# Publications

*Nano Letters.*18:(7)4115-4122. Abstract

We study the role of gold droplets in the initial stage of nanowire growth via the vapor-liquid-solid method. Apart from serving as a collections center for growth species, the gold droplets carry an additional crucial role that necessarily precedes the nanowire emergence, that is, they assist the nucleation of nanocraters with strongly faceted {111}B side walls. Only once these facets become sufficiently large and regular, the gold droplets start nucleating and guiding the growth of nanowires. We show that this dual role of the gold droplets can be detected and monitored by high-energy electron diffraction during growth. Moreover, gold induced formation of craters and the onset of nanowires growth on the {111}B facets inside the craters are confirmed by the results of Monte Carlo simulations. The detailed insight into the growth mechanism of inclined nanowires will help to engineer new and complex nanowire-based device architectures.

*Nano Letters.*17:(12)7520-7527. Abstract

It was recently shown that in situ epitaxial aluminum coating of indium arsenide nanowires is possible and yields superior properties relative to ex-situ evaporation of aluminum (Nat. Mater. 2015, 14, 400-406). We demonstrate a robust and adaptive epitaxial growth protocol satisfying the need for producing an intimate contact between the aluminum superconductor and the indium arsenide nanowire. We show that the (001) indium arsenide substrate allows successful aluminum side coating of reclined indium arsenide nanowires that emerge from (111)B microfacets. A robust, induced hard superconducting gap in the obtained indium arsenide/aluminum core/partial shell nanowires is clearly demonstrated. We compare epitaxial side-coating of round and hexagonal cross-section nanowires and find the surface roughness of the round nanowires to induce a more uniform aluminum profile. Consequently, the extended aluminum grains result in increased strain at the interface with the indium arsenide nanowire, which is found to induce dislocations penetrating into round nanowires only. A unique feature of proposed growth protocol is that it supports in situ epitaxial deposition of aluminum on all three arms of indium arsenide nanowire intersections in a single growth step. Such aluminum coated intersections play a key role in engineering topologically superconducting networks required for Majorana based quantum computation schemes.

*Physical Review X.*7:(2) Abstract

The higher the energy of a particle is above equilibrium, the faster it relaxes because of the growing phase space of available electronic states it can interact with. In the relaxation process, phase coherence is lost, thus limiting high-energy quantum control and manipulation. In one-dimensional systems, high relaxation rates are expected to destabilize electronic quasiparticles. Here, we show that the decoherence induced by relaxation of hot electrons in one-dimensional semiconducting nanowires evolves non-monotonically with energy such that above a certain threshold hot electrons regain stability with increasing energy. We directly observe this phenomenon by visualizing, for the first time, the interference patterns of the quasi-one-dimensional electrons using scanning tunneling microscopy. We visualize the phase coherence length of the one-dimensional electrons, as well as their phase coherence time, captured by crystallographic Fabry-Perot resonators. A remarkable agreement with a theoretical model reveals that the nonmonotonic behavior is driven by the unique manner in which one-dimensional hot electrons interact with the cold electrons occupying the Fermi sea. This newly discovered relaxation profile suggests a high-energy regime for operating quantum applications that necessitate extended coherence or long thermalization times, and may stabilize electronic quasiparticles in one dimension.

*Physical Review B.*94:(12) Abstract

We introduce a coupled-layer construction to describe three-dimensional topological crystalline insulators protected by reflection symmetry. Our approach uses stacks of weakly coupled two-dimensional Chern insulators to produce topological crystalline insulators in one higher dimension, with tunable number and location of surface Dirac cones. As an application of our formalism, we turn to a simplified model of topological crystalline insulator SnTe, showing that its protected surface states can be described using the coupled-layer construction.

