
Concepts in Condensed Matter Physics:

Exercise 1

Spring 2020

Due date: 28/05/2020

1. The robustness of Dirac fermions in Graphene

We know that the lattice structure of Graphene has unique symmetries (e.g. 3-fold rotational sym-

metry of the honeycomb lattice). The question is: What protects the Dirac spectrum? Namely,

what inherent symmetry in Graphene do we need to violate in order to destroy the massless Dirac

spectrum of the electrons at low energies (i.e. open a band gap)? In this question, consider only

nearest neighbor terms.

(a) Stretching the Graphene lattice - one way to reduce the symmetry of Graphene is to stretch

its lattice in one direction. Which symmetry is broken in this case? In non-stretched

Graphene the hopping of an electron from a carbon atom to its three nearest-neighbors has

equal amplitudes (t1 = t2 = t3 = t). Stretching a carbon-carbon bond reduces the hopping

element along this bond. A simple way to take into account the stretching is to keep the

hexagonal geometry of Graphene �xed but write a tight-binding Hamiltonian with non-equal

hopping matrix elements:

H = −
∑
~R,σ

∑
a

[
taA

†
~R,σ
B~R+ ~δa,σ

+ h.c.
]
, (1)

where the vectors ~δ, connecting the A atoms to their nearest neighbors, are given by

~δ1 = a
2

(
1,
√

3
)
~δ2 = a

2

(
1,−
√

3
)
~δ3 = a (−1, 0) . (2)

i. Write the Bloch Hamiltonian for the generic case (t1 6= t2 6= t3) and �nd the corresponding

energy bands and wave functions. Use the form h(~k) = ~d(~k) · ~σ, where the ~σ are the Pauli

matrices acting on the A-B space, and �nd ~d(~k). In what follows you can plot the energy

bands numerically.
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ii. What happens to the Dirac cones in homogeneous stretching (change the values of the t's

but keep them equal)?

iii. How are the two Dirac points and cones a�ected in the following two di�erent cases: (i)

t1 = t3 > t2, and (ii) t1 = t3 < t2? For what values of r ≡ t2
t1

do the Dirac cones gap

out? Plot the band structure of the Bloch Hamiltonian for several representative values of r

leading up to r∗ where the cones gap out. Plot the phase of the pseudo-spin wave-function

as a function of ~k for these values of r in the vicinity of the Dirac points. (Similar to what

you saw in class for non-stretched case.) Try explaining what happens to the Dirac cones

in terms of vortices in k-space as r is modi�ed.

iv. For the non-stretched case, we found the Hamiltonian

H̃ = h̄vF (kxσx + τzkyσy) , (3)

with τz = ±1 labeling the valley degree of freedom. How does Eq. (3) change when the

graphene is stretched? (You may assume r � r∗.) Compare this to the coupling of the

Dirac fermions to the electromagnetic gauge �eld pµ → pµ − qAµ.

(b) What happens when one introduces a term proportional to σz (for example dz = const.) to h(~k)?

What is the physical meaning of such a term, and how does it manifest in the microscopic tight-

binding Hamiltonian? What symmetry of Graphene does it break?

2. Bilayer Graphene

In this problem we will discuss the electronic properties of two sheets of Graphene stacked one on

top of the other. We will consider a particular stacking (which is energetically favored when stacking

Graphene), the so-called �Bernal stacking� (or �AB stacking�). In this con�guration, an A-atom of

layer 2 (A2) is positioned directly above a B atom of layer 1 (B1), while A1 and B2 are exactly aligned

with the hexagon center of their opposing layer, see Fig. 1.

(a) Let us consider the tight-binding Hamiltonian of bilayer Graphene. There are three hopping

processes we want to account for: (i) the intra-layer hopping (you are already familiar with),

with amplitude t; (ii) the �strong� inter-layer hopping, which couples overlapping A2 and B1

atoms, with amplitude γ1; and �nally (iii) the much smaller coupling between neighboring A1

and B2 atoms, with amplitude γ3.

