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Abstract. We report on an effort to make narrow, quasi 1D, wires in thin epilayers

of n*-GaAs, using reactive ion etching (RIE) at accelerating voltages as low as

10 V. We measure depletion widths of the order of 40 nm {while the natural width is
about 20 nm). Magnetoresistance measurements on wires with electrical width of
100-300 nm show the phase coherence length of the elecirons o be temperature
independent below 6 K with a value close to 400 nm. At high magnetic fields

{1—6 T) the magnetoresistance exhibits unusual quasi periodic oscillations, the

crigin of which is unclear,

1. Introduction

Reducing the dimensionality of semiconducting struc-
tures constricts the allowed phase space for charge
carrier scattering, even at elevated temperatures, and
thus may lead to practical devices based on electron
interference. While two-dimensional structures, which are
vertically structured, are the most commonly exploited to
date, one- and zero-dimensional configurations need
additional submicrometre lateral confinement and are
thus more difficult to realize. The easiest and most
common method used to reduce dimensions laterally is
electrostatic confinement provided by metallic gates de-
posited on the surface of the two-dimensional substrate.
The patterned metallic gates, however, are fragile and
complicate the realization of more complex structures;
there is therefore a need for a more robust confinement
method. Dry (plasma) etching (the chemical or physical
eiching of the material by energetic ions), on the other
hand, is a rugged method that precisely transfers the
needed pattern and is highly anisotropic, thus enabling
the creation of small structures with large aspect ratios.
Unfortunately, this technique suffers from a major draw-
back, namely damage caused to the material by the high-
energy ions hitting the surface. This damage is manifested
mainly by the creation of a relatively wide region de-
pleted of conducting carriers near the etched edges of the
patterned structure. It is believed that the cause of this
depletion is most likely deep electron (or hole) traps that
capture the conduction band electrons (or valence band
holes) [1-3].

Much work has been devoted in the past decade to
studying the effects of plasma etching in GaAs. Most
works have dealt with bulk n-GaAs [2, 4-6], or with
heterostructures supporting a two-dimensional electron
gas (2DEG) [7-12], where transport in small structures is
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mostly of a ballistic nature. Surprisingly, very little work
has been published on the fabrication and properties of
n-(GaAs wires where transport is diffusive [1, 13]. In this
paper we show in some detail fabrication using low-
energy dry etching and the characterization of low-
dimensional n-GaAs wires. We make an effort to reduce
the damage by using exceedingly low-energy (10 eV) ions
in the etching process. We first carry out resistance
measurements in order to evaluate the depletion widths
from the edges which are sensitive to the extent of the
surface damage and find that they depend on the ion
energy and plasma gas pressure. We find that even when
we use lowest energy ions the depletion layer is twice as
wide as its natural width from an undamaged surface.
We also measure the temperature dependence of the
phase coherence length, by analysis of weak localization
(WL), and find it to agree with previous reported results
with diffusive one-dimensional wires [14]. Unlike the
prediction of dephasing due to electron-electron inter-
action (1), we find that the phase coherence length
saturates at low temperatures. A surprising quasi periodic
structure is found in the magnetoresistance at higher
magnetic fields, different from the known universal con-
ductance fluctuations (UCF). These fluctuations suggest
the existence of some closed-loop trajectories, containing
Aharonov-Bohm (aB) fluxes, that lead to fluctnations.

2. Sample preparation

A thin, 200 nm thick, n*-GaAs layer, doped to 2.6 x
10'® cm ™3, was grown by molecular beam epitaxy (MBE),
using 2 RIBER 2300 machine, on top of a 500 nm
undoped GaAs buffer on a semi-insulating GaAs sub-
strate. A thin eich stop layer (3 nm wide AlAs) was
inserted below the n*-GaAs layer to facilitate selectivity



of etching. At 4.2 K, the measured sheet resistivity is 45 2
0O~ ! and the mobility is 2880 cm? V™! s~ (as measured
on large samples by standard Hall and Van der Pauw
techniques), leading to a transport mean free path of
some 70 nm. However, local measurements show varia-
tions (of some 20%,) in these figures due to non-uniformi-
ty in the growth.

