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Crossover from ‘'mesoscopic’ to ‘universal’ phase for
electron transmission in quantum dots

M. Avinun-Kalish!, M. Heiblum', O. Zarchin', D. Mahalu' & V. Umansky'

The measurement of phase in coherent electron systems—that is,
‘mesoscopic’ systems such as quantum dots—can vyield infor-
mation about fundamental transport properties that is not readily
apparent from conductance measurements. Phase measurements
on relatively large quantum dots' recently revealed that the phase
evolution for electrons traversing the dots exhibits a ‘universal’
behaviour, independent of dot size, shape, and electron occu-
pancy>’. Specifically, for quantum dots in the Coulomb blockade
regime, the transmission phase increases monotonically by =
throughout each conductance peak; in the conductance valleys,
the phase returns sharply to its starting value. The expected
mesoscopic features in the phase evolution—related to the dot’s
shape, spin degeneracy or to exchange effects—have not been
observed, and there is at present no satisfactory explanation for
the observed universality in phase behaviour*. Here we report the
results of phase measurements on a series of small quantum dots,
having occupancies of between only 1-20 electrons, where the
phase behaviour for electron transmission should in principle be
easier to interpret. In contrast to the universal behaviour observed
thus far only in the larger dots, we see clear mesoscopic features in
the phase measurements when the dot occupancy is less than ~ 10
electrons. As the occupancy increases, the manner of phase
evolution changes and universal behaviour is recovered for some
14 electrons or more. The identification of a transition from the
expected mesoscopic behaviour to universal phase evolution
should help to direct and constrain theoretical models for the
latter.

The experimental configuration is shown in Fig. 1. The interfero-
meter, formed in a two-dimensional electron gas (a GaAs-AlGaAs
heterostructure), consists of emitter E and collector C constrictions,
each formed by a quantum point contact (QPC), and a few base
regions B in between. The grounded base regions (chemical potential
wp = 0) serve as draining reservoirs, ensuring that interference is
only between two paths®. A centre island separates the incoming
electrons into two paths and embedded within it is the plunger gate
of the quantum dot, which controls the occupancy of the dot. The
transmission phase of the quantum dot adds to the phase gain in the
left arm and is then compared with the phase of the right arm.
Threading a weak magnetic field through the area of the interferom-
eter adds an Aharonov—Bohm (AB) phase to one arm, Apxp =
21 @/ ®,, where ® is the magnetic flux enclosed by the two arms
and @, = h/eis the flux quantum®’. A QPC is coupled capacitively to
the quantum dot, hence sensing its potential—enabling counting of
the electrons in the dot®’.

A simplified model of the quantum dot is a resonant tunnelling
device: a potential well confined between two tunnelling barriers
with quasi-bound resonant states, E,.. The transmission amplitude
exhibits maxima whenever the Fermi energy in the leads, Ep
coincides with E,. Owing to the finite coupling between well and
leads, the levels are broadened to I',, (dwell time ~ h/I",,), with the

transmission through the quantum dot, fqp, described by the Breit—
Wigner expression'® tqp = C,(iI'/2)/(Ex — E,, + il'/2). Here, the
C,s are positive or negative real numbers (since at a zero magnetic
field the hamiltonian is real), depending on the parity of the nth
wavefunction with respect to the ‘in’ and ‘out’ openings of the
quantum dot. The phase of the transmission amplitude evolves by
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Figure 1| SEM micrograph of the device. The two-path interferometer
consists of a patterned high mobility two-dimensional electron gas formed
~53 nm below the surface of a GaAs-AlGaAs heterostructure, with areal
carrier density 7, = 3.3 X 10" cm™ ? and mobility u = 1.6 X

10°cm? V™ 1s! at T = 4.2 K, resulting in an elastic mean free path

I = 14.5 pm. To ensure only two interfering paths from emitter E to collector
C, the reflected and scattered paths are collected by the base B regions
through openings formed between the gates of the reflectors and the
quantum point contacts (QPCs). The ‘switch’ gate turns off the right path to
allow tuning of the quantum dot (QD). The quantum dot is composed of
two QPCs and a middle gate (MG) in between, allowing formation of ‘small’
and ‘large’ dots. The ‘plunger’ gate is embedded in the centre island, and is
connected via a metallic air bridge to the outside in order to allow biasing
without crossing the right (reference) arm of the interferometer. Similarly,
another bridge biases the centre island. The magnetic flux is contained in
the area between the two paths (shown by the dashed lines). The QPC
counting detector, separated from the quantum dot by MG, has its own
current path (shown by the dotted line). The transmission from E to C
oscillates with the AB flux with phase dependent on the transmission phase
of the quantum dot.
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« through each resonance, while the relative phase between adjacent
resonances, determined by C,,, can be 0 or 7 (ref. 11). However, in
contrast, all previous measurements, conducted with relatively large
occupancy quantum dots, consistently led only to positive C,s
(refs 2, 3, and our unpublished data).

