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The quantum of thermal conductance of ballistic (collisionless) one-
dimensional channels is a unique fundamental constant1. Although 
the quantization of the electrical conductance of one-dimensional 
ballistic conductors has long been experimentally established2, 
demonstrating the quantization of thermal conductance has been 
challenging as it necessitated an accurate measurement of very 
small temperature increase. It has been accomplished for weakly 
interacting systems of phonons3,4, photons5 and electronic Fermi 
liquids6–8; however, it should theoretically also hold in strongly 
interacting systems, such as those in which the fractional quantum 
Hall effect is observed. This effect describes the fractionalization of 
electrons into anyons and chargeless quasiparticles, which in some 
cases can be Majorana fermions2. Because the bulk is incompressible 
in the fractional quantum Hall regime, it is not expected to 
contribute substantially to the thermal conductance, which is 
instead determined by chiral, one-dimensional edge modes. The 
thermal conductance thus reflects the topological properties of the 
fractional quantum Hall electronic system, to which measurements 
of the electrical conductance give no access9–12. Here we report 
measurements of thermal conductance in particle-like (Laughlin–
Jain series) states and the more complex (and less studied) hole-like 
states in a high-mobility two-dimensional electron gas in GaAs–
AlGaAs heterostructures. Hole-like states, which have fractional 
Landau-level fillings of 1/2 to 1, support downstream charged 
modes as well as upstream neutral modes13, and are expected to have 
a thermal conductance that is determined by the net chirality of all 
of their downstream and upstream edge modes. Our results establish 
the universality of the quantization of thermal conductance for 
fractionally charged and neutral modes. Measurements of anyonic 
heat flow provide access to information that is not easily accessible 
from measurements of conductance.

The fractional quantum Hall state, first observed in 1982, still 
provides a spectrum of challenges. The universal quantized electrical 
Hall conductance GH, with current I flowing in downstream, chiral, 
one-dimensional edge modes, is directly related to the filling v of 
Landau levels in the bulk: GH =​ dI/dV =​ vG0, with V the voltage, 
G0 =​ e2/h the quantum of electrical conductance, e the elementary 
charge and h the Planck constant. The nature and number of the 
edge modes are not dictated by topological considerations and may 
take different values for different fractional quantum Hall states at  
the same Landau-level filling9,10. Consequently, the electrical conduct-
ance reflects the number and conductance of downstream charged 
chiral modes, but is independent of the total number of modes, their 
chirality and their character.

The thermal conductance gQ =​ dJQ/dT, with JQ the heat current and 
T the temperature, was studied for a single heat-conducting channel 
first by John Pendry in 19831, who set an upper bound on the thermal 
conductance of gQ =​ κ0T, with κ π= /k h(3 )0

2
B
2  and kB the Boltzmann 

constant. For edge states of Abelian quantum Hall states, both integer 
and fractional, Kane and Fisher10 showed that the thermal conductance 
is closely related to the net number of edge modes: gQ =​ Nnetκ0T, with 
Nnet =​ Nd −​ Nu defined as the difference between the numbers of down-
stream and upstream edge modes10.

Here we extend previous studies of thermal transport3–8 to a strongly 
interacting system provided by the fractional quantum Hall effect2. Our 
aim is to test the notion that the quantum of thermal conductance is 
universal and therefore independent of the charge of the quasiparticles. 
Specifically, we first establish our method by studying non-interacting 
electrons (v =​ 1 and v =​ 2). We then extend the study to the particle-like 
v =​ 1/3 Laughlin state, with electrical conductance GH =​ (1/3)G0 and 
quasiparticle charge e* =​ e/3, which is expected to have one unit of the 
thermal quantum conductance (gQ =​ 1κ0T, without the factor of 1/3). 
Finally, we study the intriguing and complex hole-like states v =​ 2/3, 3/5 
and 4/7, in which case the fractional quantum Hall liquid also supports 
upstream chiral edge modes13; for example, the standard picture of the 
v =​ 2/3 state is a downstream charge mode with electrical conductance 
GH =​ (2/3)G0 and an upstream chargeless (neutral) mode9,10,13–16. In 
general, these topological modes might be augmented by extra pairs of 
counter-propagating modes if the confining potential is soft and if edge 
reconstruction is established16. For v =​ 2/3, because Nnet =​ 0 the heat 
flow must be fully diffusive and so the net thermal conductance should 
approach zero for increasing system size10. For the other hole-like states 
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Figure 1 | Configuration of the device. The device is fabricated in a  
high-mobility two-dimensional electron gas embedded in a GaAs–AlGaAs 
heterostructure. An SEM micrograph of the four-armed device, which has 
a small floating ohmic contact at its centre (green; the depleting groves 
underneath are not visible) and a quantum point contact (QPC) in each 
arm (an air bridge shorts the two sides of the split-gate of the QPC). The 
source (S), drain (D1 and D3) and ground (G) contacts are drawn not 
to scale. In this example, v =​ 2 and QPC2 and QPC4 are fully pinched 
(M ≡​ N =​ 2), while QPC1 and QPC3 transmit only the outmost edge 
mode and fully reflect the inner mode (ti is the transmission coefficient of 
QPCi). The source current (IS, red) impinges on QPC1, which transmits a 
current Iin (here Iin =​ IS/2), which is absorbed in the floating contact. Edge 
modes (green) at potential Vm and temperature Tm move from the floating 
contact into the four arms (in arms 2 and 4 they are fully reflected). Cold 
edge modes, at temperature T0 (blue) arrive from the grounded contacts. 
A resonant (LC) circuit at each drain, with centre frequency f0 =​ 695 kHz 
and bandwidth Δ​f =​ 10–30 kHz, depending on v, filters the signal, which 
is amplified by the voltage pre-amplifier (cooled to 4.2 K) and then by a 
room-temperature amplifier (total gain is about 1,000). The amplified 
signal is measured by a spectrum analyser with similar f0 and Δ​f.
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studied, v =​ 3/5 and v =​ 4/7, the net heat current is expected to propa-
gate in the upstream direction10,12.