The material was patterned into narrow wires in the
shape of Hall bars with different widths using electron
beam lithography followed by dry plasma etching. Two
basic shapes were used: short, where the spacing between
the voltage probes is 5 or 10 times the width of the bar
and bar widths vary from 0.15-1.0 um; and long, with one
pair of probes separated by a fixed, 35 um long spacing,
and a second pair separated by a 2 um spacing for bar
widths of 0.2-0.4 um, and 4 um spacing for bar widths of
0.6-1.0 um (see inset in figure 2). The long sample is
essential for suppressing the conductance fluctuations
(cF) to allow a more accurate measurement of WL effects
at small magnetic fields (to be shown later).

Etching is done with a customized, load-locked, ultra
high vacuum (background pressure =~ 107% Torr)
plasma system (Nextral, NE88O0), operating in reactive
ion etching (RIE) mode. Etching is done at two different
plasma conditions, whete in each set of conditions the
pressure, gas flow rate and duration of the process were
kept the same while the accelerating voltage varied. The
process parameters are described in table I (processes A
and B). As seen in table 1, very low accelerating voltages
were used in order to minimize the damage. To preserve
anisotropy, namely vertical channel wails, at the lowest
accelerating voltages, gas pressure was reduced to 1
mTorr, resulting in a much reduced etching rate. For
example, a rate of 90 am min~! at 5 mTorr and 35 V
biasing voltage (process A) dropped to 30 nm min~1! at
ImTorr (process B), necessitating longer etching times.
Some representative scanning electron microscope (SEM)
micrographs are shown in figure 1, iilfustrating the
anisotropic nature of the etching process.

3. Direct resistance measuremenis

It is commonly found that plasma damage leads to excess
depletion from the etched sides into the sample [6, 13],
leading to an electrical width (W) smaller than the
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geometrical width (W,). Since the cross section of the
etched wire is close to being rectangular (figure 1), the
resistance of the wire can be expressed as

(1)

where L is the wire length, W, is the geometrical (or
lithographic) width, p is the sheet resistance (measured in
ohms), and 4 is the total depletion width (from both sides
of the wire). Defining g = (R/L)™%, ¢ =p~1, we can
rewrite equation (1) as

g = o(W, — ). @

Note that the free surface of GaAs is always depleted due
to pinning of the Fermi level near the middle of the gap.
This natural depletion width is given by [15]:

do = (26D, /eNp)'? &)

where @, = 0.7 ¢V is approximately half the gap, e =
12.9¢,, where &, is the dielectric constant of free space,
and Ny, is the donor concentration leading to a one-sided
patural depletion width of about 20 am in our samples.

By measuring ¢ for different W, averaging it over a
few wires (generally threg) with the same width, and
fitting the average g to a linear relation versus W, we
obtained both ¢ and 4 from the slope of the line and its
extrapolation to g = 0, respectively. Corrections to the
non-rectangular cross section of the wires were made by
viewing cleaved (long) lines with a SEM. Resistance
measurements were done at 4.2 K using standard lock-in
techniques are low frequencies with currents of 100 nA-
1 pA, leading to voltage drops of less than 1mV pm™!
(thus avoiding any beating effects).

The results show a strong dependence of the total
depletion width on the accelerating voltage (see figure 2
and table 1). The values for the depletion width, quoted
in table 1, are the total depletion width from both sides of
the wire. We find that the depletion width created using
process B (at lower pressure) is larger than the one
created using process A (at similar accelerating voltages
but at higher pressure), most probably due to the longer
duration of that process. Similar depletion widths as in
process B are also measured using ions with higher
encrgy and higher pressure (and thus shorter etching
time).

Table 1. Process parameters and depletion width. The depletion width here is the total depletion and is twice the depletion

from one side.

Sample Process/ SiCl, flow Pressure Etching time Cathode bias Depletion
no shape {sccm} {(mTorr) {min) voltage (V) width {nm)
1 A/short 25 5 3 35 83

2 50 105

3 75 110

4 100 121

5 Bfiong 10 1 10 11 93

6 20 131

7 35 147
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Figure 1. Cross section of narrow GaAs wires produced with SiCl, RIE processes. The gas pressure for 1mTorr for wires
(@) (c) and 5 mTorr for wire (d}, and the bias voltages were: (3) 35V, (h) 20V, (¢) 11V; (d) 35 V.

