Different ion-qubit choises

- One electron in the valence shell; "Alkali like" ²S_{1/2} ground state.

hydrogen 1																		helium 2
H																		He
1.0079 lithium	peryllium											Ī	boron	carbon	nitrogen	oxygen	fluorine	4.0026 neon
3	4												5	6	7	8	9	10
Li	Be												В	C	N	0	F	Ne
6.941	9.0122												10.811	12.011	14.007	15,999	18.998	20.180
sodium 11	magnesium 12												aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
Na	Mg												Al	Si	Р	S	CI	Ar
22.990	24.305												26.982	28.086	30.974	32.065	35.453	39.948
potassium	calcium		scandium	titanium	vanadium	chromium	manganese	iron 26	cobalt 27	nickel	copper 29	ZINC	gallium	germanium 32	arsenic	selenium	bromine	krypton
19	20		21	22	23	24	25			28		30	31		33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
39.098 rubidium	585(555)		44.956 yttrium	47.867 zirconium		51.996 molybdenum		46		58.693 palladium				99-03-03-03-03	The second secon	78.96 tellurium		83,80 xenon
39.098 rubidium 37	40.078 strontium 38		44.956 yttrium 39	47.867 zirconium 40	50.942 niobium 41	51.996 molybdenum 42	54.938 technetium 43	55.845 ruthenium 44	58.933 rhodium 45	58.693 palladium 46	63.546 silver 47	65,39 cadmium 48	69.723 indium 49	72.61 tin 50	74.922 antimony 51	78.96 tellurium 52	79.904 iodine	83.80 xenon 54
39.098 rubidium	40.078 strontium		44.956 yttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58.693 palladium	63.546 silver	65,39 cadmium	69.723 indium	72.61 tin	74.922 antimony	78.96 tellurium	79.904 iodine	83,80 xenon
39,098 rubidium 37 Rb 85,468 caesium	40.078 strontium 38 Sr 87.62 barium	F7 70	44.956 yttrium 39 Y 88.906 lutetium	47.867 zirconium 40 Zr 91.224 hafnium	50.942 niobium 41 Nb 92.906 tantalum	51.996 molybdenum 42 Mo 95.94 tungsten	54.938 technetium 43 TC [98] rhenium	ruthenium 44 Ru 101.07 osmium	58.933 rhodium 45 Rh 102.91 iridium	palladium 46 Pd 106.42 platinum	63.546 silver 47 Ag 107.87 gold	65.39 cadmium 48 Cd 112.41 mercury	69.723 indium 49 In 114.82 thallium	72.61 tin 50 Sn 118.71 lead	74.922 antimony 51 Sb 121.76 bismuth	78.96 tellurium 52 Te 127.60 polonium	79.904 iodine 53 1 126.90 astatine	83.80 xenon 54 Xe 131.29 radon
39.098 rubidium 37 Rb 85.468 caesium 55	40.078 strontium 38 Sr 87.62 barium 56	57-70	44.956 yttrium 39 Y 88.906 lutetium 71	47.867 zirconium 40 Zr 91.224 hafnium 72	50.942 niobium 41 Nb 92.906 tantalum 73	51.996 molybdenum 42 Mo 95.94 tungsten 74	54.938 technetium 43 TC [98] rhenium 75	55.845 ruthenium 44 Ru 101.07 osmium 76	58.933 rhodium 45 Rh 102.91 iridium 77	58.693 palladium 46 Pd 106.42 platinum 78	63.546 silver 47 Ag 107.87 gold 79	65.39 cadmium 48 Cd 112.41 mercury 80	69.723 indium 49 In 114.82 thallium 81	72.61 tin 50 Sn 118.71 lead 82	74.922 antimony 51 Sb 121.76 bismuth 83	78.96 tellurium 52 Te 127.60 polonium 84	79,904 lodine 53 126,90 astatine 85	83.80 xenon 54 Xe 131.29 radon 86
39,098 rubidium 37 Rb 85,468 caesium	40.078 strontium 38 Sr 87.62 barium	57-70 X	44.956 yttrium 39 Y 88.906 lutetium	47.867 zirconium 40 Zr 91.224 hafnium	50.942 niobium 41 Nb 92.906 tantalum	51.996 molybdenum 42 Mo 95.94 tungsten	54.938 technetium 43 TC [98] rhenium	ruthenium 44 Ru 101.07 osmium	58.933 rhodium 45 Rh 102.91 iridium	palladium 46 Pd 106.42 platinum	63.546 silver 47 Ag 107.87 gold	65.39 cadmium 48 Cd 112.41 mercury 80	69.723 indium 49 In 114.82 thallium	72.61 tin 50 Sn 118.71 lead	74.922 antimony 51 Sb 121.76 bismuth	78.96 tellurium 52 Te 127.60 polonium	79.904 iodine 53 1 126.90 astatine	83.80 xenon 54 Xe 131.29 radon
