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In this tutorial we shall see how the Ising model can be used to model interacting gasses, and to
probe the liquide-gas transition. This follows Huang, Statistical Mechanics (2nd edition 1987) Ch.
14.2.

1 Ising model reminder
The Ising model is defined over an undirected graph G = (V,E) where on each site i ∈ V there is a
spin si = ±1, and the energy is

HI = −J
∑

(i,j)∈E

sisj − h
∑

si. (1)

The order parameter is the average magnetization M = 1
v

∑
si, where v = |V | is the volume.. For any

lattice in dimension higher than 1 there is a first order phase transition at h = 0 and T < Tc between
an up ferromagnetic state in which M > 0 and a down state in which M < 0. This first order line is
terminated at T = Tc in a second order phase transition. For T > Tc, there is no phase transition at
h = 0, but instead there is a smooth crossover from M > 0 to M < 0. This phenomelogy is similar
to that of the liquid-gas transition. Is there a deeper connection between the two? In the next section
we shall see such connection.

2 Lattice gas
The particles of a real interacting gas live in real space. However, in order to have a model which is
similar to the Ising model we must assume particles that occupy a lattice (or more generally a graph).
We make several additional simplifying assumptions: we assume that in each lattice site there is at
most a single particle, so that for each site there is an occupation variable ni = 0, 1. Clearly, a mapping
between a spin and an occupation variable can be made as follows

si = 2ni − 1 ; ni =
si + 1

2
. (2)

In addition it is assumed that the interactions between particles are nonvanishing only when the two
particles are nearest-neighbors, that is the Hamiltonian is

H̃LG = −ε
∑

(i,j)∈E

ninj . (3)

Notice also that the kinetic energy was ignored. The similarity between Eq.(1) and (3) is already quite
apparent. Using the mapping (2) we get

H̃LG = − ε
4

∑
(i,j)∈E

sisj −
εζ

2

∑
si + const.

1



ζ is the number of nearest neighbors (we assume a regular graph, like a square lattice, in which all
sites have the same number of nearest neighbors). From this we see the correspondance ε = 4J . What
about the magnetic field? In the Ising model the magnetic field is coupled to the magnetization

M =
1

v

∑
si =

1

v

∑
(2ni − 1) = 2ρ− 1, (4)

where ρ ≡ N
v = 1

v

∑
ni is the density of particles. Hence the magnetic field corresponds to a chemical

potential that is coupled to the number of particles. More formally, the partition function is

Q(N) =

′∑
{ni}

e−βH̃LG ,

where
∑′ is a constrained sum over {ni} such that

∑
ni = N . The grand partition function is

L(µ) =
∑

n1...nv

e−βH̃LGeβµ
∑

ni ≡
∑

n1...nv

e−βHLG ,

with
HLG = − ε

4

∑
(i,j)∈E

sisj −
(
µ+

εζ

2

)∑
si + const. (5)

Hence under the mapping

ε = 4J, (6)
h = (µ+ 2Jζ) , (7)

there is equivalence between the Ising Hamiltonian and the lattice gas Hamiltonian.

3 Phase diagram
The order parameter for the lattice gas is the density ρ. The translation of the Ising phenomenology
for the lattice gas is the following: For T > Tc there is no phase transition. For T < Tc, there is a
phase transition at µ = µc ≡ −2Jζ between a high density phase ρ > 1

2 and a low density phase ρ < 1
2 .

At T = Tc there is a second order phase transition.
While for a magnetic system it is natural to work in the constant magnetic field ensemble, which

corresponds to the grand canonical ensemble in the lattcie gas, for the latter a natural ensemble is the
constant total density ensemble. In this ensemble the total density is fixed, and hence any density is
possible. However, below the critical temperature, T < Tc, there is a region of densities which cannot
be obtained in the grand canonical ensemble (corresponding to a magnetization betweenM (T, h→ 0+)
and M (T, h→ 0−)). What happens if the density is set to such value? The answer is that there is a
phase separation: the system decomposes into a region of high density and a region of low density.
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