0.020 T T T T 717
~
2 (]
= 0015 / .
3. ‘;,;
m} s -
g 0010 =77 <1fslope>=55(2
E B
2 F 5
_?3 -
5 0005 F o Vy=11V -
@) o V,=20V
o V=35V
0.000 M = L 1 PR Y |\_|_ L 1 M
0.0 0.1 02 03 04 05 06 07 08 09 1.0 1.1

Geometrical Width, W, (um)

Figure 2. Dependence of the wires’ conductance on the geometrical
width, W, for different rie bias voltages. The gas pressure for these
processes was 1 mTorr, The total depletion width is the value of W, for
which the conductance is zero. The inset is a SEM micrograph of a fong
wire (0.8 um width): the spacing between voltage probes B and C is
35 um and between C and D is 4 um; the current leads are A and E.

4. Magnetoresistance at low fields: weak localization ative magnetoresistance at low magnetic fields accounted
for by the theory of wL. The theory of wL was first
4.1. Theory developed by Anderson et al [16] and Gorkqv et al [17_}.
It is best understood on the basis of path integrals, in
To characterize further the formed wires we made mag- other words: the conductance of a sample depends on the
netoresistance measurements. We find characteristic neg- electrons’ probabilities of moving from a starting point to
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an end point. This probability can be represented as
Pee = 1 — Py, Where py, is the probability to return, via
backscattering, to the starting point. It is thus enough to
look at p, in some detail in order to find the conductivity
of the sample. The paths that return to the starting
position are special: each path has its time-reversed
analogue, namely, a different path that traces the original
path but in the opposite direction. Because they accumu-
late the same phase (in the absence of magnetic field),
these paths interfere constructively, thus enhancing the
total probability of backscattering. In our sample the
motion of the electrons is diffusive and the tramsport
mean free path (= 70 nm) is smaller than the sample size,
leading to many interference paths and a measurable
negative correction to the Drude conductivity.

Not all the possible backscattered paths contribute to
an increase in the resistance: dephasing scaitering events
(c.g. electron—electron or electron—phonon) will randem-
ize the electron’s phase. The dephasing time, 7,, is the
time needed to change the electron’s phase, randomly, by
the order of 2n. Obviously, time-reversed, backscattered
paths that are travelled in times longer than 7, will have
random phases and will not constructively interfere, thus
not contributing to WL. In other words, paths that extend
over distances greater than the phase coherence length,

Iy = ~/ D1y, where D is the electron’s diffusion constant,
will not participate in the wi effect. Note that a sample of
length L » I, width ¥ and thickness t is considered to
be, with respect to wL, three dimensional (3D} if both W
and ¢ are Jarger than z’¢. If both # and ¢, as in our case,
are smaller than /, the sample is considered one dimen-
sional (1D).

Applying a magnetic field breaks time-reversal sym-
metry, and identical but reversed paths will not acquire
the same phase due to enclosed AR flux, ieading to a
suppression of wWiL. In this case one should consider
another length scale, the magnetic length, defined as:

I = (H/eB)2 @

where B is the magnetic field. In a magnetic field any two
closed trajectories enclosing the same area S but with
opposite directions will acquire an AB phase difference

[18]
_2BS_25 _, @

noB @ ©
where @ is the magnetic flux through the area S and
®, = /e is the elementary magnetic flux quantum. Thus,
a path with area /2, will accumulate an AB phase of 2z
and the negative WL correction to Drude conductivity
due to this path will be lost. In a 1D wire the relevant
area of the trajectories is S =~ WIi,. Thus, in order to
completely destroy Wi, a field higher than B, ~ mh/e Wi,
is needed, where B, is called the critical field. The exact
expression 18] is

B =27 6)