39.098 rubidium 37 Rb 85.468 caesium 55 Cs 132.91	40.078 strontium 38 Sr 87.62 barium 56 Ba 137.33	3885 ACCOUNT	44.956 yttrium 39 Y 88.906 lutetium 71 Lu 174.97	47.867 zirconium 40 Zr 91.224 hafinium 72 Hf 178.49	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95	51.996 molybdenum 42 MO 95.94 tungsten 74 W 183.84	54.938 technetium 43 TC [98] rhenium 75 Re 186.21	55.845 ruthenium 44 Ru 101.07 osmium 76 Os 190.23	58,933 rhodium 45 Rh 102,91 iridium 77 Ir 192,22	58,693 palladium 46 Pd 106.42 platinum 78 Pt 195.08	63,546 silver 47 Ag 107,87 gold 79 Au 196,97	65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59	69.723 indium 49 In 114.82 thallium 81	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2	74.922 antimony 51 Sb 121.76 bismuth 83	78.96 tellurium 52 Te 127.60 polonium 84	79,904 lodine 53 126,90 astatine 85	83.80 xenon 54 Xe 131.29 radon 86
39.098 rubidium 37 Rb 85.468 caesium 55 Cs 132.91 francium	40.078 strontium 38 Sr 87.62 barium 56 Ba 137.33	*	44,956 yttrium 39 Y 88,906 lutetium 71 Lu 174,97 lawrencium	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49 rutherfordium	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium	51.996 molybdenum 42 Mo 95.94 tungsten 74 W 183.84 seaborgium	technetium 43 TC [98] rhenium 75 Re 186.21 bohrium	55.845 ruthenium 44 Ru 101.07 osmium 76 Os 190.23 hassium	58,933 rhodium 45 Rh 102.91 iridium 77 Ir 192.22 meitnerium	58.693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium	63,546 silver 47 Ag 107,87 gold 79 Au 196,97 ununulum	65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59	69,723 indium 49 In 114,82 thailium 81	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.904 iodine 53	83.80 xenon 54 Xe 131.29 radon 86 Rn
39,098 rubidium 37 Rb 85,468 caesium 55 CS 132,91 francium 87	40.078 strontium 38 Sr 87.62 barium 56 Ba 137.33	X 89-102	44,956 yttrium 39 Y 88,906 lutetium 71 Lu 174,97 lawrencium 103	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49 rutherfordium 104	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium 105	51.996 molybdenum 42 Mo 95.94 tungsten 74 W 183.84 seaborgium 106	technetium 43 TC [98] rhenium 75 Re 186.21 bohrium 107	ruthenium 44 Ru 101.07 osmium 76 Os 190.23 hassium 108	58.933 rhodium 45 Rh 102.91 iridium 77 Ir 192.22 meitnerium 109	58.693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110	63,546 silver 47 Ag 107,87 gold 79 Au 196,97 unununium 111	65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59	69,723 indium 49 In 114,82 thailium 81	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium 114	74.922 antimony 51 Sb 121.76 bismuth 83 Bi 208.98	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.904 iodine 53	83.80 xenon 54 Xe 131.29 radon 86 Rn
39.098 rubidium 37 Rb 85.468 caesium 55 Cs 132.91 francium	40.078 strontium 38 Sr 87.62 barium 56 Ba 137.33	*	44,956 yttrium 39 Y 88,906 lutetium 71 Lu 174,97 lawrencium	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49 rutherfordium	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium	51.996 molybdenum 42 Mo 95.94 tungsten 74 W 183.84 seaborgium	technetium 43 TC [98] rhenium 75 Re 186.21 bohrium	55.845 ruthenium 44 Ru 101.07 osmium 76 Os 190.23 hassium	58,933 rhodium 45 Rh 102.91 iridium 77 Ir 192.22 meitnerium	58.693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110	63,546 silver 47 Ag 107,87 gold 79 Au 196,97 ununulum	65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59	69,723 indium 49 In 114,82 thailium 81	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2	74.922 antimony 51 Sb 121.76 bismuth 83 Bi 208.98	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.904 iodine 53	83.80 xenon 54 Xe 131.29 radon 86 Rn