*Science advances.*2:(8) Abstract

Fermi arcs are the surface manifestation of the topological nature of Weyl semimetals, enforced by the bulk-boundary correspondence with the bulk Weyl nodes. The surface of tantalum arsenide, similar to that of other members of the Weyl semimetal class, hosts nontopological bands that obscure the exploration of this correspondence. We use the spatial structure of the Fermi arc wave function, probed by scanning tunneling microscopy, as a spectroscopic tool to distinguish and characterize the surface Fermi arc bands. We find that, as opposed to nontopological states, the Fermi arc wave function is weakly affected by the surface potential: it spreads rather uniformly within the unit cell and penetrates deeper into the bulk. Fermi arcs reside predominantly on tantalum sites, from which the topological bulk bands are derived. Furthermore, we identify a correspondence between the Fermi arc dispersion and the energy and momentum of the bulk Weyl nodes that classify this material as topological. We obtain these results by introducing an analysis based on the role the Bloch wave function has in shaping quantum electronic interference patterns. It thus carries broader applicability to the study of other electronic systems and other physical processes.

*Molecular System Biology.*9:656.

*Phys. Rev. B.*86:205127.

_{2+x}Te

_{2−x}Se.

*Phys. Rev. B.*86:165119.

*Nature Physics.*7:939–943.

*Nature.*466:343–346.

_{2−x}Mn

_{x}Te

_{3}.

*Phys. Rev. B.*81:195203.

*Physical Review B.*80:(22) Abstract

We study the distribution of transport current across superconducting Bi2Sr2CaCu2O8 crystals and the vortex flow through the sample edges. We show that the T-x transition is of electrodynamic rather than thermodynamic nature, below which vortex dynamics is governed by the edge inductance instead of the resistance. This allows measurement of the resistance down to 2 orders of magnitude below the transport noise. By irradiating the current contacts the resistive step at vortex melting is shown to be due to loss of c-axis correlations rather than breakdown of quasilong-range order within the a-b planes.

*Phys. Rev. B.*79:064523.

*Physical Review Letters.*101:(15) Abstract

A low concentration of columnar defects is reported to transform a first-order vortex lattice melting line in Bi(2)Sr(2)CaCu(2)O(8) crystals into alternating segments of first- and second-order transitions separated by two critical points. As the density of columnar defects is increased, the critical points shift apart and the range of the intermediate second-order transition expands. The measurement of equilibrium magnetization and the mapping of the melting line down to 27 K was made possible by employment of the shaking technique.

*Phys. Rev. B.*77:214525 .

*Physical Review Letters.*98:(16) Abstract

We study the oxygen doping dependence of the equilibrium first-order melting and second-order glass transitions of vortices in Bi2Sr2CaCu2O8+delta. Doping affects both anisotropy and disorder. Anisotropy scaling is shown to collapse the melting lines only where thermal fluctuations are dominant. Yet, in the region where disorder breaks that scaling, the glass lines are still collapsed. A quantitative fit to melting and replica symmetry-breaking lines of a 2D Ginzburg-Landau model further reveals that disorder amplitude weakens with doping, but to a lesser degree than thermal fluctuations, enhancing the relative role of disorder.

*Phys. Rev. Lett.*99:087001 .

*J. Appl. Phys.*99:08D103 .

*Physical Review Letters.*95:(25) Abstract

The thermodynamic H-T phase diagram of Bi2Sr2CaCu2O8 was mapped by measuring local equilibrium magnetization M(H,T) in the presence of vortex shaking. Two equally sharp first-order magnetization steps are revealed in a single temperature sweep, manifesting a liquid-solid-liquid sequence. In addition, a second-order glass transition line is revealed by a sharp break in the equilibrium M(T) slope. The first- and second-order lines intersect at intermediate temperatures, suggesting the existence of four phases: Bragg glass and vortex crystal at low fields, glass and liquid at higher fields.

*Phys. Rev. B.*72:(144428)1-6.

*Europhys. Lett.*71:110-116.

*J. Appl. Phys.*97:(10M517)1-3.

_{2}Sr

_{2}CaCu

_{2}O

_{8}.

*Phys. Rev. Lett.*95:257004.

*Phys. Rev. Lett.*95:(147201)1-4.

*Phys. Rev. B.*70:(100408(R))1-4.

*Physica C.*369:36-44 .

*Nature .*411:451 - 454.

*Nuclear Instruments & Methods In Physics Research.*364-378.