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Abstract. W e  report on an effort to make narrow, quasi lD, wires in thin epilayers 
of n*-GaAs, using reactive ion etching (RIE) at accelerating voltages as low as 
10 V, We measure depletion widths of the  order of 40 nm (while the natural width is 
about 20 nm). Magnetoresistance measurements on wires with electrical width of 
100-300 nm show the phase coherence length of the electrons to be temperature 
independent below 6 K with a value close to 400 nm. At high magnetic fields 
(1-6 T) the magnetoresistance exhibits unusual  quasi periodic oscillations, the 
origin of which is unclear. 

1. Introduction 

Reducing the dimensionality of semiconducting S~IUO 
tures constricts the allowed phase space for charge 
carrier scattering, even at elevated temperatures, and 
thus may lead to practical devices based on electron 
interference. While two-dimensional structures, which are 
vertically structured, are the most commonly exploited to 
date, one- and zero-dimensional configurations need 
additional submicrometre lateral confinement and are 
thus more difficult to realize. The easiest and most 
common method used to reduce dimensions laterally is 
electrostatic confinement provided by metallic gates de- 
posited on the surface of the two-dimensional substrate. 
The pattemed metallic gates, however, are fragile and 
complicate the realization of more complex structures; 
there is therefore a need for a more robust confinement 
method. Dry (plasma) etching (the chemical or physical 
etching of the material by energetic ions), on the other 
hand, is a rugged method that precisely transfers the 
needed pattern and is highly anisotropic, thus enabling 
the creation of small structures with large aspect ratios. 
Unfortunately, this technique suffers from a major draw- 
back, namely damage caused to the material by the high- 
energy ions hitting the surface. This damage is manifested 
mainly by the creation of a relatively wide region de- 
pleted of conducting carriers near the etched edges of the 
pattemed structure. It is believed that the cause of this 
depletion is most likely deep electron (or hole) traps that 
capture the conduction band electrons (or valence band 
holes) [l-31. 

Much work has been devoted in the past decade to 
studying the effects of plasma etching in GaAs. Most 
works have dealt with bulk n-GaAs [2, 4-61, or with 
heterostructures supporting a two-dimensional electron 
gas (ZDEG) [7-121, where transport in small structures is 
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mostly of a ballistic nature. Surprisingly, very little work 
has been published on the fabrication and properties of 
n-GaAs wires where transport is diffusive [l, 131. In this 
paper we show in some detail fabrication using low- 
energy dry etching and the characterization of low- 
dimensional n-GaAs wires. We make an effort to reduce 
the damage by using exceedingly low-energy (10 eV) ions 
in the etching process. We first carry out resistance 
measurements in order to evaluate the depletion widths 
from the edges which are sensitive to the extent of the 
surface damage and find that they depend on the ion 
energy and plasma gas pressure. We find that even when 
we use lowest energy ions the depletion layer is twice as 
wide as its natural width from an undamaged surface. 
We also measure the temperature dependence of the 
phase coherence length, by analysis of weak localization 
(wL), and find it to agree with previous reported results 
with diffusive one-dimensional wires [14]. Unlike the 
prediction of dephasing due to electron-electron inter- 
action (m), we find that the phase coherence length 
saturates at low temperatures. A surprising quasi periodic 
structure is found in the magnetoresistance at higher 
magnetic fields, different from the known universal con- 
ductance fluctuations (UCF). These fluctuations suggest 
the existence of some closed-loop trajectories, containing 
Aharonov-Bohm (AB) fluxes, that lead to fluctuations. 

2. Sample preparation 

A thin, 200 nm thick, n'-GaAs layer, doped to 2.6 x 
lo'* cm+, was grown by molecular beam epitaxy (MBE), 
using a RIBER 2300 machine, on top of a 500nm 
undoped GaAs buffer on a semi-insulating GaAs sub- 
strate. A thin etch stop layer (3 nm wide AIAs) was 
inserted below the n+-GaAs layer to facilitate selectivity 
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of etching. At 4.2 K, the measured sheet resistivity is 45 Q 
U-' and the mobility is 2880 cmz V-' sC1 (as measured 
on large samples by standard Hall and Van der Pauw 
techniques), leading to a transport mean free path of 
some 70 nm. However, local measurements show varia- 
tions (of some 20%) in these figures due to non-uniformi- 
ty in the growth. 