A large number of theoretical publications have been devoted to
the puzzle of phase evolution (see recent summary*). They may be
grouped in three main classes. The first class questions whether the
measured phase is the ‘intrinsic transmission phase’ of the quantum
dot or a modified phase due to multiple paths traversing the
interferometer'>"’. The second class considers transport that is
mediated by interplay of more than one quantum state. A common
scenario assumes an existence of a dominant level strongly coupled to
the leads, responsible for shuttling the electrons'*"*. After occupation
the electron is unloaded to a localized level, weakly coupled to the
leads, allowing the dominant level to be free again to transfer another
electron. Hence, the observed phase is only that of the dominant
level. Based on this idea other models examined only two levels, with
one of the levels dominant, adding spins, adding interactions, or
assuming a finite temperature'*'®. Interaction between two levels
was invoked also in a quantum dot where the plunger gate couples
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Figure 2 | Electron counting in the quantum dot by a QPC detector. In the
Coulomb blockade regime we expect Vqp to increase as the plunger gate
voltage Vp increases, eventually reaching Vop = (e/2Cqp) + AE/e, with
Cqp the self capacitance of the dot and ¢/2Cqp the charging energy of the
dot. At this potential, an electron enters the quantum dot and screens the
positive potential induced by the plunger, resulting in a potential drop.
Hence, the quantum dot potential, and consequently the conductance of the
QPC counting detector, exhibit a saw-tooth-like behaviour. The derivative
dIgpc/dVp is a series of negative dips. a, Conductance peaks of the quantum
dot (blue) and the corresponding detector dips (green). The detector proves
the presence of electrons, even though the quantum dot conductance is too
small to be measured. b, The quantum dot is retuned by opening the ‘in’ and
‘out’ QPCs, and changing the voltage on MG in order to allow measurable
conductance of the first few electrons.
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with different strengths to different energy states, leading thus to
avoided level crossing and charge shuttling between levels*. The third
class deals with specific energies where both the imaginary and the
real parts of the transmission coefficient vanish'®. These singular
points, which explain the phase slips in the valleys, might result from
a deviation from a strictly zero-dimensional system* or from the
existence of Fano resonances in the dot*; but they can not explain
the ‘in phase’ behaviour of all peaks. Naturally, one would expect the
breakdown of every model for some tuning parameters, which we,
thus far, have never observed. Still, some models may predict an ‘in
phase’ behaviour for a very large sequence of peaks but not universal
behaviour. We return to this issue later.

At low enough temperatures, both the phase coherence length and
the elastic mean free path exceed the sample size. The current in a
grounded collector is I = (2e*/h) T Vg, where Vg is the voltage
applied between emitter and base, and Tgc is the transmission
probability from emitter to collector®’. The transmission T'g¢ results
from a coherent sum of the two trajectory amplitudes that traverse
the two arms of the interferometer, |tpc|* = Trc and tre = t1 + tx,
where t1 g is the transmission amplitude associated with the left and
right paths, respectively. The phase dependent part is g oc
[tLlltr|cos[Apap + ¢(tr) — ¢(11)] with ¢ (fpr) the corresponding
phases, and ¢(t1) = ¢o(tL) + ¢ qp the accumulated phase in the left
arm. Hence, Txc oscillates as a function of magnetic flux with period
&, with any change in ¢ op leading to a similar change in the phase
of the oscillating collector current.

