
Concepts in Condensed Matter Physics:

Tutorial IV

The BCS Theory of Superconductivity
In the lectures you saw a phenomenological analysis of superconductors. In particular,

you saw that given some empirical results, many additional predictions can be made using the

Ginzburg-Landau formalism. Historically, this approach has been very successful. However,

the theory is still incomplete without a microscopic explanation. In this tutorial we will �ll

this gap by reviewing the famous BCS theory, established by Bardeen, Cooper, and Schrie�er

about 50 years after the initial discovery of superconductivity. Then, we will connect the

microscopic picture to the phenomenological one by deriving the Ginzburg-Landau theory.

1 Preliminaries

The BCS theory is based on two important insights:

1. Cooper's realization that attractive interactions between electrons in the vicinity of the

Fermi-energy favor the formation of bound states made of two electrons, called cooper

pairs.

2. The result that interaction between two electrons, mediated by phonons, can be at-

tractive.

Once one realizes these things, the next step is to assume that the ground state of a many

body system with attractive interactions can be described in terms of a condensate of such

weakly interacting pairs. The pairs satisfy Bose statistics, giving rise to a physics similar to

that of a super�uid, yet di�erent due to the fact that the bosons are now charged. We will

see that this picture is capable of explaining superconductivity. We begin by elaborating on

the above two crucial points:

1.1 Attractive interaction for fermions

We begin by analyzing the possibility of having attractive interactions between electrons. As

it turns out, such electron-electron interaction can originate from electron-phonon coupling,
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namely mediated by phonons. We will only discuss a very qualitative picture here, but this

can be made more rigorous. The idea is that an electron can pass at some time near an ion

and distort it from its equilibrium position by attraction. Since the ions are much slower than

the electrons ω−1
D � E−1

F the ion will not relax to equilibrium long after the electron passed

through. The result is that for a long time (in the electronic scale), at the distorted position,

on the path of the original electron, there is a concentration of positive charge attracting

other electrons. The net e�ect is an attractive interaction between the two electrons (which

in reality is mediated by the phonons) that overcomes the Coulomb repulsion.

1.2 Formation of bound states: Cooper pairs

To see that pairs of electrons can form bound states, we examine the following toy model.

We imagine two electrons, with an attractive interaction between them, on top of a Fermi

sea. The two additional electrons do not interact with the Fermi sea electrons, but feel

their presence via the Pauli exclusion principle. We would like to �nd the corresponding

two-electron eigenstates.

We assume that the total momentum is zero and that the spin-part of the wavefunction

is antisymmetric, such that

ψ (r1, r2) ∝
∑
k

[
gke

ik·(r1−r2)
]( | ↑1↓2 〉 − | ↓1↑2 〉√

2

)
. (1)

The Schrodinger equation for the two electrons is[
− ~2

2m
∇2

1 −
~2

2m
∇2

2 + V (r1 − r2)

]
ψ(r1,r2) = Eψ(r1,r2) , (2)

and plugging in our anzats, Eq.(1), we �nd

2εkgk +
∑
k′

Vkk′gk′ = Egk, (3)

with the Fourier transform de�ned by

Vkk′ =
1

Ω

ˆ
drV (r) e−i(k−k

′)·r. (4)

Obviously the energies depend on the form of the interaction Vkk′ , but since the phe-
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nomena we want to see should be universal for Fermions with attractive interactions, we can

pick a simple form such as

Vkk′ =

−V EF < εk, εk′ < EF + ∆E

0 Otherwise
. (5)

This merely means that the attractive interactions only a�ect electrons occupying states in

a small energy shell ∆E above the Fermi-sea. Plugging this form of the interactions into

Eq. (3) we �nd

− V
∑
k′

gk′ = (E − 2εk) gk , (6)

where the sum over k′ is restricted to k′ values satisfying the requirement in Eq. (5), namely

for which εk′ is withing ∆E from the Fermi surface. Dividing the equation by E − 2εk and

summing of over k (under the same restrictions), we get

−
∑
k

V

E − 2εk
= 1 . (7)

We now transform the sum over k to an integral over energy, introducing the density of

states n(ε) to �nd

−
ˆ EF+∆E

EF

dε
V n(ε)

E − 2ε
= 1 . (8)

Since we integrate over a thin shell ∆E we can assume the DOS does not change over it

and approximate it by ν (EF ). Then it can be taken out of the integral which is now easily

solved to give
V n (EF )

2
log

(
E − 2 (EF + ∆E)

E − 2EF

)
= 1 , (9)

⇒ E = 2EF − 2∆Ee
− 2
V n(EF ) . (10)

Remember that until now we considered adding two electron on top of the Fermi-sea.

Let's now think instead of taking two electron from the Fermi-surface and putting them

into this cooper pair bound state. Obviously removing the from the Fermi-surface saves

2EF of energy. Therefore, it is clear that taking pairs of electron from the Fermi-sea and

putting them into cooper pairs saves energy in the amount of 2∆Ee
− 2
V n(EF ) > 0, and is thus

energetically favorable. This result demonstrates a general principle: if there is an attractive

interaction (which can be arbitrarily small) between the electrons, there is an instability
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towards the formation of cooper pairs. Therefore one can then assume that the ground state

of a many-body system with attractive interactions is composed of many weakly interacting

pairs.