The material was patterned into narrow wires in the 
shape of Hall bars with different widths using electron 
beam lithography followed by dry plasma etching. Two 
basic shapes were used: short, where the spacing between 
the voltage probes is 5 or 10 times the width of the bar 
and bar widths vary from 0.15-1.0 pm; and long, with one 
pair of probes separated by a fixed, 35 pm long spacing 
and a second pair separated by a 2 pm spacing for bar 
widths of 0.2-0.4 pm,  and 4 pm spacing for bar widths of 
0.6-1.0 pm (see inset in figure 2). The long sample is 
essential for suppressing the conductance fluctuations 
(CF) to allow a more accurate measurement of WL effects 
at small magnetic fields (to be shown later). 

Etching is done with a customized, load-locked, ultra 
high vacuum (background pressure lo-' Torr) 
plasma system (Nextral, NE880), operating in reactive 
ion etching (RE) mode. Etching is done at two different 
plasma conditions, where in each set of conditions the 
pressure, gas flow rate and duration of the process were 
kept the same while the accelerating voltage varied. The 
process parameters are described in table 1 (processes A 
and B). As seen in table 1, very low accelerating voltages 
were used in order to minimize the damage. To preserve 
anisotropy, namely vertical channel walls, at the lowest 
accelerating voltages, gas pressure was reduced to 1 
mTorr, resulting in a much reduced etching rate. For 
example, a rate of 90 nm min-' at 5 mTorr and 35 V 
biasing voltage (process A) dropped to 30 nm min-' at 
1 mTorr (process B), necessitating longer etching times. 
Some representative scanning electron microscope (SEM) 
micrographs are shown in figure 1, illustrating the 
anisotropic nature of the etching process. 

3. Direct resistance measurements 

It is commonly found that plasma damage leads to excess 
depletion from the etched sides into the sample [6, 131, 
leading to an electrical width (W) smaller than the 

geometrical width (W,). Since the cross section of the 
etched wire is close to being rectangular (figure l), the 
resistance of the wire can be expressed as 

L 
R = p -  

W, - d 

where L is the wire length, W, is the geometrical (or 
lithographic) width, p is the sheet resistance (measured in 
ohms), and d is the total depletion width (from both sides 
of the wire). Defining g = (R/L)-',  U = p - ' ,  we can 
rewrite equation (1) as 

g = U( w, - d).  

Note that the free surface of GaAs is always depleted due 
to pinning of the Fermi level near the middle of the gap. 
This natural depletion width is given by [15]: 

do = (2&JeN0)''* (3) 

where = 0.7 eV is approximately half the gap, E = 
12.9&,, where c0 is the dielectric constant of free space, 
and N D  is the donor concentration leading to a one-sided 
natural depletion width of about 20 nm in our samples. 

By measuring g for different W,, averaging it over a 
few wires (generally three) with the same width, and 
fitting the average g to a linear relation versus W,, we 
obtained both U and d from the slope of the line and its 
extrapolation to g = 0, respectively. Corrections to the 
non-rectangular cross section of the wires were made by 
viewing cleaved (long) lines with a SEM. Resistance 
measurements were done at 4.2 K using standard lock-in 
techniques are low frequencies with currents of 100 nA- 
1 pA, leading to voltage drops of less than 1 mV pm-' 
(thus avoiding any heating effects). 

The results show a strong dependence of the total 
depletion width on the accelerating voltage (see figure 2 
and table 1). The values for the depletion width, quoted 
in table 1, are the total depletion width from both sides of 
the wire. We find that the depletion width created using 
process B (at lower pressure) is larger than the one 
created using process A (at similar accelerating voltages 
but at higher pressure), most probably due to the longer 
duration of that process. Similar depletion widths as in 
process B are also measured using ions with higher 
energy and higher pressure (and thus shorter etching 
time). 

Table 1. Process parameters and depletion width. The depletion width here is the total depletion and is twice the depletion 
from one side. 

