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. 1. INTRODUCTICN
Phase transitions in two-dimensional systems are interesting to the
theorist for a number of-reasons. In general, long wavelength fluctuations
are more important in two dimensions than in three dimensions, and devia-
tions from the mean-field theory are much greater. In two-dimensional

systems with a continous symmetry group, one commonly finds that there is
a divergence in the fluctuations of the phase of the order parameter in
the low temperature state, arising from the effects of 1ong-wave7ength
excitations. This divergence causes the mean value ¢f the order parameter
to vanish,1 so that the low temparature phase cannot be characterized by

a true long range order,or broken symmetry, in the two-dimensional case,
as it can in the three-dimensional counterparts.

In some cases (e.g., the two-dimensional Heisenberg model), long wave-
length fluctuations apparently eliminate the phase transition aItogether.2
In the systems that will be discussed in the present series of lectures,
however, there is still a kind of quasi-long-range order in the low tempera-
ture phase, characterized by a power-law decay of the order parameter corre-

lation functione? This quasi-long range order is matnematically distinct
from short-range order (exponental decay of the correlation function at
large distances)which is expected at high temperatures, so there must be a
mathematically well-defined transition temperature TC separating the two
types of behavior.

The general mathematical methods for studying this type of phase tran-

sition were developed by Kosterlitz and Thouless in the early 1970's.*77
In these lectures, I shall review the Kosterlitz-Thouless theory, and discuss

some of the recent developments in the field. As in the Kosterlitz-Thouless
theory, our attention will be focused on the behavior of topological defects
such as vortices, dislocations or disclinations, which are responsible for
the phase transitions, and the destruction of the guasi-long range order.h’8
In Section 2, below, I shall discuss with some care the relations be-
tween a superfluid and the planar-spin model or X-Y model of magnetism which
was discussed in Prof. Suzuki's talk.® 1 shall discuss the role of vortices
in destroying persistent currents in the superfluid, and in destroying the
property of quasi-long range order when the phase transition occurs. I shall
derive the formulae for the energy of a system of vortices and develop the
analogy with Coulomb charges in two-dimensions.“*® The Kosterlitz recursion
relations® will be derived and we shall review the results of this renormali-




Zation group thecry.

In Section 3, I shall discuss the dynamics of the superfluid system,
with and without vortices. Results of the static calculations of Sec. 2 will
be used to calculate dynamic properties of a helium film near the superfluid
transition temperature. ®”!3

In Section 4, I shall briefly discuss the effects of a symmetry-breaking
perturbation proportional to cos pg, where ¢ is the phase of the order para-
meter, and p is an integer. This perturbation removes the continuous symmetry
group present in the planar-spin model Hamiltonian discussed in Sec. 2. Never-
theless, under certain conditions, the phenomenon of quasi-long-range order
may occur, and the phase transition to the high temperature paramagnetic state
(short range order) may be jdentical to that in the continuous-symmetry planar
spin mode].lq |

In Section 5,1 shall discuss the recent theory of melting in two dimen-
sions, based on the assumption that the crystal is destroyed by a phase transi-
tion of the Kosterlitz-Thouless type, with dislocations taking the place of
the vortices which occurred in the planar-spin model. 15-18 We shall see that .
there are many similayitiés between the melting transition and transition in

) the superfluid or planar-spin-model, discussed in Sec. 2, but there are also
some interesting differences between the two cases.

In Section 6, I shall discuss the situation which occurs in smectic 1iquid-
crystal Tayers, when the molecular axis is tilted relative to the normal to the
Tayer. I shall describe briefly the different phases which may occur when one
takes account of the coupling beyween the order parameter describing the ori-
entation of the molecular axes and the various order parameters describing the
Tocation of the molecules within the p]ane.19 The possible relevance of the

two dimemsional theories to bulk smectic phases will be mentioned.
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2. SUPERFLUIDITY AND THE PLANAR-SPIN MODEL
A. Long-range order and quasi-lona-rance order.

We consider here a model with a two component order parameter, 3=
(SX,Sy), or in complex notation

v = S, - 1S (2.1)

y -

"The order parameter may be defined at a lattice of discrete points as in Pro-

fessor Suzuki's ta?k,9 but it will be more convenient for our purposes to

define the order parameter as a continuous function of position F. (A discrete
model may always be converted to a continuous model by a suitable interpolation
between the lattice sites.) In order to have the correct number of degrees of
freedom for this system, we shall restrict the wave vector k to be less than a
cutoff A, which is the order of the reciprocal of the lattice constant a. We

20,21
may assume for concreteness that the energy H has the Ginzburg-Landau form -

H= Jf;Zr S AU SMERE SN (2.2)

which defines an equilibrium probability distribution for v, of the formzz

Pegly) = e/T (2.3)

For generality, we m2y assume that H has already included the effects of fluct-
uations in degrees of freedom other than v, or of fluctuations in ¢ on a scale
shorter than 1/4, and therefore the coefficients o, 8, and J will generally be




(analytic) functions of temperature.
If we are interested in T = 0, we need only minimize H. We thus find

&(?)A= luglete , (2.4)

where ¢ is an arbitrary constant and

lvol2 = 5 - (2.5)

By symmetry, the energy H is independent of the value of the phase 4.

What happens at 7 # 0? In three dimensions, we may use the Landau theory,
or the mean field theory, to get a reasonable apprcximation?l One then finds
that there exists a transition temperature T, such that for all temperatures

less than T,

p(F) =Meid 20 . (2.6)

Here, the magnetization M depends on temperature, whereas the phase 3 is an
arbitrary constant. Alternatively, we may defing magnetization M through the
long distance behavior of the correlation function

Tim <p*(F)e(0)> = M2 # 0 . (2.7)

L

When (2.7) applies, we say that there is long range order for the parameter U.
Note that the phase factor el¢ has dropped out of Eq. (2.7)
For a11 T > T, we have

w(F) =0, (2.8)

<y (F)y(0)>n e 5 for ree | (2.9)

In this case, we say that there is short range order for the parameter y. As
T approaches T. we find,in the Landau theory,

Mo (Te-T)% (2.10)




=1z
gy (T-Te) = (2.11)

Although Landau theory is not correct at the transition temperature, the gquali-
tative picture in three dimensions is reasonably good. When the effect of long
wave length fluctuations are properly taken into account, the principal change
is that the exponents % appearing in Egs. (2.10) and (2.11)'are replaced by
quantities approximately equal to 1/3 and 2/3 respective]y.zx’ ?

In two dimensions, the effects of fluctuation are much more drastic. At
low temperatures, we may as a first approximation neglect fluctuations in the
magnitude |y(¥)|. Let us write:

o(¥ i6(F) | (2.12)

~ Then the energy is given by

H = %jKo[v;\{Zdzr ; (2.13)

Ko = JQ[;{JQIZ . (2.14)

Since Eq. (2.13) 1is quadratic in ¢, the variable ¢ has a Gaussian distribution,
and we can easily calculate correlation function

16(%) 16(0),

I
r

<p (r)u(0)> = |yg|? <e”
[vo|2 exp {- %<[o(¥)-0(0)12>} . (2.15)

The last quantity can be evaluated using Fourier transforms, as discussed in
. ]
Professor Suzuki's lecture:

d?k T -
<[e(¥) - ¢(0)1%> = (27)2 le E'r'112<[¢(k)12> .

3

P
The factor le1§?r-112 can be approximated by 2, its average value, in the in-
?ervai 1/r<k<l/a. Then, using the equipartition theorem we find




<Lo(F)-0(0)1%> = 2= | 2nkak ()
o (r)-¢ (202 Illr .y

in(r/a)

-~
=

mKp
Hence, for large r,?

<p*(F)e(0)> & (1/r)"

(2.19)

This power-law behavior is not true long range order as in (2.18), but it cer-
tainly differs from ordinary short range order, defined by exponential decay of
correlations, as in (2.9). When (2.18) applies, we shall say that the order
parameter @vshows guasi-long-range order. '

B. Vortices
What are the effects of magnitude fluctuation? Let us write:

¥(¥) = lw(’r*)ie”(?) i (2.20)

We shali assume that ¢ is a continuous, differential function of position. If

¥ is defined in a simply connected region S, and if w(r) # O everywhere in this
region, then it is possible to choose ¢(?) to be continuous, differentiable and
single-valued. On the other hand, if w(?) = 0 at any point in the region, or

if the region S is multiply-connected, then in general we must choose ¢ to be a
multiple-valued function of position. The phase ¢ is then continuous and differ-
entiable except at the set of points {51}, where y = 0. [Alternatively, if one
wished to employ a single value function ¢, it would be necessary to introduce
lines where ¢ is discontinuous by 2n.]

[Because u(T) is a smoothly varying random function, one can show that with
probability unity .,y will vanish only at isolated points in the two-dimensional
space. These points will be the intersections of the curves described by the
equations Re y = 0, and Im y = 0.3




It is clear from the above that we must draw an important distinction be-
ﬁﬁeen small fluctuations in the magnitude of y, such that y does not go to O,
and large fluctuations, where y(¥) can pass through 0. Although small fluctua-
tions do lead to a renormalization of the elastic constant K as will be discussed
below, they have few other effects and they have been shown to be "irreievangz‘in
a renormalization group sense, throughout the temperature range of interest.

We shall ignore small magnitude fluctuations in the remainder of these lectures.
On the other hand, large magnitude fluctuations,points where w(?) = 0, will play
a very important role in our analysis.

In order to avoid the complications arising from the multivaluedness of ¢,
it is convenient to work with the gradient of ¢, which is single valued. Let us
define

vir) = (¥ (2.21)

Then. for any closed contour C,

és v(r)+dr = phase change along contour C
C
2nN (2.22)

where N is an integer, since el® must be single-valued.
-3
Let ﬁi be a point where v = 0. We say that there is a vortex at Ris, and we
define a vortex charge Ni, by

(2.23)

where C; is a small contour just enclosing point Eg. In actuality, only the
cases Ni = £I need be considered. (Note: When applied to the planar spin model
the vortex is often described as a disclination in the vector-field E.)

For a general contour C,

T = ZWNC




whére the prime on the summation indicates that we should sum over all vor-
. tices located inside the contour C. Let us define a vortex charge density by

N(F) EiNia(?-ﬁi) (2.25)
According to (2.24), we may write:
¥xVe=2mNF) . (2.26)

If ¢(F) varies continuously in time, then in general the positions of the
vortices Ri will also be continuous functions of the time t. Now, consider
the integral on the left hand side of Eq. (2.24). If the function ¢(¥) does
not vanish at any point on the contour C, then it is clear that v must be a
contiﬁuous function of position and time, and the ihtegral is a continuous func-
tion of t. But the right-hand side of (2.24) can only change discontinuously
since‘Ni must be an integer. It follows that the net vortex charge enclosed
by C cannot change at all, unless y vanishes at some point on the boundary €
- that is, unless a vortex crosses the contour C.25 Thus, for a general re-
gion S, the total vortex charge in the region can only change if a vortex
enters or leaves the region at the boundary. Note that if a vortex is cre-
ated or annihilated at an interior boundary of a multiply connected region,
there will be an image charge left on the boundary and the net vorticity in
the region is unchanged. [0f course, the total number of vortices (positive
plus negative) can be changed by processes in which a pair of vortices of op-
posite sign is either created or annihilated in the interior of the region.]
In any case, we have a conservation of vortex charge, and we may write:

N _ =%
5g - VY

i
where Jv is the vortex current

(2.28)

Let us now consider an elementary vortex at the origin with N -+1 We




wish to find the state of lowest energy. It is clear from symmetry that the
phase ¢ should change in a uniform matter as one goes around a circle enclos-
ing the origin. Therefore, we may write:

(2.29)

where ¢, is an arbitrary constant and the z refers to Ny = 21. In either case,
we have

I¥e] = 1/r . (2.30)

The magnitude of v is shown schematically in Fig. 1.26

Fig. 1. Magnitude of the
order parameter ¢ as a func-
tion of distance from the
eenter of a vortex.