Write down the tight-binding Hamiltonian in terms of creation/annihilation operators on the

sites A1, B1, A2, B2. Transform it to k-space to �nd the Bloch Hamiltonian, and write it in the
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Figure 1: Stacking of two layers of Graphene. Atoms of the bottom layer �1� appear in gray, while in
the to player �2� appear in black. In the stacking depicted, A2 and B1 atoms overlap and have a hopping
amplitude of γ1, whereas A1 atoms are located in the center of layer-2 hexagons, and B2 atoms are centered
with respect to layer-1 hexagons. Nearby A1 and B2 atoms are connected by a hopping amplitude γ3.

form

H =
∑
~k

Ψ†
(
~k
)
h
(
~k
)

Ψ
(
~k
)
, (4)

with Ψ
(
~k
)

=
(
ψA1,~k

, ψB1,~k
, ψA2,~k

, ψB2,~k

)
a spinor of annihilation operators.

(b) From this point on, we will use the fact that γ3 � γ1 and set γ3 = 0. Diagonalize the Hamiltonian

and plot its spectrum as a function of ~k for γ1 � t, and γ1 . t. Compare your results with the

spectrum we obtained for single-layer Graphene. Is the spectrum gapped?

(c) Expand the Bloch Hamiltonian around theK/K ′ points and �nd its low-momentum description.

How does the spectrum behave at low energies and small momenta?

Using second-order perturbation theory in
vF |~k|
γ

, derive the e�ective low-energy 2×2 Hamiltonian

acting on the spinor Ψ̃
(
~k
)

=
(
ψA1,~k

, ψB2,~k

)
(You may want to consult the book of Sakurai,

Chapter 5.2.). Can you de�ne (and �nd) the mass of the electrons from the spectrum?

(d) Add to the 2× 2 Bloch Hamiltonian you found a term accounting for a chemical potential bias

between the layers. In other words, an energy �cost� for electrons to be located on layer-1 atoms,

and an identical energy �gain� for being located on layer-2. Such a setup can be experimentally

achieved by, e.g., placing the bilayer inside a two-plate capacitor. What is the e�ect of such a

term on the spectrum?

3. "Magic angle" Twisted Bilayer Graphene (Bonus question)
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In this exercise, we will explore a system on the cutting edge of contemporary condensed matter

physics, the theoretical prediction (similar to what you will do in this exercise) and discovery of

which has recently been awarded the prestigious Wolf prize. The system is comprised of two sheets

of graphene, with a very small in-plane rotation of one sheet relative to the other, of the order of ∼ 1◦

. As you will see, the spectrum of such systems is exceptionally ��at� (and has for example a tiny

Dirac velocity) as compared to plain monolayer Graphene. This in turn seems to strongly enhance

correlations between the electrons and may lead to rather exciting phenomena.

For those of you interested, you can check out the following talk on YouTube: https://www.youtube.

com/watch?v=O2HVCjhuJlE, where roughly the �rst half of the talk is relevant to this exercise (al-

though all of it is quite interesting).

Figure 2: Twisted bilayer Graphene. Left: lattice structure of a single layer of Graphene. Middle: two
Graphene layers with a small relative twist. The periodic Moiré pattern is formed in real-space, and one
�nds alternating areas of AA, AB, and BA stacking, pointed out explicitly to the right. The inter-layer
hopping captured in Eq. (6) is modulated by this Moiré potential.

The twisted-bilayer Graphene structure gives rise to a Moiré periodic pattern, see Fig. 2, with an

enlarged unit cell of O (103) carbon atoms. The Moiré pattern e�ectively modulates the inter-layer

hopping matrix elements, with a triangular lattice pattern spanned by

~q1 = kθ (0,−1) , ~q2 =
kθ
2

(√
3, 1
)
, ~q3 =

kθ
2

(
−
√

3, 1
)
,

with kθ = 2kD sin (θ/2) , kD = 4π/(3a) being the (monolayer) Dirac momentum, a is the Graphene

lattice constant, and θ the relative twist-angle.