_ Mesoscopic wires in GaAs

We can thus further refine the definition of dimensional-
ity under the influence of magnetic field. In a wire with
W < 1y, I, the behaviour of the wL is 1D, as discussed
before. For W= I, a crossover to 2D WL occurs since
many of the trajectories that interfere constructively are
those with a diameter smaller than [, and hence smaller
than W, making the lateral confinement less important.
For a weakly localized 1D wire, in 2 magnetic field B
perpendicular to the wire axis, Al'tshuler et al [19]
arrived at the following relation:
AR _ R(0) — R(B)

R R(0)
RE[, (-2, EWBNT
LGRS S
W<yl ™

where R = R(0) is the resistance at zero magnetic field.
This formula is important since it enables one to obtain
the phase breaking length, I;, by simply measuring the
magnetoresistance. Choi et al [20, 21] measured the
magnetoresistance of parrow wires made with a low-
mobility (zDEG). By fitting their ¢xperimental results to
the above theory they were able to obtain both W and /.
Similar experiments were done with diffusive n*-GaAs
wires by Geim et al [14, 22] and Taylor et al [23], and
with AlGaAs/GaAs heterostructures by Tkoma ez al [24].
This method was also used by Wind et al [25] and
Echternach et al [261 who measured the temperature
dependence of the magnetoresistance of parrow and thin
metal films. Since at low enough temperatures the dom-
inant inelastic dephasing mechanism is EEI, the phase-
breaking time can be approximated by the Nyquist time

[27]

rN(1D)=( e )m ®)

ek T, /2D
while at high temperatures electron—-phonon interaction
becomes important and determines the phase-breaking
time [25]. Echternach et al [26] found a good agreement
with the T~ 2/% exponent, but they had a relatively large
discrepancy with the prefactor (by-a factor of four).

4.2, Experiments

We measured the longitudinal magnetoresistance R =
R(B) of the fabricated wires as a function of field applied
perpendicular to the wire axis and found a very clear
magnetoresistance peak at zero field and quasi periodic
resistance fluctuations at higher magnetic fields (to be
discussed later). We show in figure 3 data for AR(B)/R(0),
averaged over three nominally identical samples, taken at
4.2 K. The data were taken on the long samples with
geometrical widths of 0.2, 0.3 and 04 um using the
distant spaced probes where the resistance fluctuations
tend to average out to zero. The electrical width of these
wires, W, as deduced from table 1, is 0.07, 0.17 and 0.27
um, respectively, and the magnetic field, B,p, defined as
the field for which 1, = W, is 0.134, 0,023 and 0.009 T,
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Figure 3. Magnetoresistance at different wire widths. The
symbols are the experimental data and the curves are best
fits of equation (7). The fits for the two wider wires stop at
B = B,,, while for the narrowest wire this field value falls
out of the range of the graph.

respectively. Assuming that [, is larger than both the
width, W, and the thickness, £, we fit the experimental
data to equation (7), up to the corresponding value of
B p, thus obtaining J,. We find that the coherence length
changes from 0.4 to 0.33 pm as W changes from 0.07 to
0.27 pm. We note that this decrease with increasing wire
width is contradictory to the expected behaviour of 7,
(given in equation (8) and in [25]), governed by EEl,
suggesting that at this low temperature 7, might be
dominated by another scattering mechanism.

In order to check the validity of the Nyquist formula
we measured the temperature dependence of the longitu-
dinal magnetoresistance of the 0.2 yin wide wires in the
temperature range 1.5-20 K, and observed a power-law
behaviour in the high-temperature range followed by a
saturation below 6 K (figure 4). While the theory predicts
Ty = 3.31 x 10711 T=23 s for our samples, the best fit to

10 et 11 Ll ] I\‘ T 1 T i 1] T 1
% ot . ~ -
B .