*Lanthanide series

* * Actinide series

lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	470.04
actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Electronic levels Structure

Measurement: state selective fluorescence

Optical qubit

Zeeman Qubit Detection

88Sr+ Zeeman Qubit Detection

Expected distributions:
Bright photon detection rate: 73.5 kHz
Dark photon detection rate: 1.75 kHz
D level lifetime: 390 ms
Detection time: 285 µs

Initialization and shelving error: $\varepsilon_{\uparrow} = 1*10^{-3}$; $\varepsilon_{\downarrow} = 0.6*10^{-3}$

Keselman, Glickman, Akerman, Kotler and Ozeri, New J. of Phys. 13, 073027, (2011)

88Sr+ Zeeman Qubit Detection

State discrimination error (10⁻⁴)

Minimal State discrimination error = $0.3*10^{-3}$ @ τ_{det} =285 μ s and $n_{threshold}$ =6

Average Detection fidelity: 0.9989

Measurement: state selective fluorescence

Hyperfine qubit

Error Sources:

- Polarization purity (Bright->dark optical pumping).
- Off resonance dark->bright optical pumping.
- Dark counts (10/S).
- Laser scatter (100/S).

Benefit from:

- Large hyperfine splitting.
- Large angular momentum splitting between bright and dark states.

Threshold test: $\varepsilon \sim 8 \times 10^{-5}$

(C. Langer, Ph.D thesis, 2006) estimated, 200 µsec, no background

Measurement: Photon arrival time analysis

(Myerson et. al. Phys. Rev. Lett. 100, 200502 (2008); Oxford ions) 225 μsec

(As compared with 1.8×10^{-4} threshold error in 420 μ s)

Measurement with CCD

Antiferromagnetic ground-states in quantum magnetism (JQI, Maryland)

- Multiple ions: histograms overlap
- Which ion is bright?
- Slow readout
- Readout noise
- Cross-talk

Highest Camera fidelity (optical qubit; Oxford): 0.9991

Acton et. al., Quant. Inf. Comp. 6, 465, (2006)

Burrell, Szwer, Webster and Lucas Phys. Rev. A 81, 040302, (2010)

Measurement: Other

- Photon detection efficiency:

0.6 NA gives 0.99 in 10 μs and 0.9915 in 100 μs (hyperfine qubit, Duke)
Noek et. al. arXiv1304.3511

- Ancila qubits:
 - Entangled ancila for twice the fluoresence (hyperfine qubit; NIST)
 Schaetz et. al. PRL 94, 010501 (2005)
 - State transfer to a different species ion (optical qubit; NIST)
 Hume et. al. PRL 99, 137205 (2007)

Reviewed in many places e.g. :

- D. Wineland, Les Houches lecture notes. (2003).
- D. Wineland et.al., J. Res. Natl. Inst. Stand. Technol., 103, 259, (1998).
- D. Leibfried et. al., Rev. Mod. Phys., 75, 281, (2003).
- Coupling between the two qubit levels using e.m. traveling plane waves (far-field).

For a single ion:

$$\hat{H}(t) = \hat{H}_0 + \hat{V}(t)$$

$$\hat{H}_0 = \frac{1}{2}\hbar\omega_0\hat{\sigma}_z + \hbar\omega_m(\hat{a}^\dagger\hat{a} + \frac{1}{2}) \text{ and } \hat{V}(t) = \hbar\Omega_0(\hat{\sigma}^+ + \hat{\sigma}^-)\cos(k\hat{x} - \omega t + \phi)$$

$$\hat{\sigma}_{-} = \hat{\sigma}_{x} + i\hat{\sigma}_{y} = |\downarrow\rangle\langle\uparrow|$$

Where:

$$\hat{\sigma}_{+} = \hat{\sigma}_{x} - i\hat{\sigma}_{v} = |\uparrow\rangle\langle\downarrow|$$

Coupling strength

$$x_0 = \sqrt{\frac{\hbar}{2M\omega_m}}$$

$$\mathbf{k}\hat{\mathbf{x}} = k\mathbf{x}_{eq} + k\mathbf{x}_0(\hat{a}^{\dagger} + \hat{a}) \equiv k\mathbf{x}_{eq} + \eta(\hat{a}^{\dagger} + \hat{a})$$