Measurements were done in a dilution refrigerator (Taice = 20
MK, Tjectrons = 30 mK) with an a.c. excitation voltage Vg = 2-20 pV
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Figure 3 | Phase measurement procedure. a, The quantum dot is first tuned
to conduct, and the AB oscillations (with Vp as a parameter) are monitored
throughout a conductance peak at the chosen values shown in b. Note the
change in amplitude and in phase among the different traces (that are shifted
vertically for clarity). b, The amplitude of the oscillations plotted as a
function of Vp (the coloured points correspond to the coloured traces in a).
The amplitude was determined by a fast Fourier transform. Inset, Fourier
transforms of the oscillations indicating a single AB period corresponding to
an addition of a flux quantum h/e to the area enclosed by the two paths.
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(frequency ~23 Hz). The integrity of the ‘two-path’ interferometer
was verified by observing a single period A® = &, = h/e in the
interference signal (see below), indicating only two-path inter-
ference. Higher orders, with period ®,/n, were at least four orders
of magnitude smaller. The quantum dot was formed by adjusting the
resistance of its ‘in’ and ‘out’ QPCs to be greater than h/2¢*, namely,
in the Coulomb blockade regime. To ensure transport mainly
through one level we tuned the dot to I' < AE, with AE = 0.5 meV
and I' = 30-300 peV, with the temperature being the smallest energy,
ksT < 3 peV. In the ‘constant interaction’ model, the complex
interaction among the electrons is represented by a capacitor Cqp,
leading to a charging energy U = e/2Cqp =~ 1-3 meV. Varying the
plunger gate voltage Vp changes the potential landscape in the
quantum dot and consequently the occupation, N. Classically, for a
certain Vp degeneracy takes place, E(N) = E(N + 1); allowing the
number of electrons to fluctuate between N and N 4 1 with no
energy cost, allowing current flow.

The electron counting detector is a separately biased QPC,
capacitively coupled to the quantum dot*°. The induced potential
in the QPC is VQPC = VQD CQpcf QD/CQPC’ where CQPC is the self
capacitance of the QPC and Cqpc.qp is the mutual capacitance
between quantum dot and QPC detector. Charging the quantum dot
affects Vgpc and the conductance of the QPC, which in turn is
analysed by a small current (20-80 nA). The potential energy of the
quantum dot rises linearly with plunger voltage, reaching eventually
AE + ¢*/2C op, followed by a sharp drop when an electron enters the
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Figure 4 | Phase evolution and coherent conductance for the first few
electrons in the quantum dot. The dotted lines are a guide to the eye.

a, Typical behaviour of the ‘amplitude of AB oscillations’ and the phase for
the first five electrons (N = 1...5). Whereas the first two electrons enter
different orbital states, the following two share the same orbital parity with
the second electron. b, Detailed behaviour of the phase for the first two
electrons in a different device. Note the two-orbital singlet, which is robust
for all tuning parameters. Before the entry of the second electron, the phase
always exhibits a drop—as large as 7/2—independent of how much the
quantum dot is being pinched. It may be related to an onset of Kondo
correlation.
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dot. Indeed, the conductance of the QPC detector exhibited repeti-
tive saw-tooth-like oscillations as a function of Vp, with one period
for every additional electron entering the dot. We measured the
derivative dI gpc/dVp (via applying a small a.c. voltage to the plunger
gate), resulting in easily identifiable dips in the derivative (see Fig. 2).
Note that determining the occupancy of the quantum dot via a
separate detector is necessary since for sufficiently negative Vp the
quantum dot inadvertently pinches off (via the mutual coupling
among the different gates). Consequently, the dot’s conductance
peaks weaken and are impossible to resolve. As seen in Fig. 2a,
the conductance dips of the detector persisted down to
Vp=~—400 mV, much beyond Vp=~—300mV where the conduc-
tance peaks of the quantum dot were too small to resolve. We
carefully retuned the quantum dot without changing its occupancy,
in order to maximize the conductance peaks, allowing reliable phase
measurements (for example, Fig. 2b).

Varying the magnetic field in a range 0-30 mT, after the quantum
dot was tuned to conduct, resulted in relatively high visibility AB
oscillations with a single period AB = ®/area = 2mT (see Fig. 3;
in a different structure AB = 3.5mT). The coherent part of the
transmission (Fig. 3b) and the transmission phase (Figs 4-6) were
both determined from data such as shown in Fig. 3a by performing a
fast complex Fourier transform of the AB oscillations as a function of
VP-

We studied two different configurations of interferometers and
quantum dots, as well as thermally recycled structures (which behave
as different devices after thermal recycling). A single tuning allowed
the addition of only 2-3 electrons without changing drastically
the coupling of the dot to the leads or the symmetry of the inter-
ferometer. Hence, the quantum dot and the interferometer were
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Figure 5 | Two examples of phase evolution for N = 5-8 with different
tuning parameters of the quantum dot and the interferometer. This is to
demonstrate that the features are mesoscopic, that is, sensitive to the dot’s
configuration. Whereas the fifth and sixth electrons remain in similar parity
states for the two tunings, the seventh and eighth electrons are in different
parity orbital states in a and in similar parity orbital states in b.
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retuned after every few added electrons, keeping the occupation
checked with the QPC detector, in order to optimize the visibility and
CB conditions. The measured phase in different occupation regimes
was then patched together in order to obtain a continuous phase
evolution over a wide range of electron occupation. We present in
Figs 4-6 examples of phase and amplitude of the coherent part of the
transmission coefficient for an increasing electron number in the
quantum dot. We did not subtract any extraneous phase that may be
induced in the arms of the interferometer by the varied plunger
voltage since this phase is difficult to determine accurately. However,
we estimated it to be a weak function of Vp and quite small for the
addition of 2-3 electrons at a time.