Pe- 8k ‘\.\‘ -
§ L |
E g@0.25 ERCMNTTY r 5
ey o200 15 0.38 A
34 g L 42 037 Y
PN )"
Fo L 8 -, i
38 L Soost 20 022 % ]
8 F Zags ] . 1
Essf W0 0.005 0010 GO 0020 ~ ]
& f Magnetic Field, B (Tesla) ]
3 NI P E BT | 1 Lt ||_]:........?'
1 15 2 3 4 5 618 10 L5 2

Temperature, T (K)

Figure 4. Phase coherence time T, Versus emperature in
a wire with 0.2 yum geometrical width, The broken line is a
fit to the data in the range 6 < 7 < 15K giving a slope of
—0.64. For 7 < 6 K we observe saturation in z,. In the
inset we see magnetoresistance data for this wire at
different temperatures and fits to equation (7} from which
we obtained /, and hence T,.
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equations (7) and (8) for 6 < T < 15K gives 7=
(2.45 + 0.21) x 107117~ 0-64£0.04 5 3 reasopably good
agreement. A similar saturation in t, was also reported
by Ikoma et al [24], who attributed it to random
scattering from unintentional magnetic impurities.

The above discrepancy in scaling and saturation of 7y
may in our case also result from dephasing due to
unintentional magnetic impurities or due to some (not
understood) dephasing mechanism off the nearby edges.

5. Magnetoresistance at high fields: conductance
fluctuations

5.1. Theory

As the magnetic field increases (up to 6 T) the conduc-
tance exhibits reproducible fluctuations, shown in figure
5, resembling UCF. In general, conduciance fluctuations
(CF) are a manifestation of the mesoscopic nature of
samples small with respect to the phase-breaking length,
l4. They result from different interference patterns due to
the different configurations of impurities in nominally
identical structures. Unlike wL, where the closed paths

——
: (a) W=03 um, L—Zum ]
o | }WWV‘J\(\ '
EJ. L
Q -
E T
27 0 1e2h ;
g L ]
"U
2 |
S 4
9]
i
W,=0.2 pr, L=2pm
1 L 1 L 1 ) 1 L L ' 1 L
0 1 2 3 4 5 6
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L) 4 T T ¥ T T T ¥ 1] T T
F (b) Wg=0.3 um. L=35pm
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I+
v L .
g
= Tooo1 ez
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=
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Q
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°r

1 2 3 4 5 6
Magnetic Field, B (Tesla)

Figure 5. Conductance fluctuations as a function of
magnetic field. The data were taken on long wires with
geometrical widths 0.2 and 0.3 um. The data in (a) were
measured between the closely spaced probes and in (b)
between the distantly spaced probes. The resistance of the
0.2 um wire Is about 1.4 {30) k(2 for the close (distant)
configuration and is about 0.6 {12) k€2 for the close (distant)
configuration of the 0.3 gm wire.



play a dominant role, in CF the interference of the
forward-scattered paths is important. The Al'tshuler-
Lee-Stone theory of ucr [28, 29] predicts a universal
RMS value for these CF, 8G = ¢%/hh at T = 0, when phase
coherence is maintained over the whole sample. Since in
practice these sample-to-sample fluctuations are hard to
measure, they are generally studied in a single sample asa
function of a changing magnetic field that changes the
phases of the electrons’ wavefunctions. These two meth-
ods are equivalent, and this ‘ergodic hypothesis’ is
proved in [30].

As the temperature Is raised above zero the size of the
fluctuations decreases below 2/h owing to a reduction in
ls and to thermal averaging. A long wire, with W <[, < L,
can be divided into L/I, short segments, each segment
having fluctuations of the order of e?/h. Neglecting
thermal smearing, the size of the ¢F of a long wire is of
the order of [31]

e? f1,\32
0G = constant x " (E‘b) . 9

At T = 0 all interfering electrons have the same energy
and all accumulate the same phase if they traverse the
same path in the material. However, at T > 0, electrons
are energetically spread over an interval of kgT and
accumulate phase differences among themselves, even if
they traverse similar paths. In a time interval z, two
electrons with an energy difference E will accumulate a
phase difference d¢ = tdE/h and travel a distance L =
(Dr)? =~ (hD/SE)? to acquire ¢ of the order of unity.
The thermal length, Ly, is defined such that 6E = kT,
that is