Our experimental set-up is based on the core idea put forward in  
ref. 8, wherein the thermal conductance in the integer quantum Hall 
regime was measured. However, here we exploit a more flexible 
implementation: a scanning electron microscopy (SEM) image of the 
‘heart’ of the four-armed structure is shown in Fig. 1 (for a full descrip-
tion of the device, see Extended Data Fig. 1). A DC input power is 
provided by a source voltage VS and driving current IS =​ GHVS, with 
propagating power PS =​ 0.5ISVS. The current impinges on a floating 
reservoir, Iin =​ t1IS, where t1 =​ vQPC1/v is the transmission coefficient of 
quantum point contact 1 (QPC1), vQPC1 is its Landau-level filling and 
v is the filling of the system as a whole. The outgoing current from the 
floating reservoir splits into M arms (M =​ 2, 3 or 4, as determined by 
the QPCs in the arms; equal splitting of the current into the open arms 
is demonstrated in Extended Data Fig. 2), carrying power Pout =​ Pin/N, 
where N is the number of outgoing current-carrying modes, with the 
dissipated power in the reservoir given by Δ​P =​ Pin −​ Pout =​ 0.5IinVS 
(1 −​ N−1). The reservoir reaches a new thermal equilibrium at 
temperature Tm, at which point the dissipated power is equal to the sum 
of the power carried by phonons (to the bulk) and that of the chiral 
edge modes: Δ​P =​ Δ​Pph +​ Δ​Pe. If universality is established, then 

κΔ = . −P N T T0 5 ( ),e 0 m
2

0
2    where T0 is the electron base temperature; 

the heat carried by the phonons is expected to obey βΔ = −P T T( )ph m
5

0
5   ,  

where β is a constant that depends on the size of the heated reservoir17. 
The heat carried by the phonons is negligible in comparison to the 
electronic contribution for Tm <​ 35 mK (ref. 17). The temperature Tm 
is determined from thermal noise measurements in one or two of the 
arms (see Methods).

Deducing the thermal conductance with a reasonable accuracy 
necessitates a careful determination of the parameters of the system. 
A few important considerations are: (i) the gain of the amplification 
chain must be accurately determined (see Methods); (ii) unavoidable 
reflections from the floating small contact should be minimized (found 
to be <​2%, with negligible contribution to undesirable shot noise); 
(iii) excess noise produced by the source contact should be negligible  

(or otherwise must be subtracted); (iv) the outgoing current must 
split equally between all of the conducting arms; (v) full charge and 
temperature equilibration was assumed to take place in the floating 
contact (charging of the floating contact is negligible due to the 
very short charging (RC) time)8; and (vi) heat flow via phonons is 
independent of the number of conducting arms, and depends only on 
the temperature Tm. We address issues concerning propagation length 
and energy flow through the bulk later.

First we elaborate on measurements at v =​ 2, at which two edge 
modes leave the source and QPC1 determines the number of modes 
that impinge on the floating contact. The excess thermal noise Sth was 
measured as a function of Iin for a few different filling factors of the 
QPCs in the arms, vQPCi (Fig. 2a). The temperature Tm, determined 
from the thermal noise (see Methods), is plotted as a function of the 
dissipated power Δ​P in Fig. 2b (in this case T0 =​ 30 mK). Because the 
temperature of the electrons was relatively high in these measurements, 
the phonon contribution was subtracted (as demonstrated in Fig. 2c):  
δ​P =​ Δ​P(Ni, Tm) −​ Δ​P(Nj, Tm), with Ni and Nj the total number 
of outgoing modes from the central floating contact for different 
QPC settings. The normalized coefficient of the dissipated power, 
defined as λ =​ δ​P/(κ0/2), is plotted for six different configurations of  
Δ​N =​ Ni −​ Nj in Fig. 2c. The average thermal conductance of a single 
electronic mode was found to be gQ =​ (0.98 ±​ 0.03)κ0T (where here 
and henceforth T =​ (T0 +​ Tm)/2 and the specified error is the standard  
deviation), in an excellent agreement with the expected quantization 
(Fig. 2c, inset). We also find the phonon coefficient β for the floating  
contact, β ≈​ 3–5 nW K−5. Similar measurements were also performed 
for v =​ 1, for which there are fewer configurations (because there is one 
charge mode in each arm). Here, the average thermal conductance per 
one-dimensional mode was gQ =​ (0.9 ±​ 0.1)κ0T (see Extended Data 
Fig. 3). Note that the error specified for gQ was calculated from only the 
randomly scattered data; systematic errors (if they exist) were neglected 
(see Methods).