Typp. 0.05-0.2

In the interaction representation and within the Rotating Wave Appr. (RWA)

$$H_{int}(t) = \hbar\Omega_0/2\hat{\sigma}_+ \exp(i\eta(\hat{a}e^{-i\omega_m t} + \hat{a}^{\dagger}e^{i\omega_m t}))e^{i(kt_{eq}+\phi-\delta t)} + H.C.$$

When $\delta = s\omega_{\rm m}$, only $|\downarrow, n\rangle$ and $|\uparrow, n + s\rangle$ will be resonantly coupled (another RWA).

$$\Omega_{n,n+s} = \Omega_{n+s,n} = \Omega_0 |\langle n+s|e^{i\eta(\hat{a}+\hat{a}\dagger)}|n\rangle| \equiv \Omega_0 D_{n+s,n}$$

$$D_{n+s,n} = \exp\left(-\eta^2/2\right) \eta^{|s|} \left(\frac{n_!}\right)^{1/2} L_{n_<}^{|s|}(\eta^2) \text{ Debye - Waller factor}$$

Carrier: s = 0

$$\hat{H}_{\text{carrier}} = \frac{\hbar\Omega_{n,n}}{2} (\hat{\sigma}_{+} \exp(i\phi) + \hat{\sigma}_{-} \exp(-i\phi))$$

Red sideband (RSB): s = -1

$$\hat{H}_{\text{RSB}} = \frac{\hbar\Omega_{n-1,n}}{2} \left(\hat{a}\hat{\sigma}_{+} \exp\left(i\phi\right) + \hat{a}^{\dagger}\hat{\sigma}_{-} \exp\left(-i\phi\right) \right)$$

Blue sideband (BSB):
$$s = +1$$
 $\hat{H}_{BSB} = \hat{H}_{int} = \frac{\hbar\Omega_{n+1,n}}{2} \left(\hat{a}^{\dagger} \hat{\sigma}_{+} \exp\left(i\phi\right) + \hat{a}\hat{\sigma}_{-} \exp\left(-i\phi\right) \right)$

Lamb – Dicke regime

$$\eta \sqrt{\langle (\hat{a}^{\dagger} + \hat{a})^2 \rangle} \ll 1$$

$$\Omega_{n,n} \simeq \Omega_0 \left[1 - (n+1/2)\eta^2 \right],$$

$$\Omega_{n-1,n}\simeq\Omega_0n^{1/2}\eta,$$

$$\Omega_{n+1,n} \simeq \Omega_0 (n+1)^{1/2} \eta.$$

- Momentum conservation.
- Bosonic amplification.

Carrier rotations:

Since H_{int} is t independent:

$$|\psi(t)\rangle_{int} = e^{-i\hat{H}_{int}t/\hbar}|\psi(0)\rangle_{int} = e^{-i\theta\vec{\sigma}\cdot\vec{n}}|\psi(0)\rangle_{int} \equiv \hat{R}(\theta,\phi)|\psi(0)\rangle_{int}$$

$$\theta = \Omega_0 t \qquad \qquad \vec{n} = \begin{pmatrix} \cos(\phi) \\ i\sin(\phi) \\ 0 \end{pmatrix}$$

$$\hat{R}(0,\phi,\theta) = \begin{bmatrix} \cos(\theta/2) & -ie^{i\phi}\sin(\theta/2) \\ -ie^{-i\phi}\sin(\theta/2) & \cos(\theta/2) \end{bmatrix}$$

Coherent qubit (carrier) rotations

Any single qubit rotation can be composed of 1-3 pulses

RF qubit (Zeeman or Hyperfine)

Magnetic dipole coupling

$$V(t) = -\hat{\mu} \cdot B_0 \cos(\mathbf{k}\hat{x} - \omega t + \phi)$$

$$\hat{\mu} = \mu_B(g_S \hat{\mathbf{S}} + g_L \hat{\mathbf{L}} + g_I \hat{\mathbf{I}})$$
 $\Omega_0 = \langle \downarrow | \hat{\mu} \cdot \mathbf{B_0} | \uparrow \rangle$

e.g. for a Zeeman qubit:

$$\hat{\mu} = g_S \mu_B \hat{\sigma}$$

$$\approx 2 \approx 1.4 \, \text{MHz/G}$$

Advantages

- Very classical and controlled.

$$\mathbf{B_0} = B_0 \hat{\mathbf{x}}$$

$$\Omega_0 = 2\pi \times 2.8B_0$$
 MHz/G

<u>Disadvantages</u>

- No momentum transfer ($\eta = 0$)
- No single qubit addressing.(... In the far field)

RF qubit (Zeeman or Hyperfine)

Magnetic dipole coupling

$$\varepsilon = 2 \times 10^{-3}$$

Error sources:

- Fluctuations in RF power.
- Relative phase/frequency noise (e.g. B field noise).