Ly = (hDfkgT)'? (10)

is the length electrons travel in order to accumulate a
phase difference among themselves of order unity. The
effect of thermal smearing is important only when I; » L.
In this case we can divide the energy interval kgT
into N subintervals of magnitude JSE(I;) with N =
ky T/SE(ly) = (I4/Ly)*. Assuming that these intervals are
uncorrelated the rRMs variation of the conductance, 3G
will be reduced by a factor N2 & L/l with respect
to equation (9) [31, 32]

2 L J{1{2
&G = constant x % ;s‘fz ifly» Ly. (11)

Beenakker and Van Houten [33] have evaluated the
unspecified constant which appears in equations (9) and
(11) and have given an interpolation formula that aiso
holds for the intermediate regime [, ~ L.

o2 (1,532 9 {1 \2]-u2
éG=\/3E(—L‘ﬁ) [Hﬂ(f)J (12)
T

where the prefactor is appropriate for our GaAs sample
and a magnetic field higher than B, (equation (6)). The
equivalence between sample-to-sample cF and single-
sample magnetoconductance fluctuations derives from
the fact that the conductance at a field B is uncorrelated
with that at B + AB, when AB is larger than a correlation

Mesoscopic wires in GaAs

field AB_,, [28]. Generally, the correlation field is small
enough not to modify the statistical properties of the
ensemble. The correlation function is given by:

F(AB) = {[G(B) — <G(B)]
x [G(B + AB) — (G(B + AB)]> (13)

where the angle brackets denote averaging over B. Note
that G is just F(0)'2. The correlation field AB,,, is
defined from the correlation function F{AB,,,) = F(0)/2,
and is [31]
ol
AB,,, =2nC - -— 14

or = 27C W, (14)
where the prefactor C(l,, L) decreases from 0.95 for
Iy » Ly to 042 for [, < Ly [33].

3.2. Experiments

Typical data for R(B) taken on the long samples, meas-
ured between the closely spaced probes (2 um) and the
distantly spaced probes (35 um), are shown in figure 5. As
is clearly evident the fluctuations are much smaller in the
distantly spaced configuration {note the different vertical
scales), Averaging 6G and AB_for three nominally identi-
cal wires we obtain for W, = 0.2 um, 6G = 2.25 x 107°
(3.84 x 107%) Q! for the close (distant) configuration
and for W, =03 ym, 6G =245 x 107° (4.66 x 10%)
€71 for the close (distant) configuration. Using D =
0.016 m*s~*, L = 0.17 um (at 4.2 K} and the value of J,
obtained from WL, the results for 6G agree with equation
(12) to within 20%. Also §G(35 um)/8G(2 um) = 0.018
whilst the theoretical value is (2/35)%% = 0.014.

In order to independently estimate [, the correlation
function was calculated and plotted in figure 6. We find
AB,, = 0.092 (0.100) T for the close {distant) configura-
tion in the 0.2 gm wires and AB,,, = 0.039 (0.041) T for
the close (distant) configuration in the 0.3 ym wires. The
ratio between the correlation fields of the different widths
agrees well with the expected ratio (the inverse ratio of

1.0 F
08 |
0s
0.4 [
0z |

0.0

Correlation Function, F

S
[+
1

-04

AB (Tesla)

Figure 6. Normalized correlation function of the
conductance fluctuations of figure 5{(a). The correlation
field, AB,,,, is about 0.08 T in the narrow wire and about
0.04 in the wide wire. Note the oscillating tail of the
correlation function.
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electrical widths). The value for /, obtained from equa-
tion (14) for all widths and probe spacings agrees well
with the value obtained from wr if we take the unspeci-
fied constant in eguation (14) to be about 0.65 (in
agreement with the fact that I, = Ly).

Unexpectedly, the correlation function (figure 6) does
not vanish for fields greater than the correlation field
but keeps fluctuating, suggesting correlation in the fluc-
tuations, or in other words, some periodic fluctuations.
To check that hypothesis we performed a direct Fourier
transform of the fluctuations, in order to obtain their
spectra, and observed rather distinct frequencies (in
B~1), with a most distinct frequency around 0.5-1 T™*
(seen in figure 7). This corresponds to an approximated
area formed by two scattering events separated by the
transport mean free path of our samples (= 70 nm). An
explanation offered by Taylor et al [23] makes use of this
fact.