We now describe measurements for the most prominent fractional 
state, v =​ 1/3. Because this state is the first filled Landau level of com-
posite fermions (vCF =​ 1), with electronic filling v =​ vCF/(2vCF +​ 1) 
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Figure 2 | Measurements in the integer quantum Hall regime at filling 
v = 2. a, Excess thermal noise Sth plotted as a function of the source 
current IS in three different configurations (N =​ 2, 3 and 4), wherein only 
the outmost mode is transmitted through the QPCs. T0 =​ 30 mK. b, The 
calculated temperature of the floating contact Tm plotted as a function of 
the dissipated power Δ​P in the three configurations. c, Subtracting the 
dissipated power at Tm for different N (where N is the total number of 
outgoing current-carrying modes) eliminates the contribution of the 

phonons. We plot λ =​ δ​P/(κ0/2), with δ​P =​ Δ​P(Ni, Tm) −​ Δ​P(Nj, Tm),  
as function of Tm

2  for six combinations of Ni and Nj (six different  
Δ​N =​ Ni −​ Nj). The open circles are the data and the dashed lines  
are linear least-square fits. Inset, the slopes (gQDN) of the linear fits for 
each of the six combinations (open circles; error bars, standard deviation).  
A linear fit (dashed black line) to these slopes reveals an average thermal 
conductance of gQ =​ (0.98 ±​ 0.03)κ0T for each one-dimensional mode.
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(ref. 18), it harbours a single chiral downstream edge mode. (This is 
expected when the edge potential is sharp; for a soft edge potential, edge 
reconstruction may add pairs of counter-propagating modes, but these 
should not affect the thermal conductance16,19.) Consequently, the  
thermal conductance of this state is expected to be gQ =​ 1κ0T—the same 
as that of the v =​ 1 state. We studied this state in the lower-density sample  
(see Methods), which has a larger floating contact (the measured reflec-
tion coefficient from that contact was about 2%). With a lower electron 
temperature, T0 ≈​ 10 mK, the power dissipation was kept small, thus 
avoiding a large increase in Tm and enabling us to neglect the contri-
bution of the phonons altogether. Source noise (on top of the direct 
current), multiplied by a factor of N−2 =​ M−2 (here and henceforth, 
because each arm has one charge mode, N ≡​ M), was subtracted from 
the measured thermal noise. Because both the electrical conductance 
(GH) and temperature range (Tm) were small, the excess thermal noise 
was small, thereby necessitating a long averaging time.

The dissipated power as a function of T m
2  is plotted in Fig. 3a for two 

configurations, N =​ 4 and N =​ 2, along with the theoretically expected 
dependence for gQ =​ 1κ0T. The absence of a T m

5 -dependent term in δ​P 
is verification that the phonon contribution is negligible. In Fig. 3b we 
plot λ for Δ​N =​ Ni −​Nj =​ 4 −​ 2 =​ 2 as a function of T m

2 , to confirm that 
the phonon contribution is completely eliminated. The average thermal 
conductance is found to be gQ =​ (1.0 ±​ 0.04)κ0T, once again in excellent 
agreement with expectations.

The hole-like states in the first Landau level, with fractional fillings 
1/2 <​ v <​ 1, belong to the same composite-fermion hierarchy as the 
particle-like states. (However, the residual magnetic field that remains 
after flux attachment of two flux quanta is opposite in direction to 
the original field and so edge modes propagate in both chiralities.) 
The composite-fermion filling in these states is related to the actual 
electron fractional filling via v =​ vCF/(2vCF −​ 1). We studied the states 
v =​ 2/3, v =​ 3/5 and v =​ 4/7, which have theoretically predicted thermal 
conductances of gQ =​ 0, gQ =​ −​1κ0T and gQ =​ −​2κ0T, respectively. 
Astonishingly, for v =​ 3/5 and 4/7, heat is expected to propagate in the 
opposite direction to that of the charge current (hence the negative 
signs)10,12; however, the actual sign of the net chirality could not be 
determined with our device configuration.

In our experiment, excited downstream modes leave the floating 
contact, but retain an electrochemical potential and temperature Tm 
equal to those of the floating contact, and propagate along one edge 
of each arm, while excited upstream neutral modes, also heated to Tm, 
emanate from the opposite side of the contact and propagate along 
the other edge of the arm. Charge and neutral modes arrive back from 
the grounded contacts (which are at T0; blue lines in Fig. 1), intermix 
and equilibrate with the hotter downstream modes, thereby returning 
energy to the floating contact. The initial ballistic propagation of 
downstream modes undergoes an inter-edge scattering at long 

enough propagation length, and heat dissipation via the edge modes 
is restricted.

To understand the difference between the quantization of the 
thermal conductance at v =​ 2/3 and at other filling factors, we consider 
a simplified model of thermal transport on an edge of a quantum Hall 
state with one downstream mode (Nd =​ 1) and Nu upstream modes, 
with Nu =​ 1 (see below) at v =​ 2/3, Nu =​ 2 at v =​ 3/5 and Nu =​ 3 at 
v =​ 4/7. Using conservation of energy and adopting Newton’s law of 
cooling for thermal relaxation between counter-propagating modes on 
the same edge, we obtain a linear system of differential equations that 
describes the heat flow in this system (see equations (4)–(7) in 
Methods). We find that for Nu >​ Nd the temperature of the modes 
converges to that of the upstream modes. The temperature difference 
between the downstream mode and the upstream modes vanishes as a 
decaying exponential function of the distance from the floating contact 
(with a relaxation length ξ). When the size of the system is much larger 
than the relaxation length ( ξ�L ), the heat is carried along one edge 
of each arm and the quantization should be precise. In contrast, for 
Nu =​ Nd (as is the case for v =​ 2/3), the temperatures of the modes 
depend only linearly on the distance from the contacts, and the 
temperature difference between the downstream and upstream modes 
remains constant along the edge for a certain length of each arm. 
Consequently, the thermal conductance approaches zero only linearly 
in 1/L: gQ =​ 2κ0T2/(1 +​ L/ξ). Furthermore, because this is true for both 
edges, heat flows equally along both edges of each arm.

