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Observed quantization of anyonic heat flow
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The quantum of thermal conductance of ballistic (collisionless) one-
dimensional channels is a unique fundamental constant. Although
the quantization of the electrical conductance of one-dimensional
ballistic conductors has long been experimentally established?,
demonstrating the quantization of thermal conductance has been
challenging as it necessitated an accurate measurement of very
small temperature increase. It has been accomplished for weakly
interacting systems of phonons®*, photons® and electronic Fermi
liquids®-3; however, it should theoretically also hold in strongly
interacting systems, such as those in which the fractional quantum
Hall effect is observed. This effect describes the fractionalization of
electrons into anyons and chargeless quasiparticles, which in some
cases can be Majorana fermions?. Because the bulk is incompressible
in the fractional quantum Hall regime, it is not expected to
contribute substantially to the thermal conductance, which is
instead determined by chiral, one-dimensional edge modes. The
thermal conductance thus reflects the topological properties of the
fractional quantum Hall electronic system, to which measurements
of the electrical conductance give no access’ !2. Here we report
measurements of thermal conductance in particle-like (Laughlin-
Jain series) states and the more complex (and less studied) hole-like
states in a high-mobility two-dimensional electron gas in GaAs-
AlGaAs heterostructures. Hole-like states, which have fractional
Landau-level fillings of 1/2 to 1, support downstream charged
modes as well as upstream neutral modes'3, and are expected to have
a thermal conductance that is determined by the net chirality of all
of their downstream and upstream edge modes. Our results establish
the universality of the quantization of thermal conductance for
fractionally charged and neutral modes. Measurements of anyonic
heat flow provide access to information that is not easily accessible
from measurements of conductance.

The fractional quantum Hall state, first observed in 1982, still
provides a spectrum of challenges. The universal quantized electrical
Hall conductance Gy, with current I flowing in downstream, chiral,
one-dimensional edge modes, is directly related to the filling v of
Landau levels in the bulk: Gy = dI/dV = vG,, with V the voltage,
Go= €*/h the quantum of electrical conductance, e the elementary
charge and h the Planck constant. The nature and number of the
edge modes are not dictated by topological considerations and may
take different values for different fractional quantum Hall states at
the same Landau-level filling”'°. Consequently, the electrical conduct-
ance reflects the number and conductance of downstream charged
chiral modes, but is independent of the total number of modes, their
chirality and their character.

The thermal conductance go = dJo/d T, with J, the heat current and
T the temperature, was studied for a single heat-conducting channel
first by John Pendry in 1983!, who set an upper bound on the thermal
conductance of go= rioT, with k¢ = k3 /(3h) and kg the Boltzmann
constant. For edge states of Abelian quantum Hall states, both integer
and fractional, Kane and Fisher'” showed that the thermal conductance
is closely related to the net number of edge modes: go= NpekioT, with
Npet = Ng — N, defined as the difference between the numbers of down-
stream and upstream edge modes'’.

Here we extend previous studies of thermal transport®~® to a strongly
interacting system provided by the fractional quantum Hall effect®. Our
aim is to test the notion that the quantum of thermal conductance is
universal and therefore independent of the charge of the quasiparticles.
Specifically, we first establish our method by studying non-interacting
electrons (v=1and v=2). We then extend the study to the particle-like
v=1/3 Laughlin state, with electrical conductance Gy = (1/3)G, and
quasiparticle charge e” = e/3, which is expected to have one unit of the
thermal quantum conductance (go= 1x07, without the factor of 1/3).
Finally, we study the intriguing and complex hole-like states v=2/3, 3/5
and 4/7, in which case the fractional quantum Hall liquid also supports
upstream chiral edge modes'?; for example, the standard picture of the
v=2/3 state is a downstream charge mode with electrical conductance
Gu=(2/3)Gy and an upstream chargeless (neutral) mode®!®13-16, In
general, these topological modes might be augmented by extra pairs of
counter-propagating modes if the confining potential is soft and if edge
reconstruction is established!®. For v=2/3, because Nye = 0 the heat
flow must be fully diffusive and so the net thermal conductance should
approach zero for increasing system size'°. For the other hole-like states
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Figure 1 | Configuration of the device. The device is fabricated in a
high-mobility two-dimensional electron gas embedded in a GaAs-AlGaAs
heterostructure. An SEM micrograph of the four-armed device, which has
a small floating ohmic contact at its centre (green; the depleting groves
underneath are not visible) and a quantum point contact (QPC) in each
arm (an air bridge shorts the two sides of the split-gate of the QPC). The
source (S), drain (D1 and D3) and ground (G) contacts are drawn not

to scale. In this example, v=2 and QPC2 and QPC4 are fully pinched
(M=N=2), while QPC1 and QPC3 transmit only the outmost edge
mode and fully reflect the inner mode (#; is the transmission coefficient of
QPC)). The source current (Is, red) impinges on QPCI, which transmits a
current [, (here I, = Is/2), which is absorbed in the floating contact. Edge
modes (green) at potential V;, and temperature T,,, move from the floating
contact into the four arms (in arms 2 and 4 they are fully reflected). Cold
edge modes, at temperature T (blue) arrive from the grounded contacts.
A resonant (LC) circuit at each drain, with centre frequency fy =695 kHz
and bandwidth Af=10-30kHz, depending on v, filters the signal, which
is amplified by the voltage pre-amplifier (cooled to 4.2K) and then by a
room-temperature amplifier (total gain is about 1,000). The amplified
signal is measured by a spectrum analyser with similar fo and Af.
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studied, v=3/5 and v=4/7, the net heat current is expected to propa-
gate in the upstream direction'®!2,