Sample Process1 SiCI, flow Pressure Etching time Cathode bias Depletion 
no shape (SCCM) (mTorr) (min) voltage (VI width (nm) 

~ ~~~~~ 

1 A/short 25 5 3 35 83 
2 50 105 
3 75 110 
4 100 121 

5 
6 
7 

Bllong 10 1 10 11 
20 
35 

93 
131 
147 

2177 
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Figure 1. Cross section ot narrow GaAs wires produced with SiCI, RIE processes. The gas pressure for 1 mTorr tor wires 
(a )  ( c )  and 5 mTorr for wire (d ) .  and the bias voltages were: ( a )  35 V; (b) 20 V: ( c )  11 V; ( d )  35 V. 

Figure 2. Dependence of the wires' conductance on the geometrical 
width, W,, for different RIE bias voltages. The gas pressure for these 
processes was 1 mTorr. The total depletion width is the value of W, for 
which the conductance is zero. The inset is a SEM micrograph of a long 
wire (0.8 pm width): the spacing between voltage probes B and C is 
35 jim and between C and D is 4 pm; the current leads are A and E. 

4. Magnetoresistance at low fields: weak localization 

4.1. Theory 

To characterize further the formed wires we madc mag- 
netoresistance measurements. W e  find characteristic neg- 
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ative magnetoresistance at  l o w  magnetic fields accounted 
for by the theory of WL. The theory of WL was first 
developed by Anderson el al[16] and Gorkov  et al 1171. 
I t  is best understood on the basis of path integrals, in 
other words: the conductance o f  a sample depends on the 
electrons' probabilities of moving  from a starting point to 
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an end point. This probability can be represented as 
pSc = 1 - pba, where pbr is the probability to return, via 
backscattering, to the starting point. It is thus enough to 
look at pbr in some detail in order to find the conductivity 
of the sample. The paths that return to the starting 
position are special: each path has its time-reversed 
analogue, namely, a different path that traces the original 
path but in the opposite direction. Because they accumu- 
late the same phase (in the absence of magnetic field), 
these paths interfere constructively, thus enhancing the 
total probability of backscattering. In our sample the 
motion of the electrons is diffusive and the transport 
mean free path (z 70 nm) is smaller than the sample size, 
leading to many interference paths and a measurable 
negative correction to the Drude conductivity. 

Not all the possible backscattered paths contribute to 
an increase in the resistance: dephasing scattering events 
(e.g. electron-electron or electron-phonon) will random- 
ize the electron’s phase. The dephasing time, T,, is the 
time needed to change the electron’s phase, randomly, by 
the order of 27~. Obviously. time-reversed, backscattered 
paths that are travelled in times longer than rm will have 
random phases and will not constructively interfere, thus 
not contributing to WL. In other words, paths that extend 
over distances greater than the phase coherence length, 
l,,= A. where D is the electron’s diffusion constant, 
wll not participate in the WL effect. Note that a sample of 
length L 4 lm, width Wand thickness c is considered to 
be, with respect to WL, three dimensional (3D) if both W 
and t are larger than l,. If both Wand t, as in our case, 
are smaller than 1, the sample is considered one dimen- 
sional (1D). 

Applying a magnetic field breaks time-reversal sym- 
metry, and identical but reversed paths will not acquire 
the same phase due to enclosed AB flux, leading to a 
suppression of WL. In this case one should consider 
another length scale, the magnetic length, defined as: 

I ,  = (h/eB)’” (4) 

where B is the magnetic field. In a magnetic field any two 
closed trajectories enclosing the same area S but with 
opposite directions will acquire an AB phase difference 
U81 

where @ is the magnetic flux through the area S and 
Do E h/e is the elementary magnetic flux quantum. Thus, 
a path with area d; will accumulate an AB phase of 2n 
and the negative WL correction to Drude conductivity 
due to this path will be lost. In a ID wire the relevant 
area of the trajectories is S z Wl,. Thus, in order to 
completely destroy WL, a field higher than B, z zh/ewl ,  
is needed, where B, is called the critical field. The exact 
expression [lS] is 

We can thus further refine the definition of dimensional- 
ity under the influence of magnetic field. In a wire with 
W <  I,, I ,  the behaviour of the WL is lD, as discussed 

before. For W z  I ,  a crossover to 2D WL occurs since 
many of the trajectories that interfere constructively are 
those with a diameter smaller than l, and hence smaller 
than W ,  making the lateral confinement less important. 