Far from the origin, for r>>a,y, the magnitude |y| is approximately equal to
its equilibrium value ¥y, given in terms of the Ginzburg-Landau parameters by
Eq. (2.5). The radius a; is given approximately by ag = (a/J)'%. Near the
origin |¢(¥)| rises linearly from 0 and

v (F) = (x t iy)/ag (2.31)
Note that the real and imaginary parts of v are continuous and differentiable

at the origin. The spin configurations for vortices with N,E = +] are illustra-
ted in Fig. 2.




Fig. 2. Spin eomfiguration in the vieinity of a vorter. Arrows indicate opi-
entation and magnitude of spin-vector S, and do not coineide with direction
of '53. With our convention, (Y = Sy-iS,), the vortices in (a) and (b) hcve
charges Ni = -1 and Ni = 1 respectively. Note that reversing the direciions
of all arrows, or rotating them through a constant angle, 18 equivalent to
multiplication of ¢ by a constant phase-Factor, and has no effect on 38 or i

= [E—— - iy e eees - m i e st 4 e ewsvem wen e

The energy H; of an isolated vortex may be readily estimated. For r > a,,
Eg. (2.13) may be used. We find that

IR K '
Hy = E_ + g 2rrdr -« 5% |74]2

ég
E. + nKo 1n(R/2g) - (2.32)

where R is the radius of the system, and EC is the core correction coming
from regions where r > a;. In the Ginzburg-landau theory, Ec is equal to a
constant times Ky, and K, is given by Eq. (2.14). Notice that energy of an
isolated vortex tends to infinity if the radius of the system goes to infini-
ty. 27

This divergence may be eliminated if one considers a pair of vortices of
opposite sign (see Fig. 3). Because of cancellation from the two vortices,
the gradient v falls off faster than 1/r for distances large compared to the




Fig. 3. Spin
eonfiguration
of a vortex
pazr.

separation s of the vortices. Close to each vortex the value of v is similar
to that of an isolated vortex. It follows that the energy of the pair may be
written?’

Eo(s) = 2nKy In(s/a) + const. (2.33)

Before concluding this discussion, let me make a remark concerning the
application of the vortex concept to models where the spins are defined on a
lattice of sites, as in Professor Suzuki's talk. When §(?) is defined as a
continuous function of ¥, vortices may be identified with the places where
g(?) = 0, and, of course, no vortices could occur in such a model if [S(¥)]
is required to be unity. Vortices can occur in a lattice modeT, however,
even if [gl is required to be unity at every lattice site. From the present
point of view, we would simply say that a vortex occurs when the interpolated
function E(F) vanishes at some point in between the lattice sites. (For an
alternative, statistical method of introducing vortices in a lattice spin
model, see the work of Jcsé'ggbgl,lg)

C. Application to superfluidity.
We shall now consider in greater detail applications to superfluidity.
Let us define a local superfluid velocity by

ve(7) . ' (2.34)

ALEE

According to the Ginzburg-Landau theory, there will be associated with Vg a
- super-current density or momentum density given byzo,zs




> e+ _ 8H - -+ <> >
g, (r) = () %“13 [v(r)]2 V¢(rf) .

For small values of Vg, we may set [y(¥)| = ;. Then

(2.36)
(2.37)

The quantity pg is the bare superfluid density, measured in units of grams per
square centimeter. In the present paper we shall use units where fi/m = 1, so
that

(2.38)
(2.39)

“We may now consider the phenomenon of persistent currents. Let us consi-
der a superfluid film wrapped around a cylinder as shown in Fig. 4.

Fig. 4. Superfluid film
wrapped around a cylinder.
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Suppose that at time t=0 there is a supercurrent flowing in the film. Then if
C is a contour which encloses the cylinder, we expect

- >
%vs-ldr = ZwrNC 0
c

If y is different from 0 everywhere in the film, i.e., if there are no vortices
present, then we know that

dNo/dt = 0 . (2.41)

If free vortices are present, however, then Nc can relax to zero; either by
motion of positive vortices from the tdp to the bottom of the film, or by
motion of negative vortices from the bottom to the top. The rate of change
of Np is just equal to the met vortex current flowing across the contour C,%°

L Nt R (2.42)
dt v
c

where z is a unit vector normal to the film. Note that the flow of neutral
-
bound-vortex pairs cannot relax NC to zero, because the net vortex current Jv

is zero in that case.

D. Stability against free-vortex formation.

It is clear that the key question for the existence of persistent currents
is whether or not there are free vortices present in thermal equilibrium. The
question will also be crucial for the issue of whether there is guasi-long
range order in the system. A glance at Fig. 2 will suggest that vortices can
be very effective in destroying the correlation between spin orientations at
different points in the system. It is reasonable to guess that if free vortices
are present, then Eg. (2.9} will hold, and the correlation Tength £+ will be of
the order of the mean distance between the free vortices in the system.

Kosterlitz and Thouless have given the following argument concerning the
stability of the system against free vortex formation. Let us consider an
isolated vortex in a system of radius R. The probabitity density p; for finding
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such 2 vortex should be propertional to

P1 = E_HIIT

9

where H; is given by Eq. (2.32). For large values of R, we have

Py = (3-;-) wKe/T | (2.44)

The total probability of finding an isolated vortex in the system is given by:
P = R2P; = RZTKo/T  (2.45)

If (Kg/T) » 2771, then P+0 when R+=. If (K,/T)<2n~1, then P+l when Re=. In
order for superfluidity to exist, therefore, we should have

(2.462)
(2.46b)

where the last inequality has been obtained using (2.19). If (2.46) does not
hold, entropy will be more important than energy, and free vortices should be
present.

Of course, a more careful argument must take into account the interaction
between vortices. Note that vortex pairs have finite energy and will be present
at all temperatures. However, as we have argued before, vortex pairs in them-
selves are not enough to destroy superfluidity.

E. Macroscopic description of the low-temperature phase.

Let us now examine in greater detail the effects of an equilibrium density
of bound vortices, and of small fluctuations in the magnitude of y. In the presence
of fluctuation, we must take a spatial average over a region near each point r,
and define a slowly varying order parameter ¥(¥). We define a slowly varying phase
Q(F) as the phase of ¥, and we define a macroscopic superfluid velocity by

pr

b (F) = Vo (F) . (2.47)




. We.define a renormalized stiffness constant Ky by

5F = IKR{USF d2r (2.48)

where &F is the increase in free energy due to fluctuations in ¢ . If, in
addition to bound vortex pairs and other magnitude fluctuations, there is an
isolated vortex at the origin, then the macroscopic phase must obey the equa-
tion, for a contour enclosing the origin,

é%’w? =s2n . (2.49)

By symmetry we expect the phase ¢ to change at a uniform rate around any circle
centered at the origin, so that

!Usl = 1/r . ‘ (2.50)
Then, from (2.48), we see that

6F = const + wKR Tn (R/ay) (2.51)
It follows that the correct Kosterlitz-Thouless criterion for stability of the
superfluid phase is obtained if we replace Ko in (2.46a) by constant KR:“’ZB’29

Vi
KpzgT - (2.52)

We may also argue that the correlation exponent n, defined in Eg. (2.18), is

actually determined by the macroscopic or renormalized stiffness constant, and
therefore should be given by

- _ T
n = Z“KR 3 (2°53)

instead of Eq. (2.19). Note that (2.46b) stil] applies as & criterion for stabi-
Tity of the superfluid phase.

In 2 superfluid, one defines the macroscopic superfluid density Pe by




(2.54)

It is possible to show quite generally that for a superfluid in Tocal equili-
25
brium,

(2.55)

We shall see below that this relation is indeed true in the present model; that
is, we shall check that

(2.56)

It should be emphasized that when magnitude fluctuations or vortex pairs are
-
present, the relationship between Us and 35 is non-trivial, and in genera?30

- -+
US # Vo> . (2.57)

F. Interaction between vortices.

In order to proceed further, we must consider the energy of an array of
. -y
vortices with charges N_i at positions Ri’ We shall only consider a "neutral”
system, where

Z Ny=0 . (2.58)
‘ :

We shall assume that the separation between the vortices are all larger than a
core diameter a; so that we may neglect the effects of overlap of the vortex
cores. We shall also neglect any magnitude fluctuations outside of the vortex
cores.

Let us divide §g into two parts:

G ERNORE NN




In view of Eq. (2.26), we must have
X -V)D = 21’1‘”(?)
We shall also assume that at the boundaries of the system,

Vor=0 . (2.63)

where vy, is the component of v perpendicular to the boundary. In view of
(2.60) we may write Vl as gradient of a single valued function ¢;:

Vy = Ve . (2.64)

This is possible, even in a multiply connected system, provided that we include
in 35 any circulation associated with the interior boundaries, or holes in the
system. We shall describe 70 as the "vortex part" of the superfluid velocity,
and 31 as the "spin-wave" part.

It is straightforward to show, using (2.61), (2.60) and (2.63) that

f?l-%dzr =0 . (2.65)

(Substitute (2.64) and integrate by parts). We may now write Eq. (2.13) for
the energy H as

= Yo D
H Hv + st . (2.66)

where Hg and ng are the vortex and spin wave parts, respectively, given by

K
Hg =5t j}vofzdzr + core correction, (2.67)




K
ng =-2-°- I]vli?dzr . (2.68)

The core correction in Eq. (2.67) arises because Eq. (2.13) is not valid in
the vicinity of the vortex cores where magnitude fluctuation must be taken in-
to account.’

We shall see that for a given charge density N(?), Vg is uniquely deter-
mined by the conditions of (2.61)-(2.63). The term ng is equal to or greater
than 0, and is clearly minimized by the choice vy = 0. The term H3 is there-
fore the minimum energy of the system when the charge density N(?) is present.

The separation (2.66) implies that the free energy of the system is equal
to the sum of the free energies of the vortices and the spin-wave parts sepa-
rately. The free energy arising from ng is clearly an analytic function of
temperature, and will not be of interest to us here.

It is highly desirable to rewrite HS in a more transparent form. For
this purpose, we may suppose that ?1 = 0 and therefore 3g = Vo, Let us define
& vector field

E(F) = -2n Ko 2 x ¥, (F)

-

= 21 2 x §é(r)

Note that‘gf?) is proportional to 7#(?) but rotated 90° in orientation.
In terms of E(?), Egs. {2.61)-(2.63) may be written *27

'V*x"EP=O',

= {0 at boundaries,




Eqbations (2.70)-(2.72) are simply Poisson's equations for the electric field
due to a static charge distribution N(¥) in a dielectric medium with dielec-
tric constant g, with metallic conductors at the boundaries of the region.
As is well known, the electric field is uniquely determined by the charge
distribution N(¥) provided that one also knows the total charge of any in-
terior conductors of the region. The energy of the system is given by

0 242 [} n
HY ang j.[EI d?r + “core

—13- > Ny 6 R, .R )+ :E:¥ 2E_ (2.74)
i73

where ¢,~1 G(ﬁ R;) is the electrostatic potential at point Ei due to a unit

charge at point ﬁ Far away from the boundaries of the system, we may write:

-

. o _ R.-R.
6(R.,R.) = -2 1n(i—l——il) . {2.75)

17 dg

We may also define a "force" on the vortex at point Ri by

-+ -

(Ry) = -2nN, 2 x T (R.) . (2.76)

-
£, =

1 aR

- 3
Here, E is the electric field at point Ri due to the other vortices in the

system, and to any charges that may exist on the meta%?ic boundaries. We need
not include the direct se?f—fxeld of the vortex at R that field will be cir-
cularly symmetric about R and will be zero when averaaed over the core of the
vortex.

