Statistical Mechanics Fall 2014 — Problem Set 5

due: Wednesday, January 14, 2015

5.1 Recursion relations of n-vector model (15 points)

Consider the Landau-Ginzburg Hamiltonian of the n-vector model

$$\beta \mathcal{H} = \int d^d r \left[\frac{t}{2} \vec{m} \cdot \vec{m} + \frac{1}{2} (\nabla m)^2 + u (\vec{m} \cdot \vec{m})^2 \right], \tag{1}$$

with
$$(\nabla m)^2 = \sum_{i=1}^n \sum_{\alpha=1}^d (\partial_{\alpha} m_i)^2$$
, (2)

where \vec{m} is an n components vector. The recursion relations of this model to leading non-trivial order in u are

$$\frac{dt}{dl} = 2t + \frac{A_n K_d \Lambda^d}{t + \Lambda^2} u \tag{3}$$

$$\frac{du}{dl} = (4-d)u + \frac{B_n K_d \Lambda^d}{(t+\Lambda^2)^2} u^2 \tag{4}$$

(5)

In class we have derived these recursion relations for the Ising model (n = 1), yielding $A_1 = 12$ and $B_1 = 36$. Demonstrate that for general n,

$$A_n = 4(n+2)$$
 ; $B_n = 4(n+8)$. (6)

Show how these factors are derived using the appropriate diagrams counting.

5.2 Anistotropic criticality (45 points)

In this question we shall consider the Landau-Ginzburg theory of an anisotropic materials, such as liquid crystals, which behave differently along distinct directions, which shall be denoted parallel and perpendicular. Let us assume that the d spatial dimensions are grouped into n parallel directions $x_{||}$ and d-n perpendicular directions x_{\perp} . Consider a one-component field $m(x_{||},x_{\perp})$ subject to Landau-Ginzburg Hamiltonian, $\beta \mathcal{H} = \beta \mathcal{H}_0 + U$, with

$$\beta \mathcal{H}_0 = \int d^n x_{||} d^{d-n} x_{\perp} \left[\frac{K}{2} (\nabla_{||} m)^2 + \frac{L}{2} (\nabla_{\perp}^2 m)^2 + \frac{t}{2} m^2 - hm \right]$$
 (7)

$$U = u \int d^n x_{||} d^{d-n} x_{\perp} m^4. \tag{8}$$

(Note that $\beta \mathcal{H}$ depends on the first gradient in the $x_{||}$ directions, and on the second gradient in the x_{\perp} directions.) In this question we shall treat only the unperturbed Hamiltonian \mathcal{H}_0 (namely u=0).

- (a) Write $\beta \mathcal{H}_0$ in terms of the Fourier transforms $m(q_{||}, q_{\perp})$.
- (b) Construct a renormalization group transformation for $\beta \mathcal{H}_0$, by rescaling coordinates such that $q'_{||} = bq_{||}$ and $q'_{\perp} = cq_{\perp}$ and the field as m'(q') = m(q)/z. Note that parallel and perpendicular directions are scaled differently. Write down the recursion relations for K, L, t, and t in terms of t, t, and t (no need to evaluate complicated integrals).
- (c) Choose c(b) and z(b) such that K' = K and L' = L. At the resulting fixed point calculate the eigenvalues y_t and y_h for the rescalings of t and h.
- (d) Write the relationship between the (singular parts of) free energies f(t,h) and f'(t',h') in the original and rescaled problems. Hence write the unperturbed free energy in the homogeneous form $f(t,h) = t^{2-\alpha}g_f(h/t^{\Delta})$, and identify the exponents α and Δ .
- (e) How does the unperturbed zero-field susceptibility $\chi(t,h=0)$ diverge as $t\to 0$?
- (f) For h=0, calculate the expectation value $\langle m(q)m(q')\rangle_0$, and the corresponding susceptibility $\chi_0(q)=\langle |m_q|^2\rangle_0$, where q stands for $(q_{||},q_{\perp})$.

5.3 Long range interactions (40 points)

Long range interactions between spins can be described by adding a term

$$\int d^d x \int d^d y J(|x-y|) \vec{m}(x) \cdot \vec{m}(y), \tag{9}$$

to the usual Landau-Ginzburg Hamiltonian.

(a) Show that for $J(r) \sim r^{-d-\sigma}$, the Hamiltonian can be written as

$$\beta \mathcal{H} = \int \frac{d^d q}{(2\pi)^d} \frac{t + K_2 q^2 + K_\sigma q^\sigma + \dots}{2} \vec{m}(q) \cdot \vec{m}(-q)$$
 (10)

$$+u\int \frac{d^dq_1d^dq_2d^dq_3}{(2\pi)^{3d}}\vec{m}(q_1)\cdot\vec{m}(q_2)\vec{m}(q_3)\cdot\vec{m}(-q_1-q_2-q_3). \tag{11}$$

- (b) For u=0, construct the recursion relations for (t,K_2,K_σ) and show that K_σ is irrelevant for $\sigma>2$. What is the fixed Hamiltonian in this case?
- (c) For $\sigma < 2$ and u = 0, show that the spin rescaling factor must be chosen such that $K'_{\sigma} = K_{\sigma}$, in which case K_2 is irrelevant. What is the fixed Hamiltonian now?
- (d) For $\sigma < 2$, calculate the generalized Gaussian exponents ν , η , and γ from the recursion relations. Show that u is irrelevant, and hence the Gaussian results are valid, for $d > 2\sigma$.
- (e) What is the critical behavior if $J(r) \sim \exp(-r/a)$? Explain.