Our experimental set-up is based on the core idea put forward in
ref. 8, wherein the thermal conductance in the integer quantum Hall
regime was measured. However, here we exploit a more flexible
implementation: a scanning electron microscopy (SEM) image of the
‘heart’ of the four-armed structure is shown in Fig. 1 (for a full descrip-
tion of the device, see Extended Data Fig. 1). A DC input power is
provided by a source voltage Vs and driving current Is = Gy Vs, with
propagating power Ps=0.5IsVs. The current impinges on a floating
reservoir, Ij, = t;Is, where t; = vqpc1/v is the transmission coefficient of
quantum point contact 1 (QPC1), vqpc; is its Landau-level filling and
v is the filling of the system as a whole. The outgoing current from the
floating reservoir splits into M arms (M =2, 3 or 4, as determined by
the QPCs in the arms; equal splitting of the current into the open arms
is demonstrated in Extended Data Fig. 2), carrying power Py = Pip/N,
where N is the number of outgoing current-carrying modes, with the
dissipated power in the reservoir given by AP= Py, — Py =0.5I;, Vs
(1 — NY). The reservoir reaches a new thermal equilibrium at
temperature Tp,, at which point the dissipated power is equal to the sum
of the power carried by phonons (to the bulk) and that of the chiral
edge modes: AP= APy}, + AP.. If universality is established, then
AP, =0.5Nko(T% — Té), where Tj is the electron base temperature;
the heat carried by the phonons is expected to obey APy, = (T, — T)s
where 3is a constant that depends on the size of the heated reservoir!”.
The heat carried by the phonons is negligible in comparison to the
electronic contribution for T;, < 35mK (ref. 17). The temperature Ty,
is determined from thermal noise measurements in one or two of the
arms (see Methods).

Deducing the thermal conductance with a reasonable accuracy
necessitates a careful determination of the parameters of the system.
A few important considerations are: (i) the gain of the amplification
chain must be accurately determined (see Methods); (ii) unavoidable
reflections from the floating small contact should be minimized (found
to be <2%, with negligible contribution to undesirable shot noise);
(iii) excess noise produced by the source contact should be negligible
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Figure 2 | Measurements in the integer quantum Hall regime at filling
v=2. a, Excess thermal noise S, plotted as a function of the source
current Is in three different configurations (N=2, 3 and 4), wherein only
the outmost mode is transmitted through the QPCs. To=30mK. b, The
calculated temperature of the floating contact T,, plotted as a function of
the dissipated power AP in the three configurations. ¢, Subtracting the
dissipated power at Ty, for different N (where N is the total number of
outgoing current-carrying modes) eliminates the contribution of the
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(or otherwise must be subtracted); (iv) the outgoing current must
split equally between all of the conducting arms; (v) full charge and
temperature equilibration was assumed to take place in the floating
contact (charging of the floating contact is negligible due to the
very short charging (RC) time)?; and (vi) heat flow via phonons is
independent of the number of conducting arms, and depends only on
the temperature Ty,,. We address issues concerning propagation length
and energy flow through the bulk later.

First we elaborate on measurements at v=2, at which two edge
modes leave the source and QPC1 determines the number of modes
that impinge on the floating contact. The excess thermal noise Sy, was
measured as a function of I;;, for a few different filling factors of the
QPCs in the arms, vqpc; (Fig. 2a). The temperature Ty, determined
from the thermal noise (see Methods), is plotted as a function of the
dissipated power AP in Fig. 2b (in this case Tp=30mK). Because the
temperature of the electrons was relatively high in these measurements,
the phonon contribution was subtracted (as demonstrated in Fig. 2¢):
0P = AP(N;, Tn) — AP(Nj, T,), with N; and Nj the total number
of outgoing modes from the central floating contact for different
QPC settings. The normalized coefficient of the dissipated power,
defined as A= 8P/(ko/2), is plotted for six different configurations of
AN=N;— Njin Fig. 2c. The average thermal conductance of a single
electronic mode was found to be go=1(0.98 £ 0.03) s T (where here
and henceforth T= (T + T;,)/2 and the specified error is the standard
deviation), in an excellent agreement with the expected quantization
(Fig. 2¢, inset). We also find the phonon coefficient 3 for the floating
contact, 3~3-5nW K>, Similar measurements were also performed
for v=1, for which there are fewer configurations (because there is one
charge mode in each arm). Here, the average thermal conductance per
one-dimensional mode was go=(0.940.1)x(T (see Extended Data
Fig. 3). Note that the error specified for g was calculated from only the
randomly scattered data; systematic errors (if they exist) were neglected
(see Methods).