We measured the thermal noise in these three hole-like states. The 
total dissipated power (including phonons) for N =​ 4 is plotted as 
function of T m

2  in Fig. 4a, along with the theoretically expected values. 
The normalized power λ, for Δ​N =​ Ni −​Nj =​ 4 −​ 2 =​ 2, is plotted as 
function of T m

2  in Fig. 4b.
The state with vCF =​ 2 or v =​ 2/3 is expected to support an equal 

number of downstream and upstream modes9,10. Our current 
understanding is that there are two downstream modes, each with 
conductance G0/3, and two upstream modes, which are neutral19–21. 
The partitioned charge in a partly pinched QPC (for example, for 
vQPC =​ 1/3) has previously been measured via shot noise21 and has 
been verified to be e* =​ 2e/3 (see Extended Data Fig. 4 for the thermal 
noise and Extended Data Fig. 5 for the shot noise).

The total out-flowing electronic power Δ​P for M = N =​ 4 is plotted 
as function of T m

2  in Fig. 4a (v =​ 2/3, green data); the data deviates from 
the expected zero thermal conductance (solid line). In Fig. 4b we plot 
λ, for Δ​N =​ Ni −​Nj =​ 4 −​ 2 =​ 2, as a function of T m

2  (v =​ 2/3, green 
data). In both measurements, we find a thermal conductance of 
gQ =​ (0.33 ±​ 0.02)κ0T. This value decreased to gQ ≈​ 0.25κ0T when the 
electron temperature was increased to T0 =​ 30 mK. With the two edges 
of each arm being symmetric (a downstream hot mode and an 
upstream cold mode), the thermal conductance in each edge is 
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Figure 3 | Measurements in the fractional quantum Hall regime at 
filling v = 1/3. a, Total power Δ​P carried out by the fractional edge modes 
from the floating contact for two different configurations (N =​ 4, blue; 
N =​ 2 red). The theoretical expectations κΔ = .P N T0 5e 0 m

2  (with no phonon 
contribution in this temperature range) for the two cases are shown as 

solid lines. The root-mean-square of the data points deviates from the 
expected values by 4% for N =​ 4 and 2% for N =​ 2. T0 =​ 10 mK. b, A plot of 
λ/DN =​ δ​P/(κ0/2)/DN, with δ​P =​ Δ​P(Ni =​ 4, Tm) −​ Δ​P(Nj =​ 2, Tm), so any 
phonon contribution is subtracted, as a function of Tm

2 . A linear fit (dashed 
line) to the data gives gQ =​ (1.00 ±​ 0.045)κ0T.
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gQ ≈​ (0.17–0.13)κ0T, which is not a large deviation from the expected 
thermal conductance of zero.

Taking an average arm length of L ≈​ 150 μ​m, we find that ξ ≈​ 30 μ​m  
for T0 =​ 10 mK and ξ ≈​ 20 μ​m for T0 =​ 30 mK. These findings are 
consistent with the increased rate with which energy is exchanged as 
the base temperature is increased. Interestingly, further increases in the 
rate of energy exchange lead to a quantization of thermal conductance 
that improves with increasing temperature. However, non-zero heat 
flow through the bulk cannot be excluded in this case, owing to the low 
thermal conductivity of the edges16.

The state with vCF =​ 3 or v =​ 3/5 is expected to have a single net 
upstream neutral mode (Nu =​ 2, Nd =​ 1), which carries heat in the limit 
of long propagation length. Although the total number of modes that 
are supported by the state is unknown, by gradually pinching a QPC we 
find two clear lower plateaus at vQPC =​ 2/5 and vQPC =​ 1/3, suggesting 
at least two underlying modes (see Extended Data Fig. 5). Shot noise 
of the partitioned current in one of these plateaus revealed a quasipar-
ticle charge of e* =​ 3e/5 (see Extended Data Fig. 5), accompanied by 
upstream neutral modes13.

We plot the total power dissipation Δ​P for N =​ 4 in Fig. 4a, and 
the normalized coefficient λ in Fig. 4b (v =​ 3/5, blue data). We find 
an average thermal conductance gQ =​ (1.04 ±​ 0.03)κ0​T, which agrees 
very well with our expectations. Increasing the electron temperature 
to T0 =​ 30 mK did not alter the result, presumably owing to the short 
equilibration length ξ.

In the state with vCF =​ 4 or v =​ 4/7, Nd −​ Nu =​ −​2 and the equilibra-
tion length is expected to be even shorter (see Methods). Following a 
similar procedure as described above, we observed three plateaus in a 
gradually pinched QPC, at vQPC =​ 3/7, vQPC =​ 2/5 and vQPC =​ 1/3, 
suggesting a larger number of underlying modes (see Extended Data 
Fig. 5). The partitioned quasiparticle charge (measured in any of these 
plateaus) was found to be e* =​ 4e/7. We found a nicely quantized thermal 
conductance of gQ =​ (2.04 ±​ 0.05)κ0​T (Fig. 4a, b), reconfirming, again, 
that the equilibration length is much shorter than the system size 
ξ�L( ).