Let us suppose that the only other charge in the system is a charge N
at the origin, and et us suppose that the boundaries are far away. Then we
have




If 'in addition to the charge -N; at the origin we have a therre: z7zzribution
. of bound vortex pairs, and if Ri is very large but still much s-z” "2~ than the
radius of the system, then we may write

-
<E(R.)> = Ny 2Ry (2.78)
i €n TRTIZ )

-

where £p is the renormalized dielectric constant of the system, =ze«ing into
account the polarizability of the thermally distributed pairs. .zi-:z the de-
finition (2.69) of E, we see that the supercurrent density at point r arising
from a vortex with charge 'Ni at the origin is given by

(2.79)

From (2.50) and the definition (2.54) of the macroscopic superfi.iZ zensity o
it follows immediately that

(2.80)

By consideration of the work necessary to move a test vortex 2 =mall dis-
-do
tance dRi it is apparent that

(2.81a)

where F is the free energy of the system. It follows that the frze s=nergy of
a vortex pair, consisting of a charge N, at Ei and a charge -N; ¢ <*2 origin,
in the presence of a thermal distribution of other (smaller) pairs, is given
for large R.g by

]2 R.
| In (Ea;!) + const.




Coinparing with (2.51) we see that

Comparing (Z.80) and (2.82) we verify that pg = Kpe
G. The renormalization-group approach.>:28,29,31
It is clear that our most important task is to calculate the renormalized

dielectric constant

e T go * 47y (2.83)

where x is the dielectric susceptibility arising from the vortex charges in
the system. We shall find that at low temperatures, all vortices are bound in
pairs and therefore en is finite. At higher T, free vortices will exist and
€p will be infinite.

Let us define pairs in the following manner: First, pair up the closest
charges of opposite sign, i.e., those with separation in the range ag < r <
ag(1+d), with d2 small. Next, consider the remaining unpaired charges and
pair up those in range ap(l + di)<r<ay(1+d2)2. In this way we define pairs
and we may define a density of pairs p(r) for pairs of separation *. That is,
p(r)d2R+d2R_ is the probability of finding a pair with the positive charge at
ﬁ; and the negative charge at E; where r = lﬁ;-ﬁ;] is the separation of the
pair.

If r is fixed and the density of pairs sufficiently small, we may neglect
interaction between pairs and write p = s'EZ(*)/T where E, is the energy of an
isolated peir and is given by Eg. (2.33). We therefore find

RUr) g polr) = (55)0 y2 (@) PTR/T

(2.84)
where y, is a dimensionless "fugacity" of the vortices. We may write

Yo = ”oe-EC/T (2.85)

where rny is the number of independent places to put a vortex in a cell the
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gize of 242, and EC is the vortex core energy.

We are actually interested in the behavior of p in the limit re= for
fixed yo. We wish to take into account screening of interaction between the
members of a pair separated by r, arising from the thermal distribution of
pairs with r' << r. Let us define the dielectric constant e(r) as the di-
electric constant including just the polarizability of pairs with separaticn
less than r. We calculate the functions e(r) and p(r) by iterative increments
of r, and we arrive at the following equations:

2
e(r+dr) = e(r) + 4n % 2nr p(r) dr . {2.85)

p{r+dr) = p(rlexp [;3%%;7-dr] . (2.86)

,2 e
In (2.85) the factor:§f is just the polarizability of a pair with separation
r. The factor 2xrp(r)dr is just the number of pairs per unit area with sepa-
ration in the range between r and r+dr. The argument of the exponential in
(2.86) is just -1/T times the work done in increasing the separation of the
pair by the amount dr. The starting values of ¢ and p are given by
€<r=a0) = Eo Y (2.87)
plr=ap) = yo%/a¢* . (2.88)
We want to calculate
ER = a(r‘ = m) .
It is helpful to introduce dimensionless variables:

= In (r/fag)

4
Ry p(?){rzaaez s




oy L1 .
K(2) = me{r) !r=aoez

Equations (2.85) and (2.86) may now be written

L
dx?

daz 4w3y2 + Q(y*)

g%-= EZ-WEjy + 0(y3) (2.95)

These are the famous Kosterlitz recursion relations.s We have written explici-
tly the correction terms in (2.94) and (2.95) to remind us that the derivation
of these equations is dnly valid when y(2) is small. The correction terms
arise when several pairs are present such that the separation between the pairs
is of the same order of magnitude as the separation of the members of the pair,
and therefore nonlinear interactions must be considered. N

We may note from Egq. (2.95) that Yy decreases with increasing & when K > 2m,
It is convenient to introduce a variable

(2 k11

™

X =
Near the transition (where x = 0), the Kosterlitz equations become

d_xz 2y2
a - o

= 2xy

The flow diagram for these equations is indicated in Fig. 5.




Fig. §. Flow diagram for
Kosterlitz recursion
relations.

Startin
values

Although an analytic solution of Egs. (2.97) and (2.98) can be given,s’10
it will suffice for our purposes to describe some general features of the solu-
tion. Equations (2.97) and (2.98) have an integral:

X2 - 4n2y2 = x,2 - 4n2y,2, : (2.99)
where xg and y; are the starting values of x and y. At T=T o the right-hand
side of (2.99) vanishes, and the trajectory for x and y is a straight line

coming into the origin. Along this line, we have

I _ 1
vy My = n{r/a,) (2-100)

It folilows that for T=Tcs

")
KR = KR/T =2/ (2.101)

g = I/ZTC s (2.102)

p(r) = y2/r% = 1/r*in2r . (2.103)

From (2.101) we see that the inequalities (2.52) and (2.46b)become equalities
at Tc,

Since the starting values x; and y, are analytic functions of temperature
T, the right-hand side of (2.99) should be proportional to T.~T, sufficiently




clese to the transition. For T < Tc, Eq. (2.99) is positive and y + 0 for
large values of &£. It follows that

4
KR =

2 %
-t b[Tc-Tf s (2.104)
where b is a constant that depends on the details of the system.

For T slightly greater than Tes y(z) first decreases with £ and then be-
gins to increase. One finds that y(3) will reach a value of order magnitude
unity when 2 has the value

. . 1
£ = g = 3 + const. (2.105)
T BTT:T;T

At this point, the Kosterlitz recursion relations no longer make sense. For

a length-scale r > aoégT it does not make sense to consider pairs. We believe
that the remianing vortices are essentially free, i.e., they behave 1ike charges
in a conventional plasma. The density of these charges will be given by

1 ;=2
Meree = 57— = &Xp (———) . (2.106)
free (aoezT)Z blT'TcIE

We may define a plasma screening length ks'l, which should be given, at least
approximately, by the Debye formula:

2 .
ks = 4wnfree/Teb (2.107)

where &y is the dielectric constant due to the bound pairs. As an approxima-
tion, we may equate £ to the renormalized dielectric constant at TC:

g, = €p (T=TC) e (2.108)

Using these approximations, we find

k.2 = 8mn (2.109)

5 free

At temperature T > Tc we expect that the order parameter correlation func-
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" tion should decay exponentially at large distances according to Eq. (2.9).
More precisely, we expect that the correlation function will have Ornstein-
Zernike form, which in two dimensions js 2!

: -r/&* ,
<p*(r)u(o)> ~ er% ) (2.110)

As was mentioned earlier, we may estimate the correlation length as the mean
distance between free vortices, so that ‘

i I -
Eo= (npgo)? = (81)% T . (2.111)

Other arguments, which will not be given here, suggest that there is a precise

re]atiole

(2.112)

Note that the distinction between bound pairs and free vortices is not a pre-
cise one, and we do not know how to define Nfree in a precise way. Neverthe-

less, the temperature-dependence of n is well defined, and we may write

free

1

£, = exp (
+ AN T-Te

Lé) . (2.113)

The renormalization group approach may also be used to study'the singular
part of the free enefgy near TC. A scaling argument suggests that the singu-
lar part of the free energy should vary as £72. In view of (2.113), this means
that the sihgu?ar part of the free energy and all of its derivatives vanish as
T approaches Tc' Therefore, the specific heat and all of its derivatives
should be continuous at the Kosterlitz-Thouless transition; one cannot locate
the transition temperature by any structure in the specific heat or other ther-
modynamic properties. The phase transition can be seen if one studies the
long wavelength elastic constant KR or superfluid density Pes which vanish dis-
continuously as one passes through TC. Also, the large distance behgvior of




the order parameter correlation functicn changes from gquasi-long range be-
_ havior to short range behavior precisely at T=TC.

The relation (2.101) for KR/TC may be tested experimentally by measure-
ment of the areal superfluid density Pe at the transition temperature of a
thin helium film. (The importance of this relation as a test of the theory
has .been emphasized by Nelson and Kosterh’tz,28 who showed that (2.101) is
exact in the renormalization group theory.) Measurements have been made by
& variety of techniques on films containing 3He impurities, and films of pure
“He, over a considerable range of transition temperatures. These measurements
are consistent with (2.101) within the accuracies of the experiments, which
are typically of order z 15%. (See Refs. 32-34.)

The Kosterlitz renormalization group method does not really answer the
question of whether any given system, such as, for example, the nearest
neighbor X-Y model, or a helium film of particular thickness, actually has
a transition of the Kosterlitz-Thouless type. In particular, we cannot rule
out the possibility that the phase transition might occur by some totally
different machanism or by a first-order transition before the Kosterlitz-
Thouless temperature is reached. > 1In general, the starting value yq is of
order unity, and the Kosterlitz recursion relations are not very accurate for
small values of 2. If the Kosterlitz equations are even gualitatively correct

in this region, however, the system will flow into the region where y(g) is
very small, and the predictions of the Kosterlitz theory should then apply
grecise]x, in the vicinity of the transition temperature. (Again, provided
that some other type of transition does not occur first.) Regardless of the
mechanism of the transition, however, the inequalities (2.52) and (2.46b)

should apply as a criterion for stability everywhere in the superfluid phase.36

H. Comment on the two-dimensional Heisenberg model.

It is interesting to compare the behavior of the planar-spin model dis-
cussed above with that of the two-dimensional Heisenberg model. The Heisenberg
model is characterized by a three component order parameter,

s
S=1(s,5S, SZ) . {2.114)

x* Ty

whose magnitude may be taken to be unity. We may write the Hamiltonian of the
Heisenberg model in a continuum limit as
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H =3 J'dzr Kol¥5|2 . | (2.115)

Following the analysis of Polyakov,? we believe that the elastic constant K is
renormalized to 0 at long wavelengths, for any temperature greater than 0. This
will occur even without fluctuation of the magnitude of g. The conclusion is
that there is no quasi-long range order in the two-dimensional Heisenberg model,
and no phase transition at any temperature greater than 0.