For a weakly localized 1D wire, in a magnetic field B 
perpendicular to the wire axis, Al’tshuler et af [19] 
arrived at the following relation: 

AR - R(0)-R(B) 
R - R(O) 
_ -  

e2wB2 - l / z  
e2 p, - (l;. + 2 > I  

(7) 

- --- 
L nh 3h 

w < I,, 1, 

where R = R(0) is the resistance at zero magnetic field. 
This formula is important since it enables one to obtain 
the phase breaking length, l,, by simply measuring the 
magnetoresistance. Choi et al [20, 211 measured the 
magnetoresistance of narrow wires made with a low- 
mobility (~DEG). By fitting their experimental results to 
the above theory they were able to obtain both Wand l,. 
Similar experiments were done with diffusive n”-GaAs 
wires by Geim et al [14, 221 and Taylor et al [23], and 
with AIGaAs/GaAs heterostructures by Ikoma et al[24]. 
This method was also used by Wind et al [25] and 
Echternach et al [26] who measured the temperature 
dependence of the magnetoresistance of narrow and thin 
metal films. Since at low enough temperatures the dom- 
inant inelastic dephasing mechanism is EEI, the phase- 
breaking time can be approximated by the Nyquist time 
L27I 

while at high temperatures electron-phonon interaction 
becomes important and determines the phase-breaking 
time [25]. Echternach et al[26] found a good agreement 
with the T-’I3 exponent, but they had a relatively large 
discrepancy with the prefactor (by’a factor of four). 

4.2. Experiments 

We measured the longitudinal magnetoresistance R = 
R(B) of the fabricated wires as a function of field applied 
perpendicular to the wire axis and found a very clear 
magnetoresistance peak at zero field and quasi periodic 
resistance fluctuations ‘at higher magnetic fields (to be 
discussed later). We show in figure 3 data for AR(B)/R(O), 
averaged over three nominally identical samples, taken at 
4.2 K. The data were taken on the long samples with 
geometrical widths of 0.2, 0.3 and 0.4 pm using the 
distant spaced probes where the resistance fluctuations 
tend to average out to zero. The electrical width of these 
wires, W ,  as deduced from table 1, is 0.07, 0.17 and 0.27 
pm, respectively, and the magnetic field, B I D ,  defined as 
the field for which 1, = W ,  is 0.134, 0.023 and 0.009 T, 
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0,000 0.005 0.010 0.015 0.020 0.025 0.030 
Magnetic Field, B (Tesla) 

Figure 3. Magnetoresistance at different wire widths. The 
symbols are the experimental data and the curves are best 
fits d equation (7). The fits for the two wider wires stop at 
B z B,,, while for the narrowest wire this field value fails 
out of the range of the graph. 

respectively. Assuming .that l, is larger than both the 
width, W, and the thickness, t, we fit the experimental 
data to equation (7, up to the corresponding value of 
BID, thus obtaining I $ ,  We find that the coherence length 
changes from 0.4 to 0.33 pm as W changes from 0.07 to 
0.27 pm. We note that this decrease with increasing wire 
width is contradictory to the expected behaviour of z4 
(given in equation (8) and in [25]), governed by EEI, 
suggesting that at this low temperature z+ might be 
dominated by another scattering mechanism. 

In order to check the validity of the Nyquist formula 
we measured the temperature dependence of the longitu- 
dinal magnetoresistance of the 0.2 pm wide wires in the 
temperature range 1.5-20 K, and observed a power-law 
behaviour in the high-temperature range followed by a 
saturation below 6 K (figure 4). While the theory predicts 
zN = 3.31 x lo-" T2/' s for our samples, the best fit to 

equations (7) and (8) for 6 < T < 15 K gives q., = 
(2.45 0.21) x 10-'1T-0.64*0.04~, a reasonably good 
agreement. A similar saturation in T+ was also reported 
by Ikoma et al [24], who attributed it to random 
scattering from unintentional magnetic impurities. 