To summarize, the extraordinarily precise quantization of the electri-
cal Hall conductance is a good example of a topological phenomenon 
in physics. Yet, the conductance is just one signature of the topological 
order, and different orders may exhibit the same conductance. The 
measurement of topological properties that distinguish between such 
orders is a key challenge. We address this challenge here by successfully 
measuring the thermal Hall conductance experimentally. Beyond the 

obvious difficulties associated with the measurement of thermal Hall 
conductance, our measurements indicate that the topological pro-
tection of this quantization is weaker than that of the electrical Hall 
conductance; for example, the thermal conductance might depend on 
the propagation length and on possible heat flow through the bulk.

We verified the value of the quantum of thermal conductance of 
six different quantum Hall states: two integer states, a particle-like 
fractional state and three hole-like states. Our results are consistent 
with the fundamental theory that predicts that fractional modes and 
chargeless modes carry the same heat as the non-interacting electronic 
ones (irrespective of their velocities and of the interaction with other 
chiral modes or the bulk). This type of experiment can be extended to 
other poorly understood quantum Hall states; for example, there are 
important questions about the second Landau level, which might host 
a family of non-Abelian states (such as v =​ 5/2 and v =​ 12/5). Some of 
the proposed topological orders may serve as a platform for universal 
(topologically based) quantum computations. Thus far, these states 
have remained enigmatic, with no definitive proof of their nature. 
Measurements of their thermal conductance would provide compelling 
evidence of their topological order.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Figure 4 | Measurements of the fractional quantum Hall effect at hole-
like states. a, Total power Δ​P carried out from the floating contact by the 
fractional edge modes for N =​ 4 in the three hole-like states as function of 
Tm

2  (v =​ 2/3, green; v =​ 3/5, blue; v =​ 4/7, red). The corresponding expected 
theoretical results, ∆ κ= . ×P N T0 5 4e net 0 m

2 , with Nnetκ0T the expected 
thermal conductance (Nnet =​ 0 for v =​ 2/3, Nnet =​ −​1 for v =​ 3/5 and 
Nnet =​ −​2 for v =​ 4/7), are plotted as solid lines; note that, in our device, we 
see only the absolute value of the thermal conductance. The root-mean-
square of the data points deviates from the expected values by 12% for 

v =​ 3/5 and by 8.5% for v =​ 4/7; deviation in the case of v =​ 2/3 is large  
(see text). T0 =​ 10 mK. b, A plot of λ/DN =​ δ​P/(κ0/2)/DN, with 
δP =​ ΔP(Ni =​ 4, Tm) − Δ​P(Nj =​ 2, Tm), so any phonon contribution is 
subtracted, as function of Tm

2 . The slopes of the linear fits (dashed lines) 
agree quite well with the predictions for the thermal conductance, except 
for the v =​ 2/3 state. Arrows show models of the minimal edge channels for 
each filling factor: solid arrows depict downstream charged modes and 
dashed arrows depict upstream neutral modes.
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Methods
Experimental set-up. An SEM micrograph of the ‘heart’ of the 4-armed structure 
is shown in Fig. 1. A floating small contact (light green), playing the part of the 
floating reservoir, was made in two different sizes: small, about 8 μ​m2, in a 
high-density 2DEG; and large, about 18 μ​m2, in a low-density 2DEG. The four 
arms were formed by chemical etching, each with a main QPC that can be partly 
or fully pinched. The source contact S is located in arm 1, with two cold pre-
amplifiers (cooled to 4.2 K) located in arms 1 and 3 (Extended Data Fig. 1). The 
amplifier (calibrated by shot-noise measurements) measured the thermal voltage 
fluctuations Sυ after they were filtered by an LC circuit (f0 ≈​ 695 kHz and bandwidth 
Δ​f =​ 10–30 kHz, depending on v). The desired current fluctuations were calculated 
using = υS S Gth H

2 .
Device fabrication. Two different heterojunctions, each hosting a 2DEG, were 
used: the high-density 2DEG, used in the integer regime, with electron density 
ne =​ 1.1 ×​ 1011 cm−2, a 4.2-K dark mobility of μ =​ 4 ×​ 106 cm2 V−1 s−1, a 2DEG 
depth below the surface of 113 nm, a spacer to donors of 80 nm and a quantum-well 
width of 30 nm; and the low-density 2DEG, used in the fractional regime, with 
ne =​ 0.88 ×​ 1011 cm−2, a 4.2-K dark mobility of μ =​ 4.6 ×​ 106 cm2 V−1 s−1, a 2DEG 
depth below the surface of 128 nm, a spacer to donors of 95 nm and a quantum-well 
width of 30 nm. Because the electron density tends to decrease near the edge of 
the contacts23, a larger floating contact was fabricated in the low-density 2DEG 
to minimize reflection from the contact. Etched groves under the floating contact 
(not visible in the SEM micrograph) made sure that the impinging current enters 
the bulk of the metal ohmic contact before splitting to the different arms.

After a thorough cleaning of the surface (by plasma ashing and oxide removal), 
contacts were evaporated with an electron-gun evaporator, in a vacuum chamber 
with a base pressure of 1 ×​ 10−8 torr. The evaporation sequence, from the surface 
of the GaAs and up, was: Ni (5 nm), Au (200 nm), Ge (100 nm), Ni (75 nm),  
Au (150 nm). Contacts were alloyed at 450 °C for 50 s.