The physical reason for this behavior is that two angles are necessary to
specify the orientation of S in the Heisenberg model. In polar coordinates,
we specify the polar angle ¢ and the azimuthal angle ¢. Fluctuations of these
two angles interact strongly, and this interaction is responsible for the re-
normalization caiculated in Polyakov's theory. If the polar angle & is very
close to 0 or =, then the energy associated with gradients in ¢ is very small.
If the polar angle reaches 0 or = at any point, the value of ¢ will generally
be discontinuous at that point,'and the value of ¢ changes by = 2« if one
follows a contour enclosing the point. Thus, even without magnitude fluctua-
tions, it is generally impossible to define ¢ to be continuous and single val-
ued. It can be shown that these configurations, which play the rcle of a vor-
tex:in the field ¢, do not have a divergent energy in the Heisenberg model.

* I believe that either of the two effects described above, the strong in-
teractions of fluctuations in the angles, or the absence of a divergent energy
for vortex-1ike configurations, is sufficient to destroy the quasi-long range
order, at T#0.

3. DYNAMICS OF SUPERFLUID FILMS
A. Equations of motion for 33.

i shall now discuss the dynamics of a very thin superfluid film close to
its transition temperature. Using Egs. (2.24)-(2.27), we may write for a gene-
ral contour C,

L

dv
S ® Y - d - - * . —
fﬁ — dr = 21r-dj£ Ne = ~2m J’C(z X JV) dr

Thus we may write




where = is an unknown single-valued function of position. Far away from any
vortex core J = 0, and we expect that the Josephson relation®° should hold,

g . -g . (3.3)

d'v’s
T -Vu (3‘4)

where u is the chemical potential. It follows that = p far away from vor-
tex cores, and we shall make the approximation that th1s relationship holds
everywhere outside of the vortex cores. We shall also assume that the tempera-
ture is a constant in the film. (This last assumption is correct, in particu-
lar, if thermal contact to the substrate is sufficiently good.) Under these
circumstances, we may write:

dp
= e— Y 3. 5
du . ( )

P

where p is the helium mass per unit area and the coefficient x_ 1s determined
by the Van-der Waals force between helium and the substrate®’
From the above consideration, we arrive at the equation of motion:

K7 N '
:2-1 "Z‘HZXJV “ (3'6)

Also, if we assume that there is no evaporation of helium into the vapor, we
have conservation of mass in the film, and we may write:

Sp
ot
Finally, from Eq. (2.26), we have

Vx\! Z?IN()




B. Analogy with Maxwell's equations.
Let us define the quantity

B(r) = 21 2 8p(7) , (3.9)

where $p is the deviation of the areal density of he11um from its average
density in the Film. We define the vector field E as in Eq. (2.69). Equations
{3.6)-(3.8) may now be written

-

= -1 3 3
€0 = up VXB-417JV

Fxt
eo¥ + E = 4nN
where e, s defined by Eq. (2.73) and
Hg = wxp . (3.13)

But these equations, (3.10)-(3.12), are identical to Maxwell's equations for a
two-dimensional system with a bare d1e3ectr1c constant ¢4 and a magnetic permea-
bility ! {The fourth Maxwell equation, V- B 0, follows trivially from Eq.
(3.9), since B depends only on the coordinates x and y.]

C. Motion of vortices

If we set JV = 0, Egs, (3.10)-(3.12) have a wave solution (third soundg7)
- with a velocity ¢, given by

0
¥g

2 21 _S_
Co Zolo Xp {3,14)

More generally, one must take into account the flow of the vortices. We shall
assume the following equation of motion; 10+ 38

dR D
T = T + (1- C)V + noise
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th

. where ?i is the force on the i°" vortex, defined by Eq. (2.76):

- - - 0 N -

In (3.15) the coefficient %-is the mobility of the vortex which we have rela-
ted to the diffusion constant D by means of the Einstein relation. The noise
term is a Brownian motion consistent with this diffusion constant. The con-
stant C is a number in the range 0 < C < 1. We have assumed here that the
substrate is at rest, and therefore that the normal fluid velocity Vn is zero.

At T=0, on an ideal smooth substrate, when no normal fluid is present,
one finds that

C=D=0 . (3.17)

In this case, there is no noise or dissipation and the vortex is simply car-
ried along with the Tocal superfluid velocity. On the other hand, if there

is strong friction opposing the motion of the vortices, either because of in-
teraction with the substrate or because of strong scattering of normal fluid,

(3.18)

In this case, the vortex moves in the direction of the force ?, (i.e., per-
pendicular to the superfluid velocity VS). The non-dissipative motion paral-
Tel to the superfluid velocity, which occurs when C # 0, is of little conse-
quence for problems that we are considering, and in fact the term proportional
to C will not enter at the level of the approximations that we will be making.

The value of the diffusion constant D reaches a maximum for moderate
values of the friction, and one finds that *°

Maximum D = -f/m = 10-%cm?/sec. (3.19)

Arguments can be given that there is no divergent renormalization of D in the
neighborhood of Tc.ae

. . 1
D. Linear response at finite w. 0

- For small deviations from equilibrium, at a finite frequency w, the




system can be described by linear response theory. Let us define a frequency-
dependent dielectric constant e(w) by

(3.20)

(It §s a very good approximation to neglect the wave vector-dependence of ¢.)
Our task will be to estimate the form of e{w).

Once e{w) is known, we may write the wave equation for modes with trans-
verse E (i.e., longitudinal ?S):

k2 = w? g elw) - 4 (3.21)

In a frequency range where e(w) is real, or nearly real, we will find a real
value of k corresponding to a propagating mode. For a frequency where e(w) is
close to the imaginary axis, we will find an overdamped or diffusive mode.

One may also look for'plasma modes"with longitudinal E (transverse Vg) by sol-
ving the equation

elw) =0 . ' (3.22)

Let us write:

4

efw) = Eb(w) + 0 (3.23)

v ¥

where Eb(w) is the contribution of the bound charges, and o, is the conducti-
vity of the free charges (vortices):

(3.24)

For T » Tc we may approximate

One then finds for w >> Dn ., that

free




elw) = ep(T) . (3.26)

[A more accurate estimaté of e(w) in this regime may be obtained from Egq.
(3.37).be]ow.] We see that 3rd sound propagates in this freguency range,
with approximately the same velocity as at T = TC.

For w << Dnc. ., the second term on the right-hand side of (3.23) is domi-
nant, and we may write

elw) = 4ni oy/u . (3.27)
In this region, the solution of Eq. {3.21) is a diffusive mode with

(3.28)

The coefficient a is the mass transport coefficient for the helium in the filim,
and it has the temperature dependence
-1
-3 \1:’2
A (nfree D/7T) £, (3.29)

It is interesting to note that the temperature dependence in (3.29) is a strong-
er devergence than is predicted by the dynamic scaling theory, A « 55(4‘5),
which would have 1 proportional to £,s near the superfluid transition in two
dimensions. **42

From Eq. (3.22) we find a relaxational mode for transverse ?S, at long

wavelengths, at the frequency

(3.30)




E. - Third-sound propagation.lo
~ For T < T, the second term on the right-hand side of (3.23) is absent,
since .

Neroe =0 - (3.32)

We now write

®

eluw) = eb(w) = gq +f dr delw) . . (3'.33)

3 dr

where de(w)/dr is the contribution from bound pairs of separation r. We shall
make the approximation

de(w) > de(r) 1
dr ~ dr 1-im1r

(3.34)

where de(r)/dr is the contribution to the static dielectric function e(r) de-
fined in Sec. 2, and T is @ characteristic relaxation time for pairs of separa-
tion r. One would guess that T is of the order of magnitude of the time neces-
sary for a vortex to diffuse a distance r. Actually, Ambegaokar and Teitel*?
have studied the Fokker-Planck Equation for the separation of a bound pair,

and found that the best fit to a single relaxation time approximation is given
by

r2
T R 15 - (3..35)

The form of de(r)/dr may be obtained from the solution of the Kosterlitz
equations given in Sec. 2. C(Close to TC for large r, de(r)/dr varies approxi-
mately as 1/r. It is then a very good approximation in the integral (3.33)
and (3.34) to set

I=twr

- Re( 1 ) = {1, for mtr<1} ] (3.36)
r

0, for wtr>1




Herce,
(W) = ()|, o (18p/0)" (3.372)

For the imaginary part of Eps the integral (3.33) is dominated by values of r
close to (14D/w)%. One finds

- de(r) .
Im eb(m) = %{r- ;r ][r - (14/Dw)% (3.37b)

Using the results of Sec. 2, we may now compute the real and imaginary
parts of sb(m) in various regions of interest. For 7 = Tc we find

I E.(m)z ki . 3-38)
Re e(w) ™, 1n2(14D/w) |

Using {3.21), we see that the ratic between the imaginary and real of the third-
sound wave-vector k is proportional to (3.38). This ratio approaches 0, when
w0, so that 3rd sound propagates reasonably well at Tc.

For T < Tcs in the Timit w0, we find

"
2 Imk_ Im e{w) - TKR-2
Re Kk Re elw) “

where, according to Eq. (2.104):

K, - 2 « (T-T)% (3.40)
bl R = C' . .

Again, the ratio (3.39) goes to O in the 1imit w0, so that 3rd sound propa-
gates at 1ohg wavelengths; however, for T close to TC the damping predicted
by (3.39) and (3.40) is anomalously large compared to the conventional "hydro-
dynamic" result for the ratio of the attenuation rate to the wave-vector of
a superfluid wave: 3*%%




' Dissipation arising from the oscillatory motion of vortices, (either thermally

excited bound pairs or nonequilibrium trapped vorticity), may account for some
lof the anomalous dampings that have been observed experimentally in thin helium
films close to their transition temperatures.“s

It should be mentioned that in real helium films, the damping of 3rd sound
may be complicated by evaporation of atoms from the film and by deviations from
the assumed constant temperature. These effects have been studied by Bergman
in the absence of vortex motion."* It is relatively straightforward to combine
Bergman's analysis with the present considerations of dissipation due to vortices.

F. Oscillating substrate experiment

Bishop and Reppy have measured the moment of inertia and dissipation of
@ helium film on an oscillating substrate.3? (See also Webster.et a1.33) This
experiment may be analyzed by assuming that Eqs. (3.15) holds in the instantane-
ous rest-frame of the substrate, and then making a Galilean transformation to
the laboratory frame. We find that the momentum-density of the helium is given
by

- - = . 'y
= lp-p (w)lv, (3.42)
where 35 is the normal fluid velocity, identical to the velocity of the sub-

strate, and ps(m),is a frequency-dependent superfluid velocity, related to the
frequency-dependent dielectric constant discussed above, by

pelw) = FE%U . (3.43)

(We have assumed here that ¥ is small so that linear response theory may be
used.) The quantity ps(\)fp is the fraction of the helium mass which does not
participate in the substrate motion.

In the 1imit o = 0, P, (w) is just the static superfluid density P which
jumps discontinuously to Q as T passes through T , according to the resu?Ls of
Sec. 2. For measurements at finite frequenc1es, the effective superfluid den-
sity P (w) will drop towards O at a temperature slightly above T.. Dissipation
in the Bishop-Reppy experiment is proportional to » times the ?magxnary part of
Velw). For a given w > 0, the dissipation passes through a maximum as a func-
tion of temperature, at a temperature slightly above Tc‘




" &." Nonlinear relaxation of v |

According to the Tinear response formulae, the dissipation vanishes in
the Timit w0, for T < Tc’ because no free vortices are present. However, if
w0 with a fixed finite value of Vs, we will actually find a finite value of
Neree due to "field jonization” oj vortex pairs.25 In the presence of a uni-
form superfluid momentum density 9> the free energy of a pair of vortices is
given by '

F() = 2k In(l) - [ (3.44)

-
where the electric field E is related to 35 by Eq. (2.69). The shape of this
curve is indicated in Fig. 6.