We now describe measurements for the most prominent fractional
state, v=1/3. Because this state is the first filled Landau level of com-
posite fermions (vop= 1), with electronic filling v = vcp/(2ver+ 1)
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phonons. We plot A= 8P/(#¢/2), with 8P = AP(N}, T,) — AP(N;j, Tn),

as function of T, for six combinations of N; and N; (six different
AN=N;— N;j). The open circles are the data and the dashed lines

are linear least-square fits. Inset, the slopes (goAN) of the linear fits for
each of the six combinations (open circles; error bars, standard deviation).
A linear fit (dashed black line) to these slopes reveals an average thermal
conductance of go=(0.98 4-0.03) T for each one-dimensional mode.
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Figure 3 | Measurements in the fractional quantum Hall regime at
filling v=1/3. a, Total power AP carried out by the fractional edge modes
from the floating contact for two different configurations (N = 4, blue;
N=2red). The theoretical expectations AR. = 0.5NK/0T§] (with no phonon
contribution in this temperature range) for the two cases are shown as

(ref. 18), it harbours a single chiral downstream edge mode. (This is
expected when the edge potential is sharp; for a soft edge potential, edge
reconstruction may add pairs of counter-propagating modes, but these
should not affect the thermal conductance'®!®.) Consequently, the
thermal conductance of this state is expected to be g = 1koT—the same
as that of the v=1 state. We studied this state in the lower-density sample
(see Methods), which has a larger floating contact (the measured reflec-
tion coefficient from that contact was about 2%). With a lower electron
temperature, Ty~ 10 mK, the power dissipation was kept small, thus
avoiding a large increase in T;, and enabling us to neglect the contri-
bution of the phonons altogether. Source noise (on top of the direct
current), multiplied by a factor of N~2= M~2 (here and henceforth,
because each arm has one charge mode, N = M), was subtracted from
the measured thermal noise. Because both the electrical conductance
(Gp) and temperature range (7Tp,,) were small, the excess thermal noise
was small, thereby necessitating a long averaging time.

The dissipated power as a function of T is plotted in Fig. 3a for two
configurations, N=4 and N=2, along with the theoretically expected
dependence for go=1x,T. The absence of a T> -dependent term in 6P
is verification that the phonon contribution is negligible. In Fig. 3b we
plot A for AN=N; —N;=4—2=2asa function of T, to confirm that
the phonon contribution is completely eliminated. The average thermal
conductance is found to be go=(1.040.04) <o T, once again in excellent
agreement with expectations.

The hole-like states in the first Landau level, with fractional fillings
1/2 <v <1, belong to the same composite-fermion hierarchy as the
particle-like states. (However, the residual magnetic field that remains
after flux attachment of two flux quanta is opposite in direction to
the original field and so edge modes propagate in both chiralities.)
The composite-fermion filling in these states is related to the actual
electron fractional filling via v=vcp/(2vcr — 1). We studied the states
v=2/3,v=3/5and v=4/7, which have theoretically predicted thermal
conductances of go=0, go= —1koT and go= —2rT, respectively.
Astonishingly, for v=3/5 and 4/7, heat is expected to propagate in the
opposite direction to that of the charge current (hence the negative
signs)!®1%; however, the actual sign of the net chirality could not be
determined with our device configuration.

In our experiment, excited downstream modes leave the floating
contact, but retain an electrochemical potential and temperature T;,
equal to those of the floating contact, and propagate along one edge
of each arm, while excited upstream neutral modes, also heated to T,
emanate from the opposite side of the contact and propagate along
the other edge of the arm. Charge and neutral modes arrive back from
the grounded contacts (which are at To; blue lines in Fig. 1), intermix
and equilibrate with the hotter downstream modes, thereby returning
energy to the floating contact. The initial ballistic propagation of
downstream modes undergoes an inter-edge scattering at long

solid lines. The root-mean-square of the data points deviates from the
expected values by 4% for N=4 and 2% for N=2. T =10 mK. b, A plot of
MAN = 8P/(ko/2)/ AN, with 8P = AP(N;= 4, Ty) — AP(N;= 2, Tp,), so any
phonon contribution is subtracted, as a function of Tfn. A linear fit (dashed
line) to the data gives go=(1.00 4 0.045)x(T.

enough propagation length, and heat dissipation via the edge modes
is restricted.

To understand the difference between the quantization of the
thermal conductance at v=2/3 and at other filling factors, we consider
a simplified model of thermal transport on an edge of a quantum Hall
state with one downstream mode (Ng= 1) and N, upstream modes,
with N, =1 (see below) at v=2/3, N,=2 at v=23/5 and N,=3 at
v=4/7. Using conservation of energy and adopting Newton’s law of
cooling for thermal relaxation between counter-propagating modes on
the same edge, we obtain a linear system of differential equations that
describes the heat flow in this system (see equations (4)-(7) in
Methods). We find that for N, > Ny the temperature of the modes
converges to that of the upstream modes. The temperature difference
between the downstream mode and the upstream modes vanishes as a
decaying exponential function of the distance from the floating contact
(with a relaxation length &). When the size of the system is much larger
than the relaxation length (L > &), the heat is carried along one edge
of each arm and the quantization should be precise. In contrast, for
Ny = Ng (as is the case for v=2/3), the temperatures of the modes
depend only linearly on the distance from the contacts, and the
temperature difference between the downstream and upstream modes
remains constant along the edge for a certain length of each arm.
Consequently, the thermal conductance approaches zero only linearly
in 1/L: go=2r0T% (1 + L/€). Furthermore, because this is true for both
edges, heat flows equally along both edges of each arm.