The TiAu gates of the QPCs were evaporated in the sequence Ti (5 nm),  
Au (20 nm). Split-gate openings were 700 nm in the high-density 2DEG and 850 nm 
in the low-density 2DEG. The split gates were shorted by an air bridge made of  
Ti (20 nm) and Au (480 nm) in a two-layer resist process.
Evaluation of QPCs and contacts. QPCs. All of the QPCs were biased at a gate 
voltage of +​0.3 V during the cooling process. This process makes the QPCs more 
stable and tends to sharpen the confining potential24,25. Yet, in the low-density 
2DEG and at composite fractions, such as v =​ 2/5 and v =​ 4/3, the inner edge mode 
was found to be partly reflected. Even for a zero-bias-cooling process, the QPCs 
always reflected a sizable part of the impinging current.
Source noise. Some ohmic contacts produced noise at high magnetic field (fillings 
v <​ 1/2), which could be related to a lower density near their periphery23. The 
source noise could be as high as about 1.5 ×​ 10−29 A2 Hz−1 at the highest source 
current. In such a case (for v =​ 1/3), the source noise was divided by 4, 9 or 16, 
for N =​ 2, 3 or 4, respectively, and subtracted from the measured thermal noise.
Small floating contact. Reflection was measured by comparing the fully reflected 
current from a pinched QPC (current impinging from the source) and the reflected 
current for N =​ 2 (or larger). The reflection was always less than 2% in all of the 
measured fractional states. Assuming this reflection led to shot noise, its magnitude 
would have been much smaller than the measured thermal noise.
Branching of current to arms. Because the small floating contact might not have the 
same contact resistance in each of the four arms, equal branching of the impinging  
current into each arm must be verified. Hence, the transmitted current(s) into the 
arm(s) of the amplifier(s) was (were) measured when the QPCs in the other arms 
were either open or fully pinched (see Extended Data Fig. 2).
Calibration of the gain. Knowing the gain of the amplification chain is crucial 
for determining the electron temperature Tm. Two calibration regions, each one 
in a different arm, were each composed of an additional QPC and two contacts 
(see Extended Data Fig. 1). Two methods were used to calibrate the gain:  
(i) verification of the well-known quasiparticle charge at a known temperature; 
and (ii) comparison of the gains in different Hall states.

The gain (of the amplification chain, composed of two amplifiers and a spectrum 
analyser) was calibrated using shot-noise measurements. The temperature is first 
determined, independent of the gain, by a linear extrapolation of the noise–current 
curve to zero noise. The intersection point is eVH =​ 2kBT, with VH =​ Ivh/e2 the Hall 
voltage (see Extended Data Fig. 5b). With the transmission coefficient of the QPC 
tQPC and the known quasiparticle charge e*, the gain is determined by matching 
the shot-noise data with the expression for the spectral density of the shot noise, 
SI =​ 2e*ItQPC(1 −​ tQPC)ζ(VH, T), with ζ(x =​ eVS/(2kBT)) =​ coth(x) −​ 1/x, which has 
proved to work quite well in all quantum-Hall-effect regimes.

The gain is an ‘effective’ gain that depends on the bandwidth of the LCRH circuit. 
The gain is proportional to the area under the Lorentzian power response of the 
LCRH circuit; consequently, the ratio of the areas in different filling factors should be  
the same as the ratio between the square of the gains (see Extended Data Fig. 5d).

Combining these two methods provides an accurate determination of the gain 
at each filling factor. It is difficult to determine the systematic errors in the deter-
mination of the gain; however, we checked the effects of slightly modifying the gain 
on the determined temperature Tm, and on the linearity of the data of power 
dissipation versus T m

2 , and found them to be small in comparison with the natural 
scattering of the random errors seen in the figures.
Determining Tm. In a general case of multiple one-dimensional edge modes in 
each of the M arms, the expressions for the dissipated power and the noise are 
complicated. We express the dissipated power in the floating contact as
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The temperature Tm is related to the thermal noise via Sth =​ 2G*kB(Tm −​ T0), with
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where Gi is the conductance of the ith arm8,26–29.
Thermal conductance in hole-like states. (See Extended Data Fig. 6.) Here, 
we discuss heat transport from the floating ohmic contact at the position xm at 
temperature Tm and from the grounded contact at position x0 at a bath temperature 
T0. In the Abelian phases of the fractional quantum Hall regime, we expect to have 
nd modes emanating from the floating ohmic contact (and moving downstream) 
and nu modes emanating from the bath (grounded contacts, moving upstream). In 
the upper edge, nu and nd interchange—nu modes emanate from the floating ohmic 
contact and nd from the bath. For example, for v =​ 1 and v =​ 1/3, nd =​ 1 and nu =​ 0; 
for v =​ 2/3, nd =​ nu =​ 1; and for v =​ 3/5, nd =​ 1 and nu =​ 2. Henceforth, we discuss 
the heat flow only at the lower edge of the arms, and add the contribution from 
the upper edge of the arms at the end of the calculation. To analyse the system, we 
assume that there is a negligible heat flow through the bulk between the lower and 
the upper edges. This assumption might not be always valid.