Process Tomography of the Identity operation

Process tomography Fidelity

$$F_{proc} = Tr(\chi_{ideal}\chi_{proc}) = 0.997(1)$$

Keselman, Glickman, Akerman, Kotler and Ozeri, New J. of Phys. 13, 073027, (2011)

RF qubit (Zeeman or Hyperfine)

RF qubit (Zeeman or Hyperfine)

Two-photon Raman coupling

- Including the ²P levels we have three (or more) level coupling.
- For large enough Δ excited states are "adiabatically eliminated".
- Back to "effective" two level coupling.

$$\vec{E}_r = \hat{\epsilon}_r E_{r0} \cos(\vec{k}_r \cdot \hat{x} - \omega_r t + \phi_r) \qquad \vec{E}_b = \hat{\epsilon}_b E_{b0} \cos(\vec{k}_b \cdot \hat{x} - \omega_b t + \phi_b)$$

 $\phi = \phi_b - \phi_r$

For a single excited state:

$$\Omega_0 = \frac{E_{r0}E_{b0}}{4\hbar^2} \sum_i \frac{\langle \uparrow | \hat{\mathbf{d}} \cdot \vec{\epsilon_r} | e_i \rangle \langle e_i | \hat{\mathbf{d}} \cdot \vec{\epsilon_b} | \downarrow \rangle}{\Delta_i} \qquad \vec{k} = \Delta \vec{k} = \vec{k}_b - \vec{k}_r$$

Single qubit Raman gates

Stark shifts

$$\hat{H}_{int} = \frac{\hbar\Omega_0}{2} D_{n,n} (\hat{\sigma}_+ e^{i\phi} + \hat{\sigma}_- e^{-i\phi}) + (\Delta_{\uparrow} - \Delta_{\downarrow}) \hat{\sigma}_z$$

$$\Delta_{\uparrow} = \frac{|E_r|^2}{4\hbar^2} \sum_{i} \frac{|\langle \uparrow | \hat{\mathbf{d}} \cdot \vec{\epsilon_r} | e_i \rangle|^2}{\Delta_{i,r}} + \frac{|E_b|^2}{4\hbar^2} \sum_{i} \frac{|\langle \uparrow | \hat{\mathbf{d}} \cdot \vec{\epsilon_b} | e_i \rangle|^2}{\Delta_{i,b}}$$

$$\Delta_{\downarrow} = \frac{|E_r|^2}{4\hbar^2} \sum_{i} \frac{|\langle\downarrow|\hat{\mathbf{d}}\cdot\vec{\epsilon_r}|e_i\rangle|^2}{\Delta_{i,r}} + \frac{|E_b|^2}{4\hbar^2} \sum_{i} \frac{|\langle\downarrow|\hat{\mathbf{d}}\cdot\vec{\epsilon_b}|e_i\rangle|^2}{\Delta_{i,b}}$$

- Differential Stark shift can be tuned to zero with beam polarizations and detuning.

RF qubit (Zeeman or Hyperfine)

Raman carrier transitions: co-propagating beams.

Propagation of the property o

⁴³Ca⁺, Clock transition

 μ S

RF qubit (Zeeman or Hyperfine)

Two-photon Raman coupling

Randomizing gates:

 ε in a $\pi/2$ gate = 0.0048

Number of computational gates

Error sources:

- Laser intensity and beam pointing noise.
- Inelastic spontaneous scattering of photons.
- B field noise.

Knill et. al. PRA, 77, 012307, (2008) (NIST Boulder)

Optical qubit

Optical qubit: Electric Quadruple coupling

Required:

- Ground-state cooling
- Intensity noise-eater.
- Frequency auto-calibration every 100 s.

Error sources:

- Beam pointing~ 0.3%
- Frequency drift 0.3%
- Laser linewidth 0.2%.
- Magnetic field noise 0.1%.

Single qubit gates: Individual addressing

- Spatial: tightly focused laser beams (Innsbruck)
- Spatial: Large gradients in MW fields (NIST)
- Spectral: Large B field gradients (Siegen)
- Spectral: Inhomogeneous dressing field (Weizmann)