We measured the thermal noise in these three hole-like states. The
total dissipated power (including phonons) for N=4 is plotted as
function of T2, in Fig. 4a, along with the theoretically expected values.
The normalized power A, for AN=N; —N;=4—2=2, is plotted as
function of T2 in Fig. 4b.

The state with vcp=2 or v=2/3 is expected to support an equal
number of downstream and upstream modes>!?. Our current
understanding is that there are two downstream modes, each with
conductance Gy/3, and two upstream modes, which are neutral'*->!.
The partitioned charge in a partly pinched QPC (for example, for
vqpc = 1/3) has previously been measured via shot noise?! and has
been verified to be ¢" =2¢/3 (see Extended Data Fig. 4 for the thermal
noise and Extended Data Fig. 5 for the shot noise).

The total out-flowing electronic power AP for M= N=4 is plotted
as function of Tfn in Fig. 4a (v=2/3, green data); the data deviates from
the expected zero thermal conductance (solid line). In Fig. 4b we plot
A for AN=N; —N;=4—2=2, as a function of T2, (v=2/3, green
data). In both measurements, we find a thermal conductance of
20=1(0.33£0.02)xoT. This value decreased to gy~ 0.25,T when the
electron temperature was increased to Tp= 30 mK. With the two edges
of each arm being symmetric (a downstream hot mode and an
upstream cold mode), the thermal conductance in each edge is
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Figure 4 | Measurements of the fractional quantum Hall effect at hole-
like states. a, Total power AP carried out from the floating contact by the
fractional edge modes for N=4 in the three hole-like states as function of
Tfn (v=2/3, green; v=13/5, blue; v=14/7, red). The corresponding expected
theoretical results, AP.= 0.5 x 4NnetK/0Tr2ns with NperrioT the expected
thermal conductance (N =0 for v=2/3, Nyt = —1 for v=3/5 and

Nhet = —2 for v=4/7), are plotted as solid lines; note that, in our device, we
see only the absolute value of the thermal conductance. The root-mean-
square of the data points deviates from the expected values by 12% for

20~(0.17-0.13) KT, which is not a large deviation from the expected
thermal conductance of zero.

Taking an average arm length of L ~ 150 um, we find that {~ 30 pm
for Ty=10mK and £~ 20 um for Tp =30 mK. These findings are
consistent with the increased rate with which energy is exchanged as
the base temperature is increased. Interestingly, further increases in the
rate of energy exchange lead to a quantization of thermal conductance
that improves with increasing temperature. However, non-zero heat
flow through the bulk cannot be excluded in this case, owing to the low
thermal conductivity of the edges'.

The state with vcp=3 or v=13/5 is expected to have a single net
upstream neutral mode (N, =2, Ng=1), which carries heat in the limit
of long propagation length. Although the total number of modes that
are supported by the state is unknown, by gradually pinching a QPC we
find two clear lower plateaus at vopc = 2/5 and vqpc = 1/3, suggesting
at least two underlying modes (see Extended Data Fig. 5). Shot noise
of the partitioned current in one of these plateaus revealed a quasipar-
ticle charge of ¢” = 3e/5 (see Extended Data Fig. 5), accompanied by
upstream neutral modes'?.

We plot the total power dissipation AP for N=4 in Fig. 4a, and
the normalized coefficient A in Fig. 4b (v=3/5, blue data). We find
an average thermal conductance go=(1.04 £ 0.03)x,T, which agrees
very well with our expectations. Increasing the electron temperature
to To=30mK did not alter the result, presumably owing to the short
equilibration length .

In the state with vcp=4 or v=4/7, Ny — N, = —2 and the equilibra-
tion length is expected to be even shorter (see Methods). Following a
similar procedure as described above, we observed three plateaus in a
gradually pinched QPC, at vqpc = 3/7, vqpc =2/5 and vopc = 1/3,
suggesting a larger number of underlying modes (see Extended Data
Fig. 5). The partitioned quasiparticle charge (measured in any of these
plateaus) was found to be ¢” = 4e/7. We found a nicely quantized thermal
conductance of go=(2.04£0.05)r, T (Fig. 4a, b), reconfirming, again,
that the equilibration length is much shorter than the system size
(¢<D).