Fig. 6. Free energy of
a vortex pair in the
presence of a uniform
background superiluid
veloeity, shown as a
function of separation
r, for® perpendicular
to the flow.

Note that the free energy decreases linearly with r for separations in the di-
rection of the electric field. It will be favorable for the pair to separate
to infinity, if it surmounts a barrier whose height is given by

Fy = 2nKo|InE| . (3.45)

. . . . s 10-13,46-43
An important factor in the escape rate will be the activation factor -0 12:48

N
eFB/T oy 2k (3.46)




" Actually, the problem must be treated with some care close to T » because the

. pre-exponential factors may also lead to a dependence on Vs comparable to (3.46).
In fact, one finds a gengration rate for free vortices by ionization of pairs
which is given by 10,11,50

dn

4"
free _ - 2K
T R« (T-T)v,“T'R (3.47)

In a steady state this generation rate will be balanced by pair recombination
of the form

dn
free « (n

free)

We are thus led to a free vortex density!0-13:49

« R% (3.49)

nfree

(A similar final result is obtained if one takes into account the creation and
annihilation of vortices at the edges of the film.) Generalizing Eq. (3.31),
we find a relaxation rate for the superfluid velocity

where according to Eq. (2.104)

"

i
ke = 2 + wb|T_-T[* (3.51)

Note that the decay rate (3.50) is nonzero, for any finite value of v
However, the decay rate goes to 0, for 3S+O, at least as fast as vsz. [In
three dimensions, for T <« TC, the decay rate is also finite, for finite values
of v_. However, the decay goes to zero more rapidly in the three-dimensional

s . 48
case, roughly proportional to e-1/vs.*%

g*




H.” Applications to superconducting films.

' Our -analysis of the static and dynamic properties of the superfluid tran-
sition in helium films is applicable, with some modifications, to thin "dirty"
superconducting films, in particular to films whose electrical resistance is
of the order of several thousand ohms per square or greater.“'s3 In princi-
ple, the free energy of 2 vortex in a superconducting film is finite, rather
than logarithmically divergent, because of screening by the three-dimensional
magnetic field.®® There should be no true phase transition in the supercon-
ducting film, and the resistivity is finite at all temperatures.6 In practice,
however, the coupling to the three-dimensional magnetic field is quite weak in
the systems of greatest interest, and the magnetic screening length is of the
order of 1 cm., typically larger than the size of the sample. A superfluid-
type analysis may then be applicable over a wide range of temperature. [In
the superconducting case, however, it is quite important to take into account

the temperature dependence of the Ginzburg-Landau parameter o« in Eq. (2.1).]
Experimentally, it is necessary to carefully screen out external magnetic
fields if one wishes to see the Kosterlitz-Thouless effects arising from vor-
tices of thermal origin. - '
The mass transport coefficient A which appears in Eq. (3.29) should be
interpreted in the superconducting case as the electrical conductivity of the

film.

I. Thick heljum films.
The theory of the superfluid transition in two-dimensions, discussed in
these lectures, is applicable in principle to helium films of arbitrary thick-

ness, provided we Timit our attention to a region sufficiently close to the
transition temperature.

Note that the superfluid density Pe which enters the Kosterlitz-Thouless-
Nelson criterion, Egs.*(2.52) and (2.55) and which appears repeatedly in the
present paper, is the integrated superfluid density, with dimensions of mass
per unit area. The volume superfluid density p§3), is given by

oy L a
pi¥ p/h (3.52)

where h is the thickness of the film. For thick films the transition tempera-
ture approaches the bulk transition temperature T,; the Kosterlitz-Thouless-
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' ﬁe?son criterion predicts a jump in p§3) which vanishes in the 1imit h-=, con-
. sistent with the three-dimensional theory.

The width of the temperature region where two-dimensional fluctuations
are dominant, and where behaviors such as those in Egs. (2.104), (2.113), (3.29),
(3.30) and (3.50) may be observed, is comparable in magnitude to the depression
of Tc due to the finite thickness of the film, AT « h™%/2, In this temperature
interval, the bulk correlation length is comparable to or larger than the thick-
ness of the film.

For a further discussion of this point, see Appendix C of Ref. 10.

4, EFFECT OF A SYMMETRY-BREAKING PERTURBATION
It is very interesting to investigate the effects of adding to the X-Y
model Hamiltonian a term of the form

H = -h jcos pe (¥) d2r (4.1)
p p

where p is an integer. Although such a term cannot exist in a superfluid,

terms of this form will exist when the order parameter g refers to the orienta-
tion of a spin or the orientation of a molecule absorbed on a crystalline sub-
strate. Some important cases are:

p = 1, representing a magnetic field coupled linearly to g;

p = 6, representing the effects of coupling to a hexagonal substrate;

p = 2, representing a uniaxial substrate; and

p = 4, representing a square substrate.

If we take the limit hp + e in Eq. (4.1), the angle ¢ is restricted to
values 2wn/p where n is an integer. This is the p-state "clock model" or the
"discrete planar-rotator model," which was used in the Monte Carlo calculations,
described by Prof. Suzuki.?

The renormalization group method of Sec. 2 can be generalized to this
model when h_ is sma??.lq We must now consider recursion relations for the re-
normalized field hp(z} in addition to the variables y(¢) and k(z) considered
in Sec. 2. The recursion relation for hp is

2
=12-2n
- 4gK P
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' [For a derivation, see José: et al., Ref (14).] The recursion relation for y
. is the same as in Sec. 2:

ay o oo ¥
1% (2-7K) hp

N
The recursion relation for K may be written

N
-1
d§£ = const y2 - const hp2 . . (4.4)

The constants in (4.4) are positive, but their precise values are not important
for our purposes.
Note that hp decreases with increasing ¢ provided that

e

K < p2/8n
Of course, y decreases with increasing 2 provided that

Y

K> 2/n . (4.6)
These two inequalities may be satisfied simultaneously, provided that p > 4.

For p > 4 we find in fact that there are two phase transitions.lh At in-

termediate temperatures Tcl < T« TC2 we find an X-Y-like phase where the

correlation function for y has quasi-long range order

<px(r)u(0)> ~ 1I/r0 | (4.7)

The values of hp(z) and y(2) both tend to O for Jarge & in this phase. The
4%
exponent n in (4.7) is related to the value of K(2) in the same way as in Sec.

2. The inequalities (4.5) and (4.6) therefore give a restriction on the value
of n

sy o (4.8)

2

At high temperatures (T » Tcz) we find a "paramagnetic" phase where the




-43-

the order parameter y displays short-range order in the form of Eq. (2.9).
The value of y becomes large for large 2 in this region, while E(z) tends to
0. At Tow temperatures (T < Tcl) we Tind that hp becomes large for large 2.
~ We interpret this as a "ferromagnetic" phase with true long-range order

<> £ 0 ., (4.9)

In the vicinity of Tcz for p > 4, one finds according to Eq. (4.2) that
hp tends rapidiy to 0 foz large 2. One can then focus attention on the recur-
sion relation for y and K. We say then that h_ is an irrelevant perturbation.
The nature of the phase transition at TcZ is then exactly the same as in the
ordinary X-Y model studied in Sec. 2, where hp was set equal to 0 at the be-
ginning.

In the neighborhood of Tcl we may set the variable y = 0. The recursion
relations (4.2) and (4.4) are then identical to the recursion relation in Sec.
2, if we simply replace ? by pz/(ISwZE). The phase transition is therefore
mathematically equivalent to the phase transition in the X-Y model. In parti-
cular, the free energy and all its derivatives should be continuous at T‘:l.ll+

For p < 4, there is no X-Y like intermediate phase, since (4.5) and (4.5)
cannot be simultaneous satisfied. For p = 2, 3, and 4, we expect & direct
transition from the ferromagnetic to the paramagnetic phase. The nature of
that transition cannot be identified by the methods of the present paper. It
is reasonable to assume that the critical exponents for p = 2 and p = 3 are

determined by the symmetry of the system and are the same as for the Ising

model and the 3-state Potts model respectfve]y.ss The case p = 4 probably has
variable critical exponents}k For p = 1, there should be no phase transition,
&s the expectation value <y> is different from 0 for all values to 7.

The renormalization group analysis described above is not directly appli-
cable to the case of strong hp. On the basis oz an/;pproximige renormaliza-
tion group analysis, using Migdal's techniques, “José, et al, suggested that
it is necessary to have p 2 9 for the X-Y Tike phase to occur in the discrete
planar rotator model. More recent estimates suggest that a somewhat smaller
value of p may be sufficient, as discussed in Prof. Suzuki's ta?k.g’ss The
analysis of the present section can, however, rule out the possibility of the
existence of an X-Y 1ike phase for p < 4, no matter how strong the interaction.
For, if the X-Y like phase does exist, then the parameters y(2) and hp must




‘ flow to small values at long wavelengths, and therefore the analysis of this

section applies.

If vortices are ruled out from the beginning, (y{(0) = 0) then the X-Y
model with cos p¢ perturbations becomes equivalent to the so-called sine-
Gordon mode]?1’571t follows from the recursion relations (4.2) and (4.4)
that there is a single transiticn of the Kosterlitz-Thoulass type, at a value
of temperature where (4.5) becomes an equality. The sine-Gordon model in
turn is a model for the so-called roughening transition that occurs on cry-
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stal surfaces in three dimensions.

5. MELTING IN TWO DIMENSIONS

In this section, I wish to discuss a theory of melting in two dimensions,
based on the assumption that the melting occurs by unbinding of pairs of dis-
locations, analogous to the unbinding of vortex pairs at the superfluid tran-
sition.>® The theory which is based on the ideas of Kosterlitz and Thou‘tess,h-6
was worked cut by D.R. Nelson and myself.!5717 A number of the results were
obtained independently by A.P. Young.'®

I shall restrict myself here to the melting of a triangular lattice on
@ smooth substrate. The theory should be directly applicable to the melting
of the two-dimensional solid formed at low temperatures by electrons trapped
on a liquid helium surface.59 Other possible applications include phase tran-
sitions in free suspended smectic ligquid-crystal fi]msso and possible phase
transition in 1ipid layers floating on water. The theory has also been applied
recently to the melting of a vortex lattice in a thin-film superconductor in an
external magnetic fieid.sl With some modifications, the theory may also des-
cribe melting on an incommensurate crystalline substrate.15 (Examples here
are transitions in adsorbed gas layers on substrates such as graphite.sz) The
theory may also be applicable to reconstructed surfaces without any adsorbate
present when there is a surface periodicity incommensurate with the periodi-
city of the bulk lattice. The theory of two dimensional melting may also be
an appropriate starting point for an understanding of phase transitions in
certain bulk smectic phases if the coupling between the layers in the smectic
is sufficiently weak.®> %% (See Sec. 6C, below.)

A. Analogy to the superfluid.
As I have already suggested, there is a strong analogy between the theory
of iwo-dimensional melting and the theory of superfluid transition in two di-




" mensions. The quantity analogous to the local phase ¢(¥) in the superfluid

or X-Y model, is the vector field U(F¥) measuring the displacement of atoms
" from their equilibrium pgsitions in the solid. Analogous to the local super-
fluid velocity, vs=$¢, will be the local strain field, defined as the symmetric
derivative of the displacement

uy5 = (3, ju5 * aJuj) . (5.1)
(The indices i and j here refer to the Cartesian coordinates x, y.)