The above discrepancy in scaling and saturation of zN 
may in our case also result from dephasing due to 
unintentional magnetic impurities or due to some (not 
understood) dephasing mechanism off the nearby edges. 

5. Magnetoresistance at high fields: conductance 
fluctuations 

5.1. Theory 

As the magnetic field increases (up to 6 T) the conduc- 
tance exhibits reproducible fluctuations, shown in figure 
5, resembling UCF. In general, conductance fluctuations 
(CF) are a manifestation of the mesoscopic nature of 
samples small with respect to the phase-breaking length, 
l+. They result from different interference patterns due to 
the different configurations of impurities in nominally 
identical structures. Unlike WL, where the closed paths 

0 
$ - z 

6 

u s 
-c1 c 

o I 2 3 4 5 6 

Magnetic Field, B (Tesla) 

'. 
.I. 

*.. 
0 *. 

Magnetic Field, B (Tesla) . 
1 1.5 2 3 4 5 6 7 8  10 15 2 

Temperature, T 6) 
Figure 4. Phase coherence time T~ versus temperature in 
a wire with 0.2pm geometrical width. The broken line is a 
fit to the data in the range 6 < T < 15 K giving a slope of 
-0.64. For T < 6 K we observe saturation in r4.. In the 
inset we see magnetoresistance data for this wire at 
different temperatures and f i t s  to equation (7) from which 
we obtained I4 and hence z4. 
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w,=0.2 pm. k 3 5  pm 

1 2 3 4 5 6 

[ , I  
0 

Magnetic Field, B (Tesla) 

Figure 5. Conductance fluctuations as a function of 
magnetic field. The data were taken on long wires with 
geometrical widths 0.2 and 0.3 pm. The data in (a) were 
measured between the closely spaced probes and in (b) 
between the distantly spaced probes. The resistance of the 
0.2 pm wire is about 1.4 (30) 162 for the  close (distant) 
configuration and is about 0.6 (12) w2 for the close (distant) 
configuration of the 0.3 g n  wire. 
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play a dominant role, in CF the interference of the 
forward-scattered paths is important. The Al'tshuler- 
Lee-Stone theory of UCF [2S, 291 predicts a universal 
RMS value for these CF, bG % e2/h at T = 0, when phase 
coherence is maintained over the whole sample. Since in 
practice these sample-to-sample fluctuations are hard to 
measure, they are generally studied in a single sample as a 
function of a changing magnetic field that changes the 
phases of the electrons' wavefunctions. These two meth- 
ods are equivalent, and this 'ergodic hypothesis' is 
proved in [30]. 

As the temperature is raised above zero the size of the 
fluctuations decreases below ez/h owing to a reduction in 
l ,  and to thermal averaging. A long wire, with W < 1, < L, 
can he divided into Lilo short segments, each segment 
having fluctuations of the order of e2/h. Neglecting 
thermal smearing, the size of the CF of a long wire is of 
the order of [31] 

6G = constant x (9) h L  
At T = 0 all interfering electrons have the same energy 
and all accumulate the same phase if they traverse the 
same path in the material. However, at T > 0, electrons 
are energetically spread over an interval of kBT and 
accumulate phase differences among themselves, even if 
they traverse similar paths. In a time interval t ,  two 
electrons with an energy difference bE will accumulate a 
phase difference 69  s tbE/h and travel a distance L = 
( D C ) " ~  N (hD/Gfi)'/* to acquire 69 of the order of unity. 
The thermal length, L,, is defined such that bfi = kBT, 
that is 

& = (hD/kBT)'/" (10) 
is the length electrons travel in order to accumulate a 
phase difference among themselves of order unity. The 
effect of thermal smearing is important only when lm 9 L,. 
In this case we can divide the energy interval k,T 
into N subintervals of magnitude 6E(I,) with N = 
k,T/bE(l+) = (I,$&)'. Assuming that these intervals are 
uncorrelated the RMS variation of the conductance, bG 
will be reduced by a factor N-1/2 N L,& with respect 
to equation (9) [31, 321 

e' L,l;/' 
h L3j2 

6G = constant x - - i f l m S 4 .  (11) 