To summarize, the extraordinarily precise quantization of the electri-
cal Hall conductance is a good example of a topological phenomenon
in physics. Yet, the conductance is just one signature of the topological
order, and different orders may exhibit the same conductance. The
measurement of topological properties that distinguish between such
orders is a key challenge. We address this challenge here by successfully
measuring the thermal Hall conductance experimentally. Beyond the
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v=13/5 and by 8.5% for v=4/7; deviation in the case of v=2/3 is large

(see text). To=10mK. b, A plot of /AN =20P/(r/2)/ AN, with

8P = AP(N;=4, T,,) — AP(N;=2, Ty,), so any phonon contribution is
subtracted, as function of Tfn. The slopes of the linear fits (dashed lines)
agree quite well with the predictions for the thermal conductance, except
for the v=2/3 state. Arrows show models of the minimal edge channels for
each filling factor: solid arrows depict downstream charged modes and
dashed arrows depict upstream neutral modes.

obvious difficulties associated with the measurement of thermal Hall
conductance, our measurements indicate that the topological pro-
tection of this quantization is weaker than that of the electrical Hall
conductance; for example, the thermal conductance might depend on
the propagation length and on possible heat flow through the bulk.

We verified the value of the quantum of thermal conductance of
six different quantum Hall states: two integer states, a particle-like
fractional state and three hole-like states. Our results are consistent
with the fundamental theory that predicts that fractional modes and
chargeless modes carry the same heat as the non-interacting electronic
ones (irrespective of their velocities and of the interaction with other
chiral modes or the bulk). This type of experiment can be extended to
other poorly understood quantum Hall states; for example, there are
important questions about the second Landau level, which might host
a family of non-Abelian states (such as v=>5/2 and v=12/5). Some of
the proposed topological orders may serve as a platform for universal
(topologically based) quantum computations. Thus far, these states
have remained enigmatic, with no definitive proof of their nature.
Measurements of their thermal conductance would provide compelling
evidence of their topological order.

Online Content Methods, along with any additional Extended Data display items and
Source Data, are available in the online version of the paper; references unique to
these sections appear only in the online paper.
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METHODS

Experimental set-up. An SEM micrograph of the ‘heart’ of the 4-armed structure
is shown in Fig. 1. A floating small contact (light green), playing the part of the
floating reservoir, was made in two different sizes: small, about 8 um?, in a
high-density 2DEG; and large, about 18 um?, in a low-density 2DEG. The four
arms were formed by chemical etching, each with a main QPC that can be partly
or fully pinched. The source contact S is located in arm 1, with two cold pre-
amplifiers (cooled to 4.2K) located in arms 1 and 3 (Extended Data Fig. 1). The
amplifier (calibrated by shot-noise measurements) measured the thermal voltage
fluctuations S,, after they were filtered by an LC circuit (fy ~ 695kHz and bandwidth
Af=10-30kHz, depending on v). The desired current fluctuations were calculated
using Sy, = S,G,.

Device fabrication. Two different heterojunctions, each hosting a 2DEG, were
used: the high-density 2DEG, used in the integer regime, with electron density
ne=1.1 x 10" cm~2, a 4.2-K dark mobility of p=4 x 10°cm®> V~!s71, 2 2DEG
depth below the surface of 113 nm, a spacer to donors of 80 nm and a quantum-well
width of 30 nm; and the low-density 2DEG, used in the fractional regime, with
n.=0.88 x 10" cm~2, a 4.2-K dark mobility of 1 =4.6 x 10°cm? V157!, 2 2DEG
depth below the surface of 128 nm, a spacer to donors of 95nm and a quantum-well
width of 30 nm. Because the electron density tends to decrease near the edge of
the contacts®, a larger floating contact was fabricated in the low-density 2DEG
to minimize reflection from the contact. Etched groves under the floating contact
(not visible in the SEM micrograph) made sure that the impinging current enters
the bulk of the metal ohmic contact before splitting to the different arms.

After a thorough cleaning of the surface (by plasma ashing and oxide removal),
contacts were evaporated with an electron-gun evaporator, in a vacuum chamber
with a base pressure of 1 x 10~% torr. The evaporation sequence, from the surface
of the GaAs and up, was: Ni (5nm), Au (200 nm), Ge (100nm), Ni (75nm),
Au (150 nm). Contacts were alloyed at 450 °C for 50s.

The TiAu gates of the QPCs were evaporated in the sequence Ti (5nm),
Au (20 nm). Split-gate openings were 700 nm in the high-density 2DEG and 850 nm
in the low-density 2DEG. The split gates were shorted by an air bridge made of
Ti (20nm) and Au (480 nm) in a two-layer resist process.

Evaluation of QPCs and contacts. QPCs. All of the QPCs were biased at a gate
voltage of +-0.3 V during the cooling process. This process makes the QPCs more
stable and tends to sharpen the confining potential?*?°. Yet, in the low-density
2DEG and at composite fractions, such as v=2/5 and v=4/3, the inner edge mode
was found to be partly reflected. Even for a zero-bias-cooling process, the QPCs
always reflected a sizable part of the impinging current.

Source noise. Some ohmic contacts produced noise at high magnetic field (fillings
v < 1/2), which could be related to a lower density near their periphery®*. The
source noise could be as high as about 1.5 x 107* A?Hz ! at the highest source
current. In such a case (for v=1/3), the source noise was divided by 4, 9 or 16,
for N=2, 3 or 4, respectively, and subtracted from the measured thermal noise.
Small floating contact. Reflection was measured by comparing the fully reflected
current from a pinched QPC (current impinging from the source) and the reflected
current for N=2 (or larger). The reflection was always less than 2% in all of the
measured fractional states. Assuming this reflection led to shot noise, its magnitude
would have been much smaller than the measured thermal noise.