The fact that the displacement is a vector quantity rather than scalar
will of course lead to certain complications not present in superfluid case.
Analogous to the superfluid densxty Pe there are now two elastic constants,
the Lamé coefficients, u and . Corresponding to the bare Hamiltonian (2.13),
we now have the bare elastic Hamﬂtonian65

HQ = %j‘dzr [Zuouu 33 Aouiiz] o (5'2)

The constants ug and A, are the bare values of the Lamé coefficients, and we
have used a summation convention for repeated indices in (5.2).

The order parameter for the superf1u1d or X-Y model was given,in the
absence of magnitude fluctuation,by e’¢(r) In the solid, we define a trans-
lational order parameter pg for each reciprocal lattice vector E of the crystal
by
-
o2(F) = £ 16-U(7) (5.3)
As observed by Landau and by Peierls in the 1930's, the mean square displacement
of a two-dimensional solid is expected to diverge logarithmically due to the
effect of thermal excitation of long wave length vibrational modes.! In anal-
ogy to Eq. (2.18), one expects & power-law fall-off of the correlation function
for the translational order parameter at large separation r {quasi-long range
order) given by3
z)“e

<o (F)* ogl0)> ~ (2

¥




"where the exponent “E is related to the elastic constants by

"6 T T dm (2vhn) (8.5)

The quasi-long-range translation order is reflected in the behavior of the x-
ray structure factor $(3) defined by

S(@) = <o}, (5.6)
where p(g) is the Fourier transform of the density. Specifically, one finds
& set of singularities at wave vectors equal to the reciprocal lattice vectors
-
G of the form

$(3) m% 3-8} -2*"g (5.7)

These power law singularities replace the s-function Bragg peaks and phonon
side bands which occur in three dimensions.

In addition to broken translational symmetry, a crystal is characterized
by broken orientational symmetry. We may define an orientational order para-
meter for hexagonal crystal by

o(F) = 58 (5.8)

where e(?) an angle describing the orjentation of a nearest-neighbor bond at
point ¥. In a perfect crystal at T = 0, and angle & is the same for all bonds,
modulo 60°. Then v is independent of r; and

< (Flp(0)> = 1 . (5.9)

Unlike the mean square displacement, the expectation value <82> remains
. . . . 87 - .
finite at T # 0, even in two dimensions. There is therefore true Tong-range
order for the orientational parameter y:




lim <™ (¥) v(0)> = const > 0 . (5.10)

r e e

For long wavelength fluctuations, the angle & is related to the displace-
ment field by

- -+
u

8= RV x (5.11)

. .
In Fourier transform we see that |8(k)|2 is proportional to k2|U(k)[2. The
extra factor of k? removes the divergence arising from the long wavelength
phonon modes, which is the reason that <e2> is finite.

B. Dislocations in two dimensions.

A dislocation in a two-dimensional crystal is a point defect analogous to
a vortex in the superfluid. When a dislocation is present, it is no longer
possible to define a single-valued continuous displacement G(?). The strength
of the dislocation is characterized by a Burgers vector E, defined byaa

U, :
g L R (5.12)
ar

C

where the contour C encircles the dislocation. Since the displacement U is

.~ uniquely defined modulo a vector on the Bravais lattice of the crystal, the
Burgers vector E must itself be a vector on the Bravais lattice. Except at
the dislocation core, the order parameters pg(?) remain single-valued and con-
tinuous since

2.3
el@b_ (5.13)

For present purposes, we need only consider elementary dislocations, where

B has its minimum allowed value by, equal to the lattice constant. There are
six possible orientations for the elementary Burgers vector of a triangle lat-
tice.

In Fig.(6a) we have illustrated the elementary dislocation for a square
lattice, where the dislocation may be thought of as simply the termination
of an extra half-row of atoms. We have also illustrated a geometric construc-
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Fig. 7, Elementary dislocations in (a) a square and (b) a triangle lattice.
Beavy lines are contours that would be closed if the dislocation were not tre-

sent. Burgers vector indicated by arrow, is the amount by which the contour
fails to close.

tion for determining the Burgers vector.

The corresponding figure for a tri-
angle lattice is illustrated in Fig (7b)

From Eq. (5.12) it is reasonable to guess that the strain field in the
neighborhood of a dislocation will fall off as 1/r, and that the energy of an
isolated dislocation will diverge as the logarithm of the size of the system.
Then, for a dislocation pair, with equal and opposite Burgers vectors,

- -+
bi = 'bz = b

5 (5.14)

one would expect to find a finite energy proportional to the logarithm of the

separation. The result obtained from elasticity theory, in fact, is that

‘the energy of a pair at large separation ¥ is given by®®

- - ;-)-.-b 2
E,(r) =X {Tn(g) - ggrg) ]+ 2E;

where E. is the dislocation core energy and K is related to the elastic con-
stants by




= b2 u(u#r)
K T (2 (5.16)

Note the presence of the second term on the rwght-hand side of (5.15), which

depends on the angle between the Burgers vector b and separation r. The energy
of an isolated dislocation is given by

= LK In{R/a) (5.17)

where R is the radius of the system. Unfortunately, the equations of-elast1-
city are cons1derab1y more complicated than the equations of electrostatics,
and we shall not be able to g1ve a derxvatTOn of these results here.

IT the dislocation pair bl and bz are the on?y dislocations present in
the system, then the elastic constants y and i entering (5.16) should be in-
terpreted as the "bare elastic constants" ug and Ay, which are renormalized
from:their T = 0 values only by the presence of non-linear phonon interactions
in the system. We are u1t1mate,y interestad, however, in the free energy of
an isolated dislocation, or the free energy of a dislocation pair at large
separation, in the presence of a finite density of bound dislocation pairs,
WhYCh will occur in thermal equilibrium even in the solid phase. We may use

. (5.15)-(5.17), for this purpose, provided that we interpret the elastic
constants pand x in (5.1 ) to mean the macroscopic renormalized elastic con-
stants R and kR.

Comparing Eq. (5.17) with Eq. (2.51), we may immediately write down the
Kosterlitz-Thouless criterion for stability of a solid phase against the for-
mation of an isolated dislocation:

Eé/T >4 . (5.18)
The Kosterlitz-Thouless theory of melting and the renormalization group calcu-

lation described below will apply if inequality (5.18) becomes an equality at
the melting transition Tm




_ Note that the combination of elastic constants entering Eq. (5.16) is not the

same as the combination entering (5.5). The value at melting of the exponent
g is therefore not a universal quantity,

C. Renormalization equations.

Our first task, then, is to study the renormalization of the elastic con-
stants u and A. In the presence of a stress field o

ij there will be a "force"
on a dislocation given by &8

fi = aﬁcjzb2 (5.20)

wheré—eji is the uﬁi%.éntisymmetric tensur. This force will tend to cause
the dislocation to move in a direction such as to relax the stress. Bound
dislocation pairs will be polarized by an applied stress, and the resulting
polarization will lead to a finite reduction in the elastic constants y and A.
If free dislocations are present, however, they will continue to flow as long
as stress is applied and the polarization will increase without limits. The
system can no longer sustain a sheer stress in equilibrium, and melting has
occured, 8

In analogy with our calculations in Sec. 2, we would 1ike to define par-
tially renormalized elastic constants u(2) and A(%), where we have taken into
account the polarizability only of pairs which are separated by a distance r-,

such that
. _ 2
r’<r = age . (5.21)

We define an elastic constant X(2) which is related to u(e) and a(2} by Eq.
(5.14), and we define a reduced elastic constant K(2) by

(5.22)

We define a dislocation fugacity y(2) analogous to the fugacity of the vortices
in Sec. 2.

The recursion relations for u(2) and x(2), and hence for K(2) are similar
to those in Sec. 2. If we define a variable, x, by

e




= (2.K
2x = (2-811'

then the recursion relation for x has the form

K = w2 = 0(y3)

A= 3me~2 [2I4(2)+1,(2)] . (5.25)

The Bessel functions I, and Il arise from the 1ntegratuon over the angle be-
tween the separation vector ¥ and the Burgers vector b. A new feature of
(5.24) which did not occur in Eq. (2.94) is that the correction to the leading
term is of order y3. This occurs because it is now possible to have a neutral
triplet of elementary dislocations,in which the Burgers vectors are oriented
120° apart from each other, and the sum of the Burgers vectors is equal to O.
The energy of such a triplet is seen to be finite, and the number-density of
triplets will be proportional to yS3.

In the region of interest (x and y small) the recursion relation for y
may be written ' ‘

%}5 = 2xy + By? + 0(y3)

B = 2ne"l 1,(1) . (5.27)

The first term on the right-hand side of (5.26) is identical to the correspond-
ing term in Eq. (2.98), and arises from the same physical effects, namely from
the geometric redefinition of the length scale and from the work necessary to
increase the separation of the pair by an amount d2. The term By? is new, and
arises from the appearance of two dislocations whose Burgers vectors by and b,
differ by 120° and whose spatial separation r falls in the range




ageter <age*t* (5.28)

Our renormalization procedure is defined such that when we increase our length
scale by the fraction &2sthe two Burgers vectors are replaced by a single dis-
Tocation whose Burgess vector is the sum of El and 32 and whose positicn is
midway between the positions of the two dislocations. Clearly, this will give
a contribution to y(e+32) which is of the order y(2)2.

D. Results
The recursion relations (5.26) and (5.24) may be analyzed in a manner
similar to the Kosterlitz recursion relations of Sec. 2. The flow diagram is

qualitatively the same as in Fig. 5. For temperatures at or below the melting
temperature Tm, we find for large 2 that

y(2) -0 . (5.29)

The renormalized elastic constants ug and xp are finite for T < T and the

limiting value of KR obeys Eq. (5.17). In limits T » Tm from below, we find

MR = M. * const (Tm-T)v {(5.30)

= .36963....

The difference from the behavior in the case of the planar spin model (¥ = %)
arises from the term By2 in (5.24).

For T just above Tm the fugacity y(2) at first decreases with increasing
£ and then begins to increase. When y(2) comes of order unity, we can no longer
use our recursion relation, and we must simply make the assumption that the re-
maining dislocations are essentially free, i.e., that they behave like a weakly-
interacting plasma. We argue that the translational correlation functions
show short-range order for T>Tm

<ox(F)* o5(0)> ~ eT/E (5.32)

where £ is ecual to the mean distance between free dislocations. A solution
of the recursion relations (5.26) and (5.24) yields
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free

£x (= = exp (-T%—)-"_
m

where ¥ is again given by (5.31).

Since relaxation of a shear stress is caused by the motion of free dislo-
cations, we expect that the viscosity will be inversely proportional to the
density Neroe Thus, as T approaches Tm from above the viscosity should diverge
proportional to £2. (We neglect here the very weak logarithmic divergence of
the viscosity at long wave Tengths due to the effects of mode coupling and the
-}ong—time tails in two dimensions.sg)

—— ——

E. The hexatic phase.

Our most interesting rgsu]t concerns the behavior of the order parameter
for bond orientation y = es1e, above Tm.

In contrast to the short-range order that ore would expect for an isotro-
pic fluid, we find the result that for temperatures just above Tm’

<¢*(?)w(o)> v (1/r) (5.34)

Thus there is a quasi-long range order in the orientation of the bonds, which
reflects a term in the free energy of the form

§F = 3 fKAIVSP d2r .