Among all possible closed trajectories responsible for
WL there are few in which the electron goes through a
very small (say less than 10) number of scatiering events.
The resistance then oscillates due to the change in AB flux
through these trajectories with frequencies f= (2¢/h)S
(see equation (5)), where S is the area of each trajectory.
As in WL, the amplitude of the resistance oscillations
should be proportional to exp(—2{/1,), where ! is the path
length and the factor 2 accounts for the total path length
accumulated by the opposite trajectories. However, un-
like in WL, where the many different frequencies (due to
the large number of trajectories) average out to zero for
B > B, the total averaged amplitude here is finite, For
small trajectorics, with a small number of scattering
events, the path length, I, is related to the area, §, via
! = «S'? where, as examples, « = 4.5 for an equilateral
triangle and « = 3.5 for a circular trajectory. Thus, if we
have a certain number of very similar trajectories (with
similar ¢), the amplitude of their wiL-related CF is

h' 1z 1}'2{"1
a(f)ocexp[—%c(ﬁ) o ] (15

W, =02pm

Power Spectra (a.u.)

S N S S ST MU R
Frequency, f (1/Tesla)

Figure 7. Fourier power specira of the conductance
fluctuations of figure 5{a).
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In figure 8 we plot the logarithmic dependence of the
data presented in figure 7 versus the square root of the
frequency (B~ *#). From the slope of the full line, approx-
imating the average of the data points and the known
value for I, we extract the constant «. We obtain ¢ =~ 4.6
for W =007 pm wires and » & 2.8 for W = 0,17 urm wires
(an unphysically small value for «). Even though the
experimental agreement with this model seems correct at
first sight, it is difficult to picture how it could be realized
in practice with all possible trajectories. For example, the
presence of higher frequencies suggests larger trajector-
ies, but with the same «, namely, trajectories that could not
be fitted into our quasi 1D wires. Note also that the 2D
regions where the ohmic contacts are formed are separ-
ated by more than I, from the quasi 1D channels (see the
inset in figure 2) and thus trajectories that wander there
are totally dephased. Thus, we believe that this explana-
tion is questionable at the present.

Another possibility, which, however, does not give the
same spectral dependence, is that the fluctuations can
originate from Ap fiuxes threading some insulating de-
fects 60 nm and more in size. However, we find no reason
for our n-GaAs samples to have these defects (they could
be accounted for by depletion regions surrounding dis-
locations, but the dislocation density in our samples is
< 10* em ™2, much too small to be observed).

6. Conclusions

We have described in some detail the fabrication and
characterization of low-dimensional n-GaAs wires, 0.15-
1 um wide, Fabrication was done with a low energy (as
low as 10 eV) reactive ion etching process, and demon-
strated the feasibility of anisotropic etching. We find that
the width of the depletion layer from the edges of the wires
is strongly dependent on process parameters but is always
larger than the natural depletion distance. This disap-

Power Spectra (a.u.)

6
Square Root of Frequency, £ '* (Tesla™)

Figure 8. The same Fourier power spectra as in figure 7
plotted on a logarithmic scale versus the square root of the
frequency, The straight lines are fits giving &« =~ 4.6 for the
narrow wire and o = 2.8 for the wide wire,



pointing result is probably due to the low etching rate
and the consequently long etching times of the process.
We measured the low-temperature magnectoresis-
tance of these wires and obtained (via the analysis of
weak localization and the universal conductance fluctua-
tions) the phase-breaking length and its temperature
dependence, and find it to be governed by ¢lectron-elec-
tron interactions at temperatures above 6 K. At lower
temperatures the phase coherence length saturates at
about 400 nm, most probably due to scattering from
magnetic impurities. Surprisingly, the conductance fuc-
tuations at magnetic fields higher than 1 T exhibit a quasi
periodic structure, suggesting Aharonov-Bohm interfer-
ence through some closed loops. These loops could
originate from small insulating regions in the structure
{(of unclear origin) or from small closed trajectories that
contribute to the non-zero net resistance fluctuations.
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