Branching of current to arms. Because the small floating contact might not have the
same contact resistance in each of the four arms, equal branching of the impinging
current into each arm must be verified. Hence, the transmitted current(s) into the
arm(s) of the amplifier(s) was (were) measured when the QPCs in the other arms
were either open or fully pinched (see Extended Data Fig. 2).

Calibration of the gain. Knowing the gain of the amplification chain is crucial
for determining the electron temperature Ty,. Two calibration regions, each one
in a different arm, were each composed of an additional QPC and two contacts
(see Extended Data Fig. 1). Two methods were used to calibrate the gain:
(i) verification of the well-known quasiparticle charge at a known temperature;
and (ii) comparison of the gains in different Hall states.

The gain (of the amplification chain, composed of two amplifiers and a spectrum
analyser) was calibrated using shot-noise measurements. The temperature is first
determined, independent of the gain, by a linear extrapolation of the noise-current
curve to zero noise. The intersection point is eVyy = 2k T, with Vi = Ivh/e* the Hall
voltage (see Extended Data Fig. 5b). With the transmission coefficient of the QPC
tqpc and the known quasiparticle charge e, the gain is determined by matching
the shot-noise data with the expression for the spectral density of the shot noise,
S]Z 2€*ItQpc(1 — tQPC)C( VH, ’T), with C(X: EVS/(ZkBT)) = coth(x) —1/x, which has
proved to work quite well in all quantum-Hall-effect regimes.

The gain is an ‘effective’ gain that depends on the bandwidth of the LCRy circuit.
The gain is proportional to the area under the Lorentzian power response of the
LCRy circuit; consequently, the ratio of the areas in different filling factors should be
the same as the ratio between the square of the gains (see Extended Data Fig. 5d).

Combining these two methods provides an accurate determination of the gain
at each filling factor. It is difficult to determine the systematic errors in the deter-
mination of the gain; however, we checked the effects of slightly modifying the gain
on the determined temperature T;,, and on the linearity of the data of power
dissipation versus T %, and found them to be small in comparison with the natural
scattering of the random errors seen in the figures.

Determining Ty,. In a general case of multiple one-dimensional edge modes in
each of the M arms, the expressions for the dissipated power and the noise are
complicated. We express the dissipated power in the floating contact as

1 IZ VQPC1 VQPCl
Ap=—__S$ ¥ 2
2Gy V2 | T ivaeai

The temperature Ty, is related to the thermal noise via Sy, = 2G kp( Ty — To), with
1 1 1

o o 4
G Gamp Zi:l,izamp Gi

where G; is the conductance of the ith arm®2°-%°,

Thermal conductance in hole-like states. (See Extended Data Fig. 6.) Here,
we discuss heat transport from the floating ohmic contact at the position x;, at
temperature Tp,, and from the grounded contact at position x, at a bath temperature
Tp. In the Abelian phases of the fractional quantum Hall regime, we expect to have
ng modes emanating from the floating ohmic contact (and moving downstream)
and n, modes emanating from the bath (grounded contacts, moving upstream). In
the upper edge, n, and nq interchange—n, modes emanate from the floating ohmic
contact and nq from the bath. For example, for v=1and v=1/3, ng=1and n,=0;
for v=2/3, ng=n,=1; and for v=3/5, ng=1 and n, = 2. Henceforth, we discuss
the heat flow only at the lower edge of the arms, and add the contribution from
the upper edge of the arms at the end of the calculation. To analyse the system, we
assume that there is a negligible heat flow through the bulk between the lower and
the upper edges. This assumption might not be always valid.

The counter-propagating modes along one edge emanate from two different
contacts and are therefore generally at different temperatures. We expect that
energy will flow from the hot to the cold modes, owing to their interaction, and
denote the energy current between them by Ji(x). Because thermal energy is
conserved, we have the following relation between the downstream heat current
Ja(x), the upstream heat current J,(x) and Ji(x):

Jalx + Ax/2) = Ja(x — Ax/2) — Ji(x)
Julx — AX/Z) = Julx+ Ax/Z) + Ji(x)

Using the one-dimensional relation between the heat current and temperature,
J=KT? with

1 7%k 1
K=— Nd(u) = —Kond
2 3p T W

we obtain the differential relations

2
Ha dI:id(X) - i
;‘ 1)
O 0
Yodx h

Here ji(x) is the heat current density between the downstream and upstream modes
(heat exchanged divided by r/2). In practice, the physical behaviour of ji(x) can
be complex because a few upstream and downstream modes with different energy
relaxation rates are in action and the temperature imbalance between them may
depend on the position x. However, in a simplified model, we group together all
downstream modes and all upstream modes, and adopt Newton’s law of cooling,
which suggests that

ju0) = émw T o)

This relation is expected to hold for a small temperature difference, and the
relaxation length ¢ is expected to depend on the average temperature. A solution
of equations (1) and (2) (which we describe below), together with the boundary
conditions for the lower edge,

Ta(Xm) = Tim

Tu(xo) = To )

provides a full phenomenological description of the heat flow in the system (with
ng and n, exchanged for the upper edge).
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By integrating equations (1) and (2) with respect to x, with the boundary
conditions in equation (3), we obtain the temperature of the downstream mode
at the lower edge:

T2 nge 0/ 4 (T — T2 n e /O — T2p, e xm/ (7O

lower, 2
T () nge— X9 _ e/ (7O

4

with#7 = ngny /(ny — ng). The temperature of the upstream mode at the lower edge is

B T2 nge 0/ 4 (T2 — T2 nge /O — T2p,emxm/ O

lower, 2
T nge—x0/ (1) _ e/ €)

(5

To determine the temperature profile of the modes in the upper edge, we inter-
change n4q and n,. The normalized two-terminal thermal conductance coefficient
(which is unity in case of v=1) is positive by definition and is composed of two
parts, corresponding to the heat flow along the upper and lower edges. The
contribution of the lower edge is

Ja@) = Ju) — o g TV (%)% — n T (%)? — (ng — ny) Ta

- (6)
0.5k0(T2 — TJ) T2 - Tt

1<10Wer =

Here, J, = 0.5k0(nq — nu)Tg is the persistent heat flow in the system at equili-
brium, which is a consequence of the edge being chiral. This heat flow is transverse
and has no divergence, because the upper edge has an opposite term. We subtract
it from both edges, because we are interested in the excess thermal noise.
Substituting equations (4) and (5) into equation (6) (notice that the space-
dependent terms in the numerators cancel out) we obtain

na(ng — ny)
g — ngel/

Klower = (7)
where L= X — Xp. To obtain Kiper We interchange #, and n14 (also in the expression
for 71), which yields

nu(ny — n4)
g — nge~ L/ O

Kupper = (8)
In the experiment, heat is flowing out of the floating contact from both of its sides, the
lower and the upper edges of each arm, so that we actually measure the sum of them:

2
na 711

K= Kiower + K =(ng — ny))————————
ower upper u g — nueL/("f)

®

Using the general expressions given in equations (4), (5) and (7)-(9), we reach
several conclusions about the structure of the temperature profile and the thermal
conductance in the fractional quantum Hall states.

v=1and v=1/3. In these cases, ng =1 and n, = 0. An application of equation (4)
gives Tlfwe'(x) = Ty and T PP"(x) = Ty, which are independent of x. Moreover,
with 7 = 0, equations (7)-(9) give Kiower = 1, Kypper =0 and K=1, so that, as
expected, the heat is carried out of the floating contact by the downstream mode
via the lower edge.

v=2/3. In this case, n, =ng= 1. However, formally 7i — oo as nqg — ny, so we have
to take this limit carefully. Doing so, we obtain

_ TRIL/€ = (= xm) /€] + Tolx — xm) /€] + Ty

T§) AT
19 = Tnll/6= (= /€] I/?Z)[(x —xw)/€] + T3

In this case, the temperature depends linearly on x, but the difference between the
temperatures of the upstream and downstream modes is constant:
Tan—To
Tix) — Tox) =22
1+L/¢
The upstream and downstream modes fully equilibrates only for L > ¢, in which
case

1
Kiower = Kupper = m
_ 2
1+L/¢
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For & > L, the upstream and downstream modes do not fully equilibrate and two
modes (the charge mode at the lower edge and the neutral mode at the upper edge)
conduct heat. When £ < L, the system does not conduct electronic heat. The inter-
polation between the two extremes is algebraic.

In our experiment, K was measured for two bath temperatures: for Tp=10mK
we measure a normalized thermal conductance K~ 0.33 (and not zero); and for
To=30mK we find K~ 0.25. Counter-intuitively, the quantization increases as
the temperature increases. This is explained by the improved equilibration at high
temperature. Taking and average arm length of L~ 150 um, we find {~30pm
for Tp=10mK and £~ 20 um for Ty = 30 mK. Note that, because the sample
has several arms of different length L, the estimates of the relaxation lengths are
approximate.
v=13/5 and v=4/7. For the case v=3/5, n,=2 and ng= 1. According to
equations (4) and (5), the temperatures of the downstream and upstream modes
equilibrate after a length 7i¢, with 7 = ngny /(n, — ng) = 2.

On the lower edge, the temperature of the single downstream mode (which
emanates from the hot floating contact at temperature Ty,) is reduced exponentially
the temperature of the two upstream modes (which emanate from the cold bath at
temperature Tj). On the upper edge, the situation is reversed: the temperature of
all of the modes in the upper edge is equal to Ty, at Xy, and starts to decrease only
ata distance 7€ away from the cold bath. There, the temperature of the downstream
mode approaches Ty, and that of the two upstream modes is reduced from T;, to a
lower value.

In the limit L > &, we find normalized values Kjoyer = 0 and Kypper = 1,
with small exponential corrections. The heat is conducted by the modes on the
upper edge and the measurements show quantization of the thermal conductance
with high accuracy. Taking L/(2£) = 3, similar to the low-temperature value for
v=2/3, we obtain a correction of about 0.05, which is similar to our experimental
accuracy.

For v=4/7, n,=3 and nq= 1; hence, 1 = 3/2. In this case we expect an even
better quantization of the thermal conductance. This is consistent with the
experimental observations.