The phase evolution across the first two conductance peaks and
valleys (the first two electrons entering the dot) already exhibited a
marked deviation from universal behaviour. As demonstrated in the
results of two different dot and interferometer designs, the phase
climbed by © for each of the first two added electrons (Fig. 4).
Moreover, this dependence was robust and independent of a dot’s
tunings. Evidently, the different phase of the first two conductance
peaks suggests that the first two electrons occupy two opposite parity
orbital states, and not one state as assumed thus far*>**. Since the
ground state of a two-electron system must be a singlet®, two
opposite spins occupy the lowest two states. This is not surprising,
since our dots are likely to have a very shallow potential well, and
hence a relatively small single particle level spacing, favouring
an occupation of two levels in order to minimize the Coulomb
repulsion®. We will not speculate here on the reproducible dip in
the phase before the entering of the second electron, which is as
large as w/2 (Fig. 4b). Adding the third and fourth electrons
(Fig. 4a), the phase evolves from 7 to 2w—a similar range to the
second electron. Consequently, these data suggest that the second
to the fourth electrons all occupy similar parity orbital levels.
Similarly, the fifth electron evolves from ~2w to ~ 3w, which is
indistinguishable from a phase evolving from 0 to w of the first
electron.

Figure 5a and b shows the sensitivity of the phase to the tuning
parameters. While the phase in the fifth, sixth and seventh con-
ductance peaks is independent of tuning parameters, the phase of the
eighth electron depends on the tuning parameters. For somewhat
different parameters of the quantum dot, the eighth electron has a
different parity from that of the seventh electron. The above
described examples (Figs 4 and 5) clearly demonstrate a reasonable
phase behaviour, sensitive to details of the potential, by showing spin
degeneracy, exchange interaction, or Cooper channel interaction®.
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Figure 6 | The quantum dot undergoes universal phase evolution after
fourteen electrons have entered. This behaviour is independent of tuning
and is ubiquitous to all measured many-electron dots. Note that the absolute
value of phase (with respect to the phase of the first electron) is difficult to
determine accurately owing to an accumulated phase in the leads or a
distortion of the interferometer, so only its approximate value is noted:
however, the phase span is always .
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This is distinctly different from the repetitive, universal-like, phase
rigidity observed in many electron dots™.

With the addition of more electrons the phase evolves through a
transition region, which resembles universal behaviour (not shown).
The phase climbs throughout each conductance peak and drops in
the valleys, riding though on a rising background phase. However, for
dot occupation of some 14 electrons and higher (Fig. 6), the phase
‘Tlocks’ into the universal behaviour—being then insensitive to the
dot’s tuning. In other words, the intricacies of shape-dependent level
occupation and parity effects disappear altogether.

Since our aim was to explore the validity of the bizarre phase
evolution over a large range of parameters, we may now ask: what
have we learnt from this new set of measurements? First, that there
are two distinct regimes of phase evolution. (1) For occupation 1 to
about 10, the phase evolution is highly sensitive to the dot’s
configuration and occupation. (2) For occupation higher than
about 14, phase evolution is universal-like, with phase ranging only
between 0 and 7, and is independent of the dot’s configuration and
occupation. Whereas regime (1) can be explained by current under-
standing of quantum dots, regime (2) presents difficulties, especially
since screening is expected to be more effective at higher occupations
(possibly leading to single-particle-like behaviour). However, the
absence of phase universality in regime (1) is gratifying for two main
reasons: first, it confirms that our measured phase is indeed the
intrinsic phase of the quantum dot. Otherwise, we would not observe
such distinct differences between dilute and highly populated dots.
Second, we can now comment on some aspects of the existing
theories. An outstanding feature of larger quantum dots is the smaller
level spacing, which might lead to levels overlapping. This will favour
models that invoke transmission mediated through more than one
quantum state.

An illuminating example can be that of a dominant orbital state
strongly coupled to the leads. Such a level can be simply a solution of
Schrodinger’s equation', or alternatively, the higher of any two
sequential levels. The higher level is broader, since it experiences a
lower potential barrier to the leads (Y. Oreg, personal communi-
cation). Consequently, a broader level is likely to be occupied, and
hence responsible for electron shuttling and the similar phase of
many peaks. Still, a theory has to be developed that explains
the robustness of the effect for an extremely large number of
conductance peaks.
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