The counter-propagating modes along one edge emanate from two different 
contacts and are therefore generally at different temperatures. We expect that 
energy will flow from the hot to the cold modes, owing to their interaction, and 
denote the energy current between them by Jt(x). Because thermal energy is 
conserved, we have the following relation between the downstream heat current 
Jd(x), the upstream heat current Ju(x) and Jt(x):
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Using the one-dimensional relation between the heat current and temperature, 
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we obtain the differential relations

=−

=−

n T x
x

j x

n T x
x

j x

d ( )
d

( )

d ( )
d

( )
(1)

d
d
2

t

u
u
2

t

Here jt(x) is the heat current density between the downstream and upstream modes 
(heat exchanged divided by κ0/2). In practice, the physical behaviour of jt(x) can 
be complex because a few upstream and downstream modes with different energy 
relaxation rates are in action and the temperature imbalance between them may 
depend on the position x. However, in a simplified model, we group together all 
downstream modes and all upstream modes, and adopt Newton’s law of cooling, 
which suggests that

ξ
= −j x T x T x( ) 1 [ ( ) ( ) ] (2)t d

2
u

2

This relation is expected to hold for a small temperature difference, and the 
relaxation length ξ is expected to depend on the average temperature. A solution 
of equations (1) and (2) (which we describe below), together with the boundary 
conditions for the lower edge,

=
=

T x T
T x T

( )
( )

(3)d m m

u 0 0

provides a full phenomenological description of the heat flow in the system (with 
nd and nu exchanged for the upper edge).
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By integrating equations (1) and (2) with respect to x, with the boundary 
conditions in equation (3), we obtain the temperature of the downstream mode 
at the lower edge:
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with = / −n n n n n( )d u u d . The temperature of the upstream mode at the lower edge is
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To determine the temperature profile of the modes in the upper edge, we inter-
change nd and nu. The normalized two-terminal thermal conductance coefficient 
(which is unity in case of v =​ 1) is positive by definition and is composed of two 
parts, corresponding to the heat flow along the upper and lower edges. The 
contribution of the lower edge is

κ
≡

− −

. −
=

− − −
−

K
J x J x J

T T
n T x n T x n n T

T T
( ) ( )

0 5 ( )
( ) ( ) ( ) (6)lower

d u p

0 m
2

0
2

d d
lower 2

u u
lower 2

d u 0
2

m
2

0
2

Here, κ= . −J n n T0 5 ( )p 0 d u 0
2  is the persistent heat flow in the system at equili

brium, which is a consequence of the edge being chiral. This heat flow is transverse 
and has no divergence, because the upper edge has an opposite term. We subtract 
it from both edges, because we are interested in the excess thermal noise. 
Substituting equations (4) and (5) into equation (6) (notice that the space-
dependent terms in the numerators cancel out) we obtain

=
−

− ξ/
K n n n

n n
( )

e
(7)L nlower

d d u

d u
( )

where L =​ x0 −​ xm. To obtain Kupper we interchange nu and nd (also in the expression 
for n), which yields
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In the experiment, heat is flowing out of the floating contact from both of its sides, the 
lower and the upper edges of each arm, so that we actually measure the sum of them:
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Using the general expressions given in equations (4), (5) and (7)–(9), we reach 
several conclusions about the structure of the temperature profile and the thermal 
conductance in the fractional quantum Hall states.
v =​ 1 and v =​ 1/3. In these cases, nd =​ 1 and nu =​ 0. An application of equation (4) 
gives =T x T( )d

lower
m  and =T x T( )u

upper
0 , which are independent of x. Moreover, 

with =n 0, equations (7)–(9) give Klower =​ 1, Kupper =​ 0 and K =​ 1, so that, as 
expected, the heat is carried out of the floating contact by the downstream mode 
via the lower edge.
v =​ 2/3. In this case, nu =​ nd =​ 1. However, formally →∞n  as nd →​ nu, so we have 
to take this limit carefully. Doing so, we obtain
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In this case, the temperature depends linearly on x, but the difference between the 
temperatures of the upstream and downstream modes is constant:
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For ξ� L, the upstream and downstream modes do not fully equilibrate and two 
modes (the charge mode at the lower edge and the neutral mode at the upper edge) 
conduct heat. When ξ� L, the system does not conduct electronic heat. The inter-
polation between the two extremes is algebraic.

In our experiment, K was measured for two bath temperatures: for T0 =​ 10 mK 
we measure a normalized thermal conductance K ≈​ 0.33 (and not zero); and for 
T0 =​ 30 mK we find K ≈​ 0.25. Counter-intuitively, the quantization increases as 
the temperature increases. This is explained by the improved equilibration at high 
temperature. Taking and average arm length of L ≈​ 150 μ​m, we find ξ ≈​ 30 μ​m  
for T0 =​ 10 mK and ξ ≈​ 20 μ​m for T0 =​ 30 mK. Note that, because the sample 
has several arms of different length L, the estimates of the relaxation lengths are 
approximate.
v =​ 3/5 and v =​ 4/7. For the case v =​ 3/5, nu =​ 2 and nd =​ 1. According to  
equations (4) and (5), the temperatures of the downstream and upstream modes 
equilibrate after a length ξn , with = / − =n n n n n( ) 2d u u d .

On the lower edge, the temperature of the single downstream mode (which 
emanates from the hot floating contact at temperature Tm) is reduced exponentially 
the temperature of the two upstream modes (which emanate from the cold bath at 
temperature T0). On the upper edge, the situation is reversed: the temperature of 
all of the modes in the upper edge is equal to Tm at xm, and starts to decrease only 
at a distance ξn  away from the cold bath. There, the temperature of the downstream 
mode approaches T0, and that of the two upstream modes is reduced from Tm to a 
lower value.

In the limit ξ�L , we find normalized values Klower =​ 0 and Kupper =​ 1,  
with small exponential corrections. The heat is conducted by the modes on the 
upper edge and the measurements show quantization of the thermal conductance 
with high accuracy. Taking L/(2ξ) =​ 3, similar to the low-temperature value for 
v =​ 2/3, we obtain a correction of about 0.05, which is similar to our experimental 
accuracy.