The exponent ny, in (5.34) is given by

n =%§1 i (5.36)

A

[This equation differs by a factor 36 from the corresponding equation for the
X-Y model (2.53), because of the occurrence of the quantity 66 in the defini-
tion of the order parameter (5.8).

A system with the properties Just described is a new type of liquid
crystal, which we have termed the hexatic phase. The constant KA is a Frank
elastic constant for the liquid crystal. It is found that KA diverges as T
approaches Tm, according to




Ky« §2+=for ToT" (5.37)
Although a mathematical derivation of the results (5.34)-(5.37) will be

given below, their physical origin may be understood by examining Fig. 7. It

will be seen that dislocations are much more effective in destroying transla-

tional order than they are in destroying orientational order. In particular, the

translational order parameters pg are 180° out of phase between one side of

the dislocation and the other, but the bond orientations are only perturbed

in the immediate vicinity of the dislocation core. Thus, it is not surprising

that some kind of orientatioral order can persist with a small density of free

dislocations present.

If the system just above Tm has the 1iquid-crystal properties described
above, then a phase transition to the isotropic fluid phase must occur at
some higher temperature Ti’ as indicated in Fig. 8.

ISP SUPUUNITIC JL

Hexatic Isotropic
Solid (Liquid-Crystal) Fluid

> T

" Fig. 8. Phase diagram obtained from the dislocation theory of melting of a two-
dimemsional solid.

—k

The proposed mechanism for the transition to the isotropic phase is the appear-
ance above Ti of another kind of topological defect known as a disclination. An
elementary disclination in the hexatic phase is illustrated in Fig. Sa. Note
that the bond-orientation angle & changes by 60° as one moves along a contour
which encircles the disclination. For comparison, we show Fig. 9b the elemen-
tary disclination in a nematic liguid crystal. Here the order parameter refers
to the orientaticn of the axis of a Tong molecule, and the elementary disclina-
tion involves a rotation of 180°.

The energy of a set of disclinations in the hexatic phase may be calcula-
ted in the same manner as the energy of vortices in the superfluid. Because
the elementary disclination has a strength of 60°, however, the angular distor-
tions are six times smaller than in the superfluid case, and the free energies
are smaller by a factor of 36. The free energy of a pair of disclinations with
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Fig. 9. Elementary disclinations, (a) in a hezatic and (b) in a two-dimensional
nematic liquid crystal. Siz-pointed stars in (a) show the orientation of the
nearest-neighbor bonds,in various regions of space. Lines in (b) show orienta-
tion of molecular azis. Only one sign of disclination 18 showm.

separation r is given by
[ : w
6F & T§'KA Inr . , (5.38)

The Kosterlitz-Thouless criterion for the stability of the hexatic phase against
the formation of free disclinations may then be written

Ky < 72T/% (5.39)

or using (5.36)70

né < {5.39b)

The renormalization gorup analysis of Sec. 2 may be applied with trivial modi-
fications, to the phase transition at Ti and,of course,we find a phase transi-
tion of the Kosterlitz-Thouless type.
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We may summarize the occurrence of topological defects as follows: Dislo-
cations which are free in the isotropic fluid and hexatic phases can occur in
the solid only as neutral bound states whose energy is proportional to the loga-
rithm of the separation. Disclinations which are free in the isotropic phase
can occur in the hexatic only in bound pairs E« In r. It is interesting to
note that a dislocation may be regarded as a tightly bound pair of disclinations
with the Burgers vector of the dislocation determined by the separation of the
disc1inations.68 Thus we may say that disclinations may occur in equilibrium
in the solid, provided they are bound in quartets with no net dipole moment.

The energy of the group is very large, however, (E = r2) if the four disclina-
tions are not grouped into pairs.

If the renormalization group theory is correct, the phase transitions at
Tm and Ti should not be apparent in the free energy or its derivatives. As
in the case of the superfluid, one predicts that the free energy and all of
its derivatives should be continuous at these phase transitions. In order to
see the transition, one must study properties such as the elastic constants
which vanish discontinuously at Tm’ or the Frank constant which vanishes dis-
continuously at Ti‘ Alternatively, one may be able to observe the change in
character of the long wavelength behavior of the correlation functions at the
transition.

It should be emphasized again that a renormalization group analysis is
only exact when the length scale of interest is large compared to the lattice
spacing. If a critical point transition occurs, then large length scale
fluctuations are crucial; the renormalization group can give us some important

consistency tests and can tell us the nature of the critical point when it
occurs. Qur analysis cannot rule out, however, the possibility of a phase
transition arising from a mechanism very different from the one considered,
and in particular, we cannot rule out the possibility of a first order transi-
tion determined by processes on the scale of one or two lattice constants.

In fact, we cannot rule out the possibility that there may be, in any particu-
lar solid, a large first-order transition which carries one directly from the
solid to the isotropic fluid phase. Our analysis does guarantee, however,
that if the Kosterlitz-Thouless mechnism applies, so that melting occurs by
the appearance of a small density of free dislocations, then two transitions
are necessary before isotropic fluid is reached.
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F. Methods for calculating orientational fluctuationé, Til .

The results (5.34) to (5.37) are derived by analysis of fluctuations in
the bond angie field 8. - The angle 8 is realted to the displacement by Eq.
(5.1 ). By using the known solutions for the displacement field caused by a

. . 68 . .
dislocation ~, one may derive the relation

o(F) = 21 Jéﬁ' : (5.40)

where B(¥") is the Burgers-vector density at point r”. Taking the Fourier
transform of (5.38), we find ‘

8(@) = -q; b;(3) / q2 (5.41)

- ) Q‘Q‘ -
<|e(@)]2> = 1L <

{In these equations, a hat has been used to indicate Fourier transformed quan-

tities). If Eq. (5.35) is correct, then the correlation function (5.42) should
have the form at Tong wavelength:

kT

Res? (5.43)

<|6(q)|% =

Any dislocations which are bound in neutral pairs or triplets will give a
contribution to <Bi(§)§j(—3)> which vanishes in the 1imit g+0, and therefore
bound dislocations will not contribute to the term exhibited in (5.43). The
contribution of the free dislocations may be estimated by using an effective

. Hamiltonian

ReR | RE ). G35

K ; 2 A At S T S

Heff = —— | i b2I8 B 12 (5.44)
[Ry=Ry-|

2by? 75

where the sum is over a density Mfree of free dislocations and the elastic con-
stant X is renormalized by the polarizability of the bound pairs. Equation
(5.44) may be written in Fourier transform as




5” - (5.45)

According to (5.45), there is a large cost in potential energy proportional

to 1/q2 associated with transverse fluctuations in the Burgers vector density
E. There is no such cost for longitudinal fluctuations and we expect that

the longitudinal part of <bi(3)bj('3)> is finite at g-0, and or order boznfree.
We therefore estimate, using (5.42) and (5.43) that

an 1
kBT bozn

free

G, Application-to the two-dimensional electron solid.

At this point, one may ask whether there is any evidence that the dislo-
cation theory of melting is correct in any achievable two-dimensional system.
There is at least some supporting evidence from computer simulations of two-
dimensional systems. Frenkel and McTague have analyzed numberical data for a
system of particles interacting with a Lenard Jones 6-12 potential in two-di-
mensions, and have found what appears to be a hexatic phase over a consider-
able range of temperature above Tm.71’72 There is also some evidence that
melting of the two-dimensional electron system may be consistent with the
Kosteriitz-Thouless-Halperin-Nelson-Young theory.

-

by the dimensionless parameter -

The temperature of classical two-dimensional electron system is measured

(5.47)

where e is the electronic charge and n is the number of electrons per unit

area. The denominator in (5.47) is just the Coulomb energy of a pair of elec-
trons at a separation equal to the radius of the Wigner-Seitz cell. Small
values of I correspond to high temperatures, or a weakly-coupled plasma, while
values of T in the range 1<I'<100 represent a strongly coupled plasma. Some
place in the range T 2 100 we expect thn transition to a two-dimensional Wigner
crystal. Experzmenta] observations of two-dimensional soiid formed by electrons
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" on the surface of liquid helium,by Grimes & Adams>® are consistent with a
'melting temperature in the range Tm = 131#7. Estimates of Gann, et aI.,7u
based on Monte Carlo simulations, give the result rm = 125, consistent with i
these experiments, although earlier computer simulations by Hockney and Brown
gave a higher melting temperature, rm = 95,

A theoretical estimate of the melting temperature of the twc-dimensiornal
electron lattice was provided by Thouless.’® Using the known values of y and i,
at T=0 in the Kosterlitz-Thouless cirterion, Eq. (5.17), Thouless obtained the
estimate r. = 78.7. (The bare value of A is infinite for the Coulomb system
so that the melting temperature is determined by u in this approximation.)

The Thouless estimate differs considerably from the experimental value
Tm = 130, and it is important to know whether renormalization of the elastic
moduli can account for this difference. In order to investigate this question,
Rudolph Morf 7 has undertaken a molecular dynamics calculation of the shear
modulus in the solid phase of the two-dimensional electron solid. The results
are illustrated in Fig. 10.

Fig. 10. Temperature dependence of
shear modulus v in the 2-D electron
solid. (From R.H. Morf.?’?) The cip-
eles represent the computer-sirmlation
results for u(T)/u(lT==) as function ‘
of the dimemsionless termerature I~!. 5 T Shear moguius

The values shown as full eircles are e 0 oy .
obtained on heating; the open circles e, A

are obtained on cooling-dowm From T= 120. e,  Kosterstz-Thoutess
The solid curve, ending at I'm= 123.2 : g Creren fer e
displays the results of a renormaliza-
tion group calculation, in which the
starting value g of shear modulus

was taken from a linear extrapolation
of the low temperature results (dashed
line). For comparison, we show the
Thouless value T = 78.71 obtained by
neglecting odf renormalization effects.
Also shown, in inset (dotted lime and ,, )
+), 18 a measure of the observed parti- . ¢ eortcte
che; diffusion which rises sharply at f : ; dittusion
I' % 130. ’ by
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For temperatures up to approximately 3/4 of the melting temperature, Morf
. found a Tinear decrease in the shear modulus which he attributed to the
effects of nonlinear interaction among the phonons. This temperature depen-
dence is indicated by the dashed line in Fig 10. The further effects of dislo-
~cation polarizability could be estimated using the phonon-renormalized shear
modulus as the starting value uy. The phonon interactions do not affect the
starting value of A (xp = =), although the final value of xp will be finite
due to the effects of interstitials and vacancies. The starting value of the
dislocation fugacity y, was obtained from the numerical results of Fisher,
Halperin and Morf’® for the dislocation core energy Ec using the crude assump-
tion that the core free energy at finite temperatures is reduced from the T=0
value in proportion to the reduction of the bare shear modulus wg due to pho-
non interactions.

The resulting prediction for the macroscopic shear modulus Hp is shown
as the solid curve in Fig. 10. " The predicted value of In = 128.2 is 1in good
agreement with the experimental results.

Very recently, D.S. Fisher has calculated analytically the first correc-

tion to the shear modulus fo the classical 2-D electron solid arising from
non-linear phonon interactions, at Tow temperatures. (D.S. Fisher, private
communication.) The results agree with the molecular dynamic results (dotted
line in Fig. 10).

