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6.1 Fluctuations and dissipation of a damped oscillator (50 points)
A damped harmonic oscillator moving under the action of an external force f(t) obeys the equation of
motion

d2x

dt2
= −ω2

0x− λ
dx

dt
+ f(t) . (1)

Assume that the friction coefficient satisfies λ > 0.

(a) Find the susceptibility χ(ω). Plot its real and imaginary parts, respectively χ′ and χ′′, for three
cases: λ� ω0, λ = 2ω0 and λ� ω0.

(b) Check that χ(ω) is causal, i.e., χ(t) = 0 for t < 0. Examine the singularities of χ(ω) in the
complex ω plane, and show that they lie in the upper half plane. At what value of λ do the poles
begin to sit on the imaginary axis. What does it mean physically?

(c) Using the fluctuation-dissipation theorem, find the correlation function 〈x(0)x(t)〉 at a given tem-
perature T when no external force is applied. Check that 〈x2〉 satisfies the equipartition theorem
(for that you need to recall what is the potential energy here). You can use the following integral:∫ ∞

−∞
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π
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0

. (2)

6.2 Monte Carlo simulation of the fluctuation-dissipation theorem (50 points)
In this question you will examine in a numerical experiment the relation between fluctuations and dissi-
pation in a two-dimensional Ising model with Metropolis dynamics. Consider a two-dimensional Ising
model on an L×L square lattice with periodic boundary conditions. The Hamiltonian of the system in a
time-dependent external field is

H = −J
∑
〈ij〉

sisj −H(t)
∑
i

si, (3)

where si = ±1 are spins, and
∑
〈ij〉 denotes a sum over all nearest-neighbor pairs.

Below, an average in the equilibrium state with H = 0 is denoted by 〈· · · 〉0, while an average over
repeated stochastic evolutions of the system with a given protocol H(t) is denoted by 〈· · · 〉H(t). Use
the previous implementation of the metropolis algorithm with the maximal system size you can simulate
which should be around L = 200.

(a) Begin with no magnetic field, H = 0, and measure the correlation function for the magnetization:
C(t) =

〈
(M(0)− 〈M〉0)(M(t)− 〈M〉0)

〉
0
, where the magnetization is M(t) =

∑
i si(t). Work

at T = 3J . This is above the critical temperature, which is known from Onsager’s exact solution
to be Tc = 2J/ log(1 +

√
2) ≈ 2.27J . Verify that indeed 〈M〉0 = 0 at T = 3J . Note that this was

already measured in one of the previous homework exercises.
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(b) Next, consider the time-dependent magnetic field

H(t) =

{
H0 when t < 0

0 when t > 0
. (4)

Determine how long it takes the system to equilibrate at T = 3J with a small magnetic field H0.
Allow the system to equilibrate at this magnetic field, and then, at time t = 0, turn off the field
and measure M(t). Repeat this protocol many times to find 〈M(t)〉H(t). Compare your results for
C(t) and 〈M(t)〉H(t) on a semi-logarithmic plot.

(c) Use the fluctuation-dissipation theorem to deduce the relation betweenC(t) and 〈M(t)〉H(t). Com-
pare your theoretical predictions with the numerical results. In particular, how does your analytical
ratio between C(t) and 〈M(t)〉H(t) compare with the numerical ratio at t = 0?

Note: Please send your code by email to ronen.vosk@gmail.com.
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