
Concepts in Condensed Matter Physics:

Exercise 4

Spring 2020

Due date: 13/07/2020

1. BCS theory of superconductivity

In this question you will re-derive the BCS theory studied in class and also study the e�ect of an

applied Zeeman magnetic �eld. Our starting point is the Hamiltonian of electrons interacting

via an attractive point contact interaction (g > 0):

H =

ˆ
d3x

{∑
σσ′

c†σ (x)

[(
−∇

2

2m
− µ

)
δσσ′ − hσzσσ′

]
cσ′ (x)− gc†↑ (x) c†↓ (x) c↓ (x) c↑ (x)

}
, (1)

where h is a Zeeman energy, which causes a chemical potential di�erence between the two spin

species.

(a) Write the Hamiltonian in momentum space, and then transform it to a quadratic form by

assuming the order parameter ∆ = g
Ω

∑
k c−k↓ck↑ is weakly �uctuating (i.e., by performing

mean �eld). Here Ω is the system's volume.

(b) Diagonalize the quadratic Hamiltonian using a unitary transformation and �nd the spec-

trum of excitations. How does h 6= 0 a�ect the diagonalization?

(c) For h = 0. What is the ground state wavefunction? What is the ground state energy?

Show that by taking ∆→ 0 we recover the known non-interacting ground state energy.

(d) For h = 0. Using the ground state wavefunction, write a self-consistent equation (�the

BCS gap equation�) for ∆. Assume the interaction is only operational in a small window

of energies of width 2ωD around the Fermi energy. Solve this equation for small values of

g.

(e) We now once again consider h 6= 0. Find the self consistent equation relating ∆ and

temperature. Do this by promoting the average with respect to the ground state to a

thermal average.

(f) Find the critical temperature Tc above which superconductivity is destroyed. At zero

temperature, what is the critical interaction gc, with and without a Zeeman term? Does

the Copper instability persist to �nite magnetic �elds?
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2. Ginzburg-Landau theory from the BCS Hamiltonian

In this problem you will work through some of the details of going from the microscopic BCS

Hamiltonian to the Ginzburg-Landau action

SGL = β

ˆ
ddx

[
r

2
|∆|2 +

c

2

∣∣∣(∂x − 2ie ~A
)

∆
∣∣∣2 + u |∆|4

]
. (2)

Speci�cally, you will derive the phase transition controlled by the parameter r. You will do so

following these steps.

(a) Write the quantum partition function associated with the Hamiltonian Eq. (1) (with

h = 0). We also do not concern ourselves with coupling to the electromagnetic �eld, so

you may assume e = 0.

(b) Use a Hubbard-Stratonovitch transformation to decouple the interaction, as we did in the

tutorial. Show explicitly what is the �fat unity� that you are multiplying the partition

function by. Formally integrate out the fermions and arrive at the e�ective action for ∆.

(c) Now, assume the �eld ∆ (x, τ) is uniform, both in space and imaginary time. Expand the

action up to second order in ∆ (verify what happens to the �rst order term).

(d) Comparing your result to Eq. (2), and performing the necessary Matsubara summations

and integrals, �nd r. (You should again assume the interaction is only operational in a

small window of energies of width 2ωD around the Fermi energy, and that the density of

states is roughly constant within this window.)

(e) What happens to r at the critical point? Find the exponent α which describes the behavior

of r near the transition r ∝ (T − Tc)α.

(f) Expalin in a few words how would you derive the parameters c, u in Eq. (2)?

3. Superconductivity on the surface

In this question you will �nd that aboveHc2 there is a range of �elds for which superconductivity

can survive on the surface. Consult �Introduction to superconductivity�, by M. Tinkham, page

135.

(a) Start from the Ginzburg-Landau theory of a superconductor and neglect non-quadratic

orders near the critical point. Write down the corresponding equations of motion, and

using an analogy to the Schrodinger equation, �nd the critical �eld Hc2, above which

superconductivity cannot nucleate in the interior of the sample. Write the result in terms

of φ0 and ξ. Can you explain the result qualitatively?

(b) Consider the same physical setting with an edge at x = 0 (such that for x > 0 there is an

insulator). Show that the boundary conditions take the form
(
∇
i
− 2π ~A

φ0

)
∆|n = 0 (what
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is the direction |n?). Show that one can automatically satisfy this boundary condition by

considering an auxiliary potential, containing a mirror image of the original potential in the

insulating region. Does this a�ect the solution from part (a) well inside the superconductor

(i.e., for |x| � ξ)?

(c) Argue, using the auxiliary potential, that very close to the surface one can �nd a solution

with lower energy, making the critical �eld higher near the surface.

4. Little-Parks e�ect

Consider a superconductor which has the geometry of a ring with radius R and width d.

(a) A �ux φ penetrates the center of the ring. Write the Ginzburg-Landau theory for the ring,

explain what is the condition to be in the quasi 1D limit.

(b) How does Tc depend on φ? and what is the corresponding coherence length ξ(φ)? Discuss

the limit of R > ξ and R < ξ.

(c) So far we have implicitly ignored phase �uctuations due to vortices slipping in and out of

the ring. Qualitatively, when is this a good approximation?
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