Edge reconstruction. When the confining potential at the edge is smooth enough,
edge reconstruction may introduce additional achiral modes. Crudely, these may
be thought of as leading to an equal increase in both n, and ng4, and hence to a larger
7 and longer relaxation length.

An interesting experimental fact. The hole-like states appeared to be ‘experimen-
tally friendly’ in these experiments. Their conductance plateaus in the transmission
of the QPCs lend themselves to a constant conductance in the nonlinear regime
(independent of the current in the measurement regime). In particular, the dip in
the density of the electrons, that may take place near the periphery of the contacts,
does not seem to lead to any reflection and excess noise (as we find in the integer
regime or in the particle-like states). We attribute this effect to an increase in the
composite-fermion filling as the density decreases (as the fillings approach v=1/2),
enabling a smooth traversal of the edge modes of lower composite-fermion filling
fractions'®.

Data availability. The datasets generated and analysed during this study are
available from the corresponding author on reasonable request.
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Extended Data Figure 1 | Detailed schematic of the structure. When QPC1 is fully pinched and CQ1 is partly pinched, shot noise is
The SEM micrograph shows details away from the floating ohmic contact. ~ measured by the amplifier at D1 (in the same arm), with respect to ground.
In particular, note the two calibration regions, each hosting an added There are also voltage probes (VP) in each arm for low-frequency lock-in

source contact (CS1 or CS3), a ground contact (CG1 or CG3) and a QPC measurements. Q1-Q4 denote QPC1-QPCA4.
(CQ1 or CQ3, which is fully pinched when thermal noise is measured).
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Extended Data Figure 2 | Current splitting among multiple arms.

a, v=1/3. Current is sourced from S and measured by the amplifier at

D1 (see notations in Fig. 1). The blue curve is the reflection coefficient

rre1 into D1 (a function of the pinching of QPC1) when all of the QPCs in
the other arms are open. The other lines correspond to when the QPC in
each of the arms pinches separately, while QPC1 is fully open. We see that
each arm consumes the same current. Vpc represents the pinching of the
relevant QPC. b, v=3/5. A similar experiment as for a, but in this case the
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current is sourced from S and measured at D3 as each of the other QPCs
pinch. The red and blue lines are the transmissions of QPC1 and QPC3
while both QPC2 and QPC4 were completely pinched; hence, the relative
transmission starts from f, = 0.5 and goes down to zero. The other two
lines are the transmissions of QPC2 while all QPCs except QPC4 were
open, and of QPC4 while all QPCs except QPC2 were open. In these cases,
the relative transmission starts from 0.33 and reaches 0.5 when QPC2 or
QPC4 was completely pinched.
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Extended Data Figure 3 | Thermal noise and analysis at v=1.

5

a, Thermal noise Sy, as a function of Is = I, for different numbers of arms
(N). b, The normalized subtracted power dissipation A (see main text) as
function of T2, (T, < 40 mK). Subtracting the contributions for different N
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cancels out the phonon contribution; the notation in the legend, for
example, ‘N =4 — N=2] indicates the power dissipation for four arms,
less that for two arms. The fit lines lead to an average thermal conductance
per channel of go=(0.94+0.1)k,T.
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Extended Data Figure 4 | Raw data of thermal noise S, and T;, for hole-like states. a, Thermal noise Sy, for two different arm configurations
and v=2/3, as a function of source current Is. b, Deduced Tj,, as function of the dissipated power AP in the floating ohmic contact for the two arm
configurations and v=3/5 or v=4/7 (Tp = 10 mK).
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Extended Data Figure 5 | Gain and temperature calibration via shot
noise. a, Transmission ¢ of a QPC for v=2/3 (blue, top), v=3/5 (red,
middle) and v=4/7 (green, bottom). Plateaus are visible for the different
chiral charge modes at the edge. b, Shot noise S; (green circles) measured
for v=2/3 at the t=0.5 plateau to calibrate the gain. The black solid line
shows a fit with the equation 2¢"Ist(1 — t)coth[e” Vs/(2kg Ty) — 2kp To/
(e"Vs)], with " =2e/3 and Ty= 10 mK. Linear extrapolation of this fit to
zero noise from Vs = (e?/h)Is= 2kpT, (dashed magenta line) provides an
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exact measure of Ty that is independent of the gain. ¢, Shot noise S; (red
circles) measured for v=13/5 at the t = 0.55 plateau, with the blue solid
line corresponding to a fit using the expression in b, but with ¢" = 3e/5
and T=11mK. d, Resonant response of the LCRy circuit (connected to
the drain in parallel with the actual device) at different filling factors.
Gains at different filling factors are compared by the ratio of the areas in
the appropriate bandwidths. At smaller filling factors, the bandwidth is
smaller (largest 30 kHz, smallest 10 kHz).
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Extended Data Figure 6 | Schematics aiding the calculation of the equilibration length in Methods (and the main text). The schematic shows a single

arm with nq downstream modes (in the chiral direction; solid arrows) and #, upstream modes (in the achiral direction; dashed arrows). The arrows
marked as J; represent energy exchange in the equilibration process. The relevant length of each arm is L = xo — X,
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