6. LIQUID CRYSTAL FILMS WITH TILTED MOLECULES

In recent years, techniques have been developed for growing very thin films
of smectic liquid crystaTs.79 Films as thin as two molecular layers have been
grown and stable films of one molecular layer may be possible in some cases. A
variety of phase transitions occurs in such films, and they offer interesting
possibilities for the investigation of two-dimensional phase transitions.®9279

The smectic liquid crystals are generally formed from long organic mole-
cules. For our purposes, we may consider these molecules to be rods, indisting-
uishable at the two ends. In many cases, the rods tend to orient perpendicular
to the plane of layers (e.g., smectic A and smectic B phases).63 When the mole-
cules order within a layer in such a case they tend to form a regular triangular
lattice and the theory of melting discussed in the previous section should apply.
In other cases, the molecular axes are tilted relative to the normal to the
plane and there is a tendency for the axes of different @g?ecuies to point in
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.the same direction and to order at Tow temperatures.63’7s The tiited molecul-

es may also tend to form a regular solid array within the plane at low tempera-
tures,and it s interesting to investigate the phases that can occur when the
order parameter for molecular tilt orientation is coupled to the translational
order parameters pE and to the order parameter for bond orientation v, discus-
sed in the previous section. Such an investigation has been carried out
recently by David Nelson and m_yself.13 I present here only a few of the re-
sults.

A. Fluid phases.
Let us describe the orientation of a molecule by unit vector n, and let
us introduce a tilt orientation order parameter

¢=zn, + iny = {sin vy) ei¢ s (6.1)
where the x and y directions are in the plane of the film. Although the orien-
tationsn and -n are indistinguishable, the sign of ¢ is determined and is
meaningful if.we adopt the convention that n, > 0. [The hypothetical case nz=0,
corresponding to a two-dimensional “nematic", is different, because & and - ¢
are equivalent in that case.]

Couplings between the bond-orientation and tilt degrees of freedom lead to
a rich variety of possible phases and phase diagrams. Tilted and untilted ver-
sions of the hexatic and 1iquid phases may be understood in terms of an effec-
tive Hamiltonian functional of the bond orientation 8(?) and tilt orientation
field ¢(¥), namely

E‘:T =3 gdzr[KsﬁS{z + K1 |V9]2 + 2g(Ve)- (¥9)]

- h.fdzr cos(6(e-¢)] (6.2)

The quantity K, is a stiffness constant for fluctuations in the tilt orienta-
tions while K is the Frank constant for fluctuations in the bond orientation.-’* 8}
The term proportional to h occurs because both 8(¥) and ¢(¥) feel a six-fold
symmetric potential when rotated with the other field held fixed. The gradient
cross-coupling, proportional to g, is generated by the renormalization group




even if it is initially absent. "Vortices" in the tilt orientation field o(r)
and “disclinations” 1din the bond orientation e(?) are also taken into account.
These excitations renormalize the elastic constants at large distances, and
can also drive phase transitons by unbinding from a state consisting of tight-
1y bound pairs. The "bare" constants in (6.2) will themselves have an analytic
dependence on temperature due to the effects of fluctuations on the atomic
Tength scale.

The Hamiltonian (6.2) may be treated by renormalization group methods si-
milar to those discussed in the earlier parts of these lectures. The coupling
h in (6.2) plays a role similar to the coefficient hp of the cos p¢ perturba-
tion in Sec. 4. '

The constant K; in (6.2) is related to the Frank constant Ky of Sec. 5
by Kg = KA/kBT. The subscripts 6 and 1, which we use here to indicate quanti-
ties referring to the angles 8 and ¢ respectively, were chesen because the
bond orientation 8 is defined modulo 2n/6, while the tilt orientation ¢ is de-
fined on the entire range from 0 to 2x.

A variety of possible phases follow from this model, which may be distin-
guished by the large distance behavior of the correlation functions

Ce (7) s<e6i{e(?) - 9(5)> (6.3)

(6.4)

One possible phase diagram is shown schematically in Fig. li, as a function of

the inverse "bare" Frank constants K;~! and K™, with g and h small and fixed.
The quantities K;~! and Kg=! should both be monotonically increasing functions
of temperature, so that a2 given material will trace a path from lower left to
upper right in the figure, as temperature is increased. The solid phases shown
in this diagram, in which Kg==, will be discussed later. ‘

Four fluid phases are indicated in the diagram, labelled A, A*, C, and C*.
Phase A* is identical to the hexatic phase of Sec. 5, with short-range order in
C,(F) and quasi-long-range order in Ce(F).

Phase A, is an isotropic liquid phase, where both Cl(?) and Cs(;) decay ex-
ponentially at large r. The remaining fluid phases, C and C*, have quasi-long
range order for both tilt and bond orientations; i.e., for large r we have
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C1 (%) ~ rmalT) . (6.6)

Phase C is a "locked" tilted hexatic phase in which long wavelength fluc-
tuations in ¢ are tied to fluctuations in 6. The phase is characterized by a
single renormalized (i.e., macroscopic) Frank constant KE which describes the
increase in energy caused by equal gradients in & and ¢. {Roughly one has

R .
Ki = Ky+Kg+2g). In this phase, the exponments n, and ng are related by

e kT
18
6 = 36ny = = -———S (6.7)

K,

Phase C* is an "unlocked" tilted hexatic phase, in which Tong wave length
fluctuations in ¢ and & are independent. This phase has three renormalized
Frank constants, K?, Kg, and gps corresponding to the bare constants in (1.1),
and there is no simple relation between n; and ng:

R
18K,

g =

(6.8)
(Kﬁ K1 - QR )




(6.9)

[The transition between phases C and C* is analogous to the transition between
ferromagnetic and X-Y like phases in Sec. 4, for p =6.] Some necessary con-
ditions for stability of the C* phase are

>4 (6.10)

K> 2/n (6.11)

K> r2/m . (6.12)

It should be noted that quasi-long-range order in tilt orientation always
induces quasi-long-range order in the bond orientations; i.e., a phase with
short range order in Cg but quasi-long range order in €, is impossible. The
right-hand portion of the C phase, labelled C; in Fig. 11, is a region where
there would be no bond order if the molecules were not tilted. The correla-
tion fuanction Cg(¥) has algebraic decay at long distances only because of the
coupling h between tilt and bond angles, and the amplitude of the correlations
should be proportiocnal to h2. 1In the left hand portion of the C phase (label-
Ted C;), the bond angles would tend to order, (forming a hexatic phase) even
in the absence of tilt. The amplitude of Cs(?) will be independent of h in
this region, and hence much larger than in the region Cy. Since there is no
change in symmetry, there is no necessity for a sharp phase transition between
the regions C; and C,. However, there may be a first order transition in some
cases,

B. Solid phases.

In addition to the fluid phases described above, there are two solid
phases (B and H) indicated in Figure 11. These phases have true Tong-range
order in the bond orientation,

<«e®1% = const. x £81%0 0 ,




-65-

.where g4 is the orientation of the crystal axis in the xy plane. The Frank
constant K entering (6.2) should be considered infinite in the solid phases;
however, we must now take into account coupling of the tilt orientation to
the strain field of the crystal. Possible solid phases may then be understood
in terms of the effective Hamiltonian '

= 2 2 2 - 3 .
H/kBT i j.d r{Zpuij + lukk + 2w(uij 55ijukk)sisj]

{ - ,
- J d?r cos[6(s(r)-8,)] + KKy d2r(Vs)? (6.14)

where the strain tensor_uij(?} is the symmetric derivative of the displacement
field U(¥) where u;. is the strain tensor, u and x are the (bare) Lame elastic
constants, and 3 = (nx,ﬁy);

If the coupling proportional to w in (6.14) were neglected, one could
apply the analysis of Sec. 4 to the tilt degrees of freedom. One would then
find three solid phases: (i) an isotropic solid with short range order in
the tilt orientation; (ii) an isotropic solid with quasi-long range tilt order;
and (ii1) an anisotropic solid with true longe range order in S. We find, how-
ever, that the anharmonic coupling between phonons and s destabilizes the inter-
mediate phase (ii) above. Presumably, this instability leads to a tilted aniso-
tropic solid identical to (iii). One would then expect a Tine of phase tran-
sitions directly from an isotropic untilted solid (labelled B) to an anisotropic
solid with tilt (labelled H), as shown in Fig. 11.

Phase boundaries shown as 1ight solid lines in Fig. 11 are "Kosterlitz-
Thouless" type phase transitons, with unobservable essential singularities in
‘the specific heat, but with jumps in appropriate stiffness constants. The
double lines represent transitions whose character has not been analyzed.

C. Relation to bulk smectic phases.

The labels A and C, in Fig. 11, were chosen because the corresponding
phases have the properties of an isolated layer of the bulk phases known as
smectic A and smectic C respectively.63 Similarly, phases B and H correspond
to the most commonly accepted description of the bulk smectic B and H phases,
in which the smectic layers are believed to be two-dimensional solids. [A
stack of two-dimensional solids with any finite coupling between the layers,
will form (in thermal equilibrium) a three-dimensional solid, with convention-




. al- Tong-range transiational order in all directions, as discussed below.]
'Recént X-ray measurements on the smectic B phase of the compdund BBOA support
" this description.®??82 . |

As pointed out by Birgeneau and Litster,ss a stack of weakly coupled hex-
atic layers (the A* phase) might be expected to form a bulk liquid crystal
phase, with short-range translational order parallel to the layers, but long-
range order in the bond angle field, <y> = 0. It would certainly be very in-
teresting if experimental evidence can be found for the existence of a bulk
hexatic phase in some materials.

Hikami and Tsuneto®® have studied in some detail the behavior of vortices
in a stack of two-dimensional X-Y models, when there is weak coupling between
the p'lanes.81+ As they had also noted, similar considerations should apply to
dislocations in a stack of smectic layers. We give here a crude argument.

Let us assume that there is a coupling between the translational order
parameters in adjacent smectic -layers, whose strength, per unit area, is de-
noted by y. As a crude approximation, we may consider that in the hexatic

phase, the translational order parameter o% is coherent, in a given layer,
over a region of area £2, where £ is the translational correlation length for
an isolated layer. The effective coupling between coherent areas in adjacent
layers would then be

5 = YEZ<]5'EI2> (6.15)

where EE*is the spatial average of pE over the region of size £2, and the angu-
lar brackets represent a thermal average over phonon fluctuations. We find'®

o

<sb_Gi2> e e, (6.16)

In order that there not be long range translational order, it is necessary
that the coupling & be small compared to T, or

Togiez (6.17)

A coupling energy of order (6.15) is also obtained if one considers the
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'cost in energy if a dislocation pair of separation ¢ = ”f;ze appears in one
layer but not in the adjacent layers.%3

As the temperature is reduced in the hexatic phase, the correlation
length will increase until (6.17) is violated. Presumably there will then
be a first-order transition to a three dimensional solid (smectic B) phase.

We may note, finally that the unlocked tilted hexatic phase C* in Fig.
11 should not have any analogue in bulk smectics. Coupling between layers
would be expected to convert quasi-long-range order to true long range order
for the tilt orientation parameter S. The coupling term h cos 6(6-¢) will
then lock the phase of <S> to the phase of the bond orientation parameter

<>,

BIBLIOGRAPHIC NOTE

There have been several recent conferences and summer institutes where
phase transitions in two dimensional systems were discussed, including the
NATO Advanced Study Institute on "Ordering in Strongly-Fluctuating Condensed
Matter Systems," Geilo, Norway, April 1879, and the Ettore Majorana Summer
School on "Phase Transitions in Surface Films," in Erice, Sicily, June 1879.
The proceedings of these conferences, when published, should provide useful
reviews of experimental and theoretical developments in the field. Other
85 and

recent reviews have been written by Kosterlitz and Thoulesée, Barber
86 :
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