Beenakker and Van Houten [33] have evaluated the 
unspecified constant which appears in equations (9) and 
(11) and have given an interpolation formula that also 
holds for the intermediate regime 1, % 4: 

2 -112 

bG = $5 (b)3"[ 1 + 9 (G) 1, ] (12) h L  

where the prefactor is appropriate for our GaAs sample 
and a magnetic field higher than B, (equation (6)). The 
equivalence between sample-to-sample CF and single- 
sample magnetoconductance fluctuations derives from 
the fact that the conductance at a field B is uncorrelated 
with that at B + AB, when AB is larger than a correlation 

field ABcor [28]. Generally, the correlation field is small 
enough not to modify the statistical properties of the 
ensemble. The correlation function is given by: 

F W )  <CG(B) - <G(B))l 
x [G(B + AB) - (G(B + A B ) ) ] )  (13) 

where the angle brackets denote averaging over B. Note 
that 6G is just F(0)"'. The correlation field ABcor is 
defined from the correlation function F(AB,,) F(0)/2, 
and is [31] 

h l  
ABcor = 2rrC - - 

e mm 
where the prefactor C(l+ 4) decreases from 0.95 for 
1, 9 I& to 0.42 for l ,  < L, [33]. 

5.2. Experiments 

Typical data for R(B) taken on the long samples, meas- 
ured between the closely spaced probes (2 pm) and the 
distantly spaced probes (35 pm), are shown in figure 5. As 
is clearly evident the fluctuations are much smaller in the 
distantly spaced configuration (note the different vertical 
scales). Averaging 6G and ABc for three nominally identi- 
cal wires we obtain for W, = 0.2 pm, SG = 2.25 x lo-' 
(3.84 x lo-*) Q-' for the close (distant) configuration 
and for Wg = 0.3 pm, SG = 2.45 x (4.66 x lo-*) 

for the close (distant) configuration. Using D = 
0.016 mz sC1, L, = 0.17 pm (at 4.2 K) and the value of 1, 
obtained from WL, the results for 6G agree with equation 
(12) to within 20%. Also bG(35 pm)/bG(2 pn) = 0.018 
whilst the theoretical value is (2/35)3/2 = 0.014. 

In order to independently estimate 1, the correlation 
function was calculated and plotted in figure 6. We find 
AB,,, = 0.092 (0.100) T for the close (distant) configura- 
tion in the 0.2 pm wires and ABcor = 0.039 (0.041) T for 
the close (distant) configuration in the 0.3 pm wires. The 
ratio between the correlation fields of the different widths 
agrees well with the expected ratio (the inverse ratio of 

1.0 I- ' ' ' 4 

-0.4 L ' ' ' ' " " ' " " " ' ' " " " " I 
4 - 5 - 4 - 3 - 2 - 1  0 1 2  3 4 5 6 

AB (Tesla) 

Figure 6. Normalized correlation function of the 
conductance fluctuation5 of figure 5(a). The correlation 
field, AB,,,, is about 0.09 T i n  the narrow wire and about 
0.04 in the wide wire. Note the oscillating tail of the 
correlation function. 

2181 



A Ramon et a/ 

electrical widths). The value for I+ obtained from equa- 
tion (14) for all widths and probe spacings agrees well 
with the value obtained from WL if we take the unspeci- 
fied constant in equation (14) to be about 0.65 (in 
agreement with the fact that I+ z &). 

Unexpectedly, the correlation function (figure 6) does 
not vanish for fields greater than the correlation field 
but keeps fluctuating, suggesting correlation in the fluc- 
tuations, or in other words, some periodic fluctuations. 
To check that hypothesis we performed a direct Fourier 
transform of the fluctuations, in order to obtain their 
spectra, and observed rather distinct frequencies (in 
B - I ) ,  with a most distinct frequency around 0.5-1 T-’ 
(seen in figure 7). This corresponds to an approximated 
area formed by two scattering events separated by the 
transport mean free path of ow samples (x 70 nm). An 
explanation offered by Taylor et al[23] makes use of this 
fact. 

