, and h in terms of b, c, and z (no need to evaluate complicated integrals).
(c) Choose $c(b)$ and $z(b)$ such that $K^{\prime}=K$ and $L^{\prime}=L$. At the resulting fixed point calculate the eigenvalues y_{t} and y_{h} for the rescalings of t and h.
(d) Write the relationship between the (singular parts of) free energies $f(t, h)$ and $f^{\prime}\left(t^{\prime}, h^{\prime}\right)$ in the original and rescaled problems. Hence write the unperturbed free energy in the homogeneous form $f(t, h)=t^{2-\alpha} g_{f}\left(h / t^{\Delta}\right)$, and identify the exponents α and Δ.
(e) How does the unperturbed zero-field susceptibility $\chi(t, h=0)$ diverge as $t \rightarrow 0$?
(f) For $h=0$, calculate the expectation value $\left\langle m(q) m\left(q^{\prime}\right)\right\rangle_{0}$, and the corresponding susceptibility $\left.\chi_{0}(q)=\left.\langle | m_{q}\right|^{2}\right\rangle_{0}$, where q stands for $\left(q_{\|}, q_{\perp}\right)$.

5.3 Long range interactions (40 points)

Long range interactions between spins can be described by adding a term

$$
\begin{equation*}
\int d^{d} x \int d^{d} y J(|x-y|) \vec{m}(x) \cdot \vec{m}(y) \tag{9}
\end{equation*}
$$

to the usual Landau-Ginzburg Hamiltonian.
(a) Show that for $J(r) \sim r^{-d-\sigma}$, the Hamiltonian can be written as

$$
\begin{align*}
\beta \mathcal{H}= & \int \frac{d^{d} q}{(2 \pi)^{d}} \frac{t+K_{2} q^{2}+K_{\sigma} q^{\sigma}+\ldots}{2} \vec{m}(q) \cdot \vec{m}(-q) \tag{10}\\
& +u \int \frac{d^{d} q_{1} d^{d} q_{2} d^{d} q_{3}}{(2 \pi)^{3 d}} \vec{m}\left(q_{1}\right) \cdot \vec{m}\left(q_{2}\right) \vec{m}\left(q_{3}\right) \cdot \vec{m}\left(-q_{1}-q_{2}-q_{3}\right) . \tag{11}
\end{align*}
$$

(b) For $u=0$, construct the recursion relations for $\left(t, K_{2}, K_{\sigma}\right)$ and show that K_{σ} is irrelevant for $\sigma>2$. What is the fixed Hamiltonian in this case?
(c) For $\sigma<2$ and $u=0$, show that the spin rescaling factor must be chosen such that $K_{\sigma}^{\prime}=K_{\sigma}$, in which case K_{2} is irrelevant. What is the fixed Hamiltonian now?
(d) For $\sigma<2$, calculate the generalized Gaussian exponents ν, η, and γ from the recursion relations. Show that u is irrelevant, and hence the Gaussian results are valid, for $d>2 \sigma$.
(e) What is the critical behavior if $J(r) \sim \exp (-r / a)$? Explain.