For v =​ 4/7, nu =​ 3 and nd =​ 1; hence, = /n 3 2. In this case we expect an even 
better quantization of the thermal conductance. This is consistent with the 
experimental observations.
Edge reconstruction. When the confining potential at the edge is smooth enough, 
edge reconstruction may introduce additional achiral modes. Crudely, these may 
be thought of as leading to an equal increase in both nu and nd, and hence to a larger 
n and longer relaxation length.
An interesting experimental fact. The hole-like states appeared to be ‘experimen-
tally friendly’ in these experiments. Their conductance plateaus in the transmission 
of the QPCs lend themselves to a constant conductance in the nonlinear regime 
(independent of the current in the measurement regime). In particular, the dip in 
the density of the electrons, that may take place near the periphery of the contacts, 
does not seem to lead to any reflection and excess noise (as we find in the integer 
regime or in the particle-like states). We attribute this effect to an increase in the 
composite-fermion filling as the density decreases (as the fillings approach v =​ 1/2), 
enabling a smooth traversal of the edge modes of lower composite-fermion filling 
fractions18.
Data availability. The datasets generated and analysed during this study are 
available from the corresponding author on reasonable request.
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Extended Data Figure 1 | Detailed schematic of the structure.  
The SEM micrograph shows details away from the floating ohmic contact. 
In particular, note the two calibration regions, each hosting an added 
source contact (CS1 or CS3), a ground contact (CG1 or CG3) and a QPC 
(CQ1 or CQ3, which is fully pinched when thermal noise is measured). 

When QPC1 is fully pinched and CQ1 is partly pinched, shot noise is 
measured by the amplifier at D1 (in the same arm), with respect to ground. 
There are also voltage probes (VP) in each arm for low-frequency lock-in 
measurements. Q1–Q4 denote QPC1–QPC4.
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Extended Data Figure 2 | Current splitting among multiple arms.  
a, v =​ 1/3. Current is sourced from S and measured by the amplifier at 
D1 (see notations in Fig. 1). The blue curve is the reflection coefficient 
rrel into D1 (a function of the pinching of QPC1) when all of the QPCs in 
the other arms are open. The other lines correspond to when the QPC in 
each of the arms pinches separately, while QPC1 is fully open. We see that 
each arm consumes the same current. VQPC represents the pinching of the 
relevant QPC. b, v =​ 3/5. A similar experiment as for a, but in this case the 

current is sourced from S and measured at D3 as each of the other QPCs 
pinch. The red and blue lines are the transmissions of QPC1 and QPC3 
while both QPC2 and QPC4 were completely pinched; hence, the relative 
transmission starts from trel =​ 0.5 and goes down to zero. The other two 
lines are the transmissions of QPC2 while all QPCs except QPC4 were 
open, and of QPC4 while all QPCs except QPC2 were open. In these cases, 
the relative transmission starts from 0.33 and reaches 0.5 when QPC2 or 
QPC4 was completely pinched.
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Extended Data Figure 3 | Thermal noise and analysis at v = 1.  
a, Thermal noise Sth as a function of IS =​ Iin for different numbers of arms 
(N). b, The normalized subtracted power dissipation λ (see main text) as 
function of Tm

2  (Tm <​ 40 mK). Subtracting the contributions for different N 

cancels out the phonon contribution; the notation in the legend, for 
example, ‘N =​ 4 −​ N =​ 2’, indicates the power dissipation for four arms,  
less that for two arms. The fit lines lead to an average thermal conductance 
per channel of gQ =​ (0.9 ±​ 0.1)κ0T.
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Extended Data Figure 4 | Raw data of thermal noise Sth and Tm for hole-like states. a, Thermal noise Sth for two different arm configurations 
and v =​ 2/3, as a function of source current IS. b, Deduced Tm as function of the dissipated power Δ​P in the floating ohmic contact for the two arm 
configurations and v =​ 3/5 or v =​ 4/7 (T0 =​ 10 mK).
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Extended Data Figure 5 | Gain and temperature calibration via shot 
noise. a, Transmission t of a QPC for v =​ 2/3 (blue, top), v =​ 3/5 (red, 
middle) and v =​ 4/7 (green, bottom). Plateaus are visible for the different 
chiral charge modes at the edge. b, Shot noise SI (green circles) measured 
for v =​ 2/3 at the t =​ 0.5 plateau to calibrate the gain. The black solid line 
shows a fit with the equation 2e*ISt(1 −​ t)coth[e*VS/(2kBT0) −​ 2kBT0/
(e*VS)], with e* =​ 2e/3 and T0 =​ 10 mK. Linear extrapolation of this fit to 
zero noise from VS =​ (e2/h)IS =​ 2kBT0 (dashed magenta line) provides an 

exact measure of T0 that is independent of the gain. c, Shot noise SI (red 
circles) measured for v =​ 3/5 at the t =​ 0.55 plateau, with the blue solid 
line corresponding to a fit using the expression in b, but with e* =​ 3e/5 
and T =​ 11 mK. d, Resonant response of the LCRH circuit (connected to 
the drain in parallel with the actual device) at different filling factors. 
Gains at different filling factors are compared by the ratio of the areas in 
the appropriate bandwidths. At smaller filling factors, the bandwidth is 
smaller (largest 30 kHz, smallest 10 kHz).
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Extended Data Figure 6 | Schematics aiding the calculation of the equilibration length in Methods (and the main text). The schematic shows a single 
arm with nd downstream modes (in the chiral direction; solid arrows) and nu upstream modes (in the achiral direction; dashed arrows). The arrows 
marked as Jt represent energy exchange in the equilibration process. The relevant length of each arm is L =​ x0 −​ xm.
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