Among all possible closed trajectories responsible for 
WL there are few in which the electron goes through a 
very small (say less than 10) number of scattering events. 
The resistance then oscillates due to the change in AB flux 
through these trajectories with frequencies f= (2e/h)S 
(see equation (5)), where S is the area of each trajectory. 
As in WL, the amplitude of the resistance oscillations 
should be proportional to exp(-2l/l+), where I is the path 
length and the factor 2 accounts for the total path length 
accumulated by the opposite trajectories. However, un- 
like in WL, where the many different frequencies (due to 
the large number of trajectories) average out to zero for 
B > B,, the total averaged amplitude here is finite. For 
small trajectories, with a small number of scattering 
events, the path length, I ,  is related to the area, S, via 
1 = where, as examples, a = 4.5 for an equilateral 
triangle and a = 3.5 for a circular trajectory. Thus, if we 
have a certain number of very similar trajectories (with 
similar a), the amplitude of their w-related CF is 

Frequency, f (]/Tesla) 

Figure 7. Fourier power spectra of the  conductance 
fluctuations of figure 5(a). 

In figure 8 we plot the logarithmic dependence of the 
data presented in figure 7 versus the square root of the 
frequency(B-’/Z). From the slope of the full line, approx- 
imating the average of the data points and the known 
value for l+, we extract the constant a. We obtain E z 4.6 
for W = 0.07 pm wires and a x 2.8 for W = 0.17 pm wires 
(an unphysically small value for U). Even though the 
experimental agreement with this model seems correct at 
first sight, it is difficult to picture how it could be realized 
in practice with all possible trajectories. For example, the 
presence of higher frequencies suggests larger trajector- 
ies, but with the same a, namely, trajectories that could not 
be fitted into our quasi 1D wires. Note also that the 2D 
regions where the ohmic contacts are formed are separ- 
ated by more than l+ from the quasi 1D channels (see the 
inset in figure 2) and thus trajectories that wander there 
are totally dephased. Thus, we believe that this explana- 
tion is questionablc at the present. 

Another possibility, which, however, does not give the 
same spectral dependence, is that the fluctuations can 
originate from AB fluxes threading some insulating de- 
fects 60 nm and more in size. However, we find no reason 
for our n-GaAs samples to have these defects (they could 
be accounted for by depletion regions surrounding dis- 
locations, hut the dislocation density in our samples is 
i lo4 cm-’, much too small to be observed). 

6. Conclusions 

We have described in some detail the fabrication and 
characterization of low-dimensional n-GaAs wires, 0.15- 
1 pm wide. Fabrication was done with a low energy (as 
low as 10 eV) reactive ion etching process, and demon- 
strated the feasibility of anisotropic etching. We find that 
the width of the depletion layer from the edges of the wires 
is strongly dependent on process parameters but is always 
larger than the natural depletion distance. This disap- 

0 1 2 3 4 5 6  

Square Root of Frequency, f In (Tesla”’) 

Figure 8. The same Fourier power spectra as in figure 7 
plotted on a logarithmic scale versus the square root of the 
frequency. The straight lines are fi ts  giving a % 4.6 for the 
narrow wire and U % 2.8 for the wide wire. 
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pointing result is probably due to the low etching rate 
and the consequently long etching times of the process. 

We measured the low-temperature magnctoresis- 
tance of these wires and obtained (via the analysis of 
weak localization and the universal conductance fluctua- 
tions) the phase-breaking length and its temperature 
dependence, and find i t  to be governed by electron-elec- 
tron interactions at temperatures above 6 K. At lower 
temperatures the phase coherence length saturates at 
about 400 nm, most probably due to scattering from 
magnetic impurities. Surprisingly, the conductance fluc- 
tuations at  magnetic fields higher than 1 T exhibit a quasi 
periodic structure, suggesting Aharonov-Bohm interfer- 
ence through some closed loops. These loops could 
originate from small insulating regions in the structure 
(of unclear origin) or from small closed trajectories that 
contribute to the non-zero net resistance fiuctuations. 
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