(a) Begin with the low-energy Dirac Hamiltonian of a single layer near a single valley for simplicity,

and transform it to real-space. This produces a 2×2 matrix with derivatives in real-space h0 (~r).

Find h0,Θ (~r), which is de�ned as rotating h0 (~r) around the z-axis by an angle Θ. (Hint: the
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generator of in-plane rotations is the σz Pauli matrix.)

(b) The continuum Hamiltonian can now be expressed by

H =

∫
d2~rΨ† (~r)heff. (~r) Ψ (~r) ,

with Ψ = (ψA,1ψB,1, ψA,2ψB,2) and (notice that heff. is a 4 × 4 matrix just like that of bilayer

Graphene, and that each element in the matrix below is a 2× 2 matrix)

heff. (~r) =

(
h0,θ/2 (~r) T (~r)

T † (~r) h0,−θ/2 (~r)

)
. (5)

The matrix T embodies the Moiré-modulated inter-layer hopping, and is given by

T (~r) =
3∑
j=1

(
w0 w1e

−i(j−1)φ

w1e
i(j−1)φ w0

)
e−i~qj ·~r ≡

(
w0F0 (~r) w1F1+ (~r)

w1F1− (~r) w0F0 (~r)

)
, (6)

with φ = 2π/3. The functions Fλ represent the Moiré modulation in space. To understand their

form, plot |F0 (~r)|,|F1± (~r)| as a function of position.

Perform a Fourier transform on the continuum Hamiltonian to �nd its form in k-space. Notice

the Hamiltonian is no longer diagonal in ~k as all the cases we have considered so far (mono-

layer and bilayer Graphene) due to the periodic modulation. Speci�cally, you should �nd the

Hamiltonian takes the form[
ψ†1

(
~k
)
, ψ†2

(
~k + ~q1

)
, ψ†2

(
~k + ~q2

)
, ψ†2

(
~k + ~q3

)]
H~k
[
ψ1

(
~k
)
, ψ2

(
~k + ~q1

)
, ψ2

(
~k + ~q2

)
, ψ2

(
~k + ~q3

)]T
,

(plus an Hermitian conjugate) with ψ`

(
~k
)

=
(
ψA,`

(
~k
)
, ψB,`

(
~k
))

. Find the explicit form of

H~k.

(c) Next, we want to take a closer look at the spectrum around one of the Dirac points, so we will

�nd the e�ective Hamiltonian connecting ψ†1

(
~k
)
and ψ1

(
~k
)
.

Recall that for an Hamiltonian of the form

H =

(
HA TAB

TBA HB

)
,

one can formulate an e�ective A-Hamiltonian which produces the same Schrodinger equation

5



solution with energy E (you should check this explicitly),

Heff
A (E) = HA − TAB (HB − E)−1 TBA. (7)

After approximating h0,θ/2 ≈ h0,0, The H~k you found in the previous part should be of the form

H~k =


h
(
~k
)

T01 T02 T03

T10 h
(
~k + ~q1

)
T20 h

(
~k + ~q2

)
T30 h

(
~k + ~q3

)

 , (8)

with h
(
~k
)

= vF~k · σ. Using a generalized form of Eq. (7) at the vicinity of E = 0, �nd

the e�ective Hamiltonian ψ†1

(
~k
)
heff

(
~k
)
ψ1

(
~k
)
. Expand it to �rst order in ~k to extract the

modi�ed Dirac velocity v?. How does it depend on vF , w0,1, kθ? Take vFkD = 9.9 eV, w1 = 110

meV, w0 = 82 meV. Plot v? as a function of the twist angle. What is the �magic angle� at which

the band becomes �at? Compare this to the case w0 → 0.

You might �nd references [1, 2, 3] useful for this exercise.
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