2 BCS theory of superconductivity

Having the above physics in mind, we postulate that as the system becomes supercon-

ducting, there is an instability toward condensation of pairs. To investigate the physics

that arises from that, we assume that the ground state of a system with attractive inter-

actions |Ωs〉 is characterized by a macroscopic number of pairs. This means that ∆ =
g
Ω

∑
k 〈Ωs|ψ−k,↓ψk↑ |Ωs〉, and its complex conjugate ∆̄ = g

Ω

∑
k 〈Ωs|ψ†k↑ψ

†
−k,↓ |Ωs〉 are non-

zero. We regard these quantities as the order parameters of our system.

With the above assumption, we use the usual mean �eld formulation to transform the

interacting Hamiltonian into a quadratic one, neglecting some quantum �uctuations. We

start from a system of fermions with attractive contact interactions

H =
∑
k,σ

nk,σ (εk − µ)− g

Ω

∑
k,k′,q

ψ†k+q↑ψ
†
−k↓ψ−k′+q↓ψk′↑ . (11)

Under our mean-�eld assumption,
∑

k′ ψ−k′+q↓ψk′↑, is governed by small q's (only very long

wavelength �uctuations), and has a mean-�eld value about which �uctuations are small.

Therefore, we write

∑
k′

ψ−k′+q↓ψk′↑ ≈
∑
k′

ψ−k′↓ψk′↑ =
Ω∆

g
+
∑
k′

ψ−k′↓ψk′↑ −
Ω∆

g︸ ︷︷ ︸
Small

,

∑
k

ψ†k+q↑ψ
†
−k↓ ≈

∑
k

ψ†k↑ψ
†
−k↓ =

Ω∆̄

g
+
∑
k

ψ†k↑ψ
†
−k↓ −

Ω∆̄

g︸ ︷︷ ︸
Small

. (12)

Plugging these into the Hamiltonian and keeping only the �rst order terms in the small

�uctuations, we get the mean-�led Hamiltonian

HMF =
∑
k,σ

nk,σ(εk − µ) +
Ω

g
|∆|2 −∆

∑
k

ψ†k↑ψ
†
−k↓ − ∆̄

∑
k

ψ−k↓ψk↑ , (13)
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which is sometimes called the Bogoliubov de-Gennes (BdG) Hamiltonian.

We have transformed the interacting Hamiltonian into a quadratic mean-�eld Hamil-

tonian that captures the correct ordering in our system. Note, however, that this form

is dramatically di�erent than the type of mean-�eld Hamiltonians we usually write as it

doesn't conserve the number of particles. The number of particles is indeed not conserved,

but the parity of that number (i.e., the number of particles mod 2) remains a good quantum

number. We would now like to diagonalize the BDG Hamiltonian. To do so, we de�ne the

Nambu-spinor Ψk =
(
ψk↑ ψ†−k↓

)T
, in terms of which the Hamiltonian is given by

H =
Ω

g
|∆|2 +

∑
k

(εk − µ) +
∑
k

Ψ†khBdGΨk ,

hBdG =

(
εk − µ −∆

−∆̄ − (εk − µ)

)
. (14)

To explicitly see that this is correct we plug in the de�nition of Ψk:

H =
Ω

g
|∆|2 +

∑
k

(εk − µ) +
∑
k

Ψ†khBdGΨk

=
Ω

g
|∆|2 +

∑
k

(εk − µ) +
∑
k

[
(εk − µ)

(
ψ†k↑ψk↑ − ψ−k↓ψ†−k↓

)
−
(

∆ψ†k↑ψ
†
−k↓ + ∆̄ψ−k↓ψk↑

)]
=
∑
k,σ

nk,σ(εk − µ) +
Ω

g
|∆|2 −∆

∑
k

ψ†k↑ψ
†
−k↓ − ∆̄

∑
k

ψ−k↓ψk↑ . (15)

Now, the matrix hBDG, being hermitian, can always be diagonalized by a unitary transfor-

mation such that (assuming ∆ is real)

UhBDGU
−1 =

(
λk 0

0 −λk

)
,

U

(
ψk↑

ψ†−k↓

)
≡

(
γk,↑

γ†−k,↓

)
≡ Γk . (16)

The unitary transformation can be parametrized by

U =

(
cos θk sin θk

sin θk − cos θk

)
, (17)
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(a) (b)

Figure 1: (a) Spectrum of BdG Hamiltonian for ε~k =
~k2

2m
, and (b) Comparison between BCS

gap equation and experimental data.

where tan(2θk) = − ∆
εk−µ

, and the eigenvalues are λk =
√

∆2 + (εk − µ)2. In terms of these,

the Hamiltonian takes the diagonal form

H =
Ω

g
|∆|2 +

∑
k

(εk − µ− λk) +
∑
k,σ

λkγ
†
k,σγk,σ . (18)

Taking εk = k2

2m
, we get the dispersion shown in Fig. 1a.

It is now simple to identify the ground state: much like the Fock space vacuum, it is the

state anihilated by all γk,σ operators,

|BCS〉 =
∏
k

γk,↑γ−k,↓ |0〉 ∝
∏
k

(
cos θk − sin θkψ

†
k↑ψ

†
−k↓

)
|0〉 , (19)

where |0〉 is the vacuum of the Fock space spanned by ψ†k,σ, i.e., for all k and σ, ψk,σ | 0 〉 = 0,

and the corresponding ground state energy is

Eg.s. =
Ω

g
|∆|2 +

∑
k

(εk − µ− λk) . (20)

Crucially, there is a gap ∆ to excitations. This gap is essential for superconductivity.
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Recall that ∆ was de�ned as the expectation value ∆ = g
Ω

∑
k 〈Ωs|ψ−k,↓ψk↑ |Ωs〉. We are

now in a position to write a self-consistent equation for it. All we need to do is to write the

ψk,σ operators in terms of γk,σ, for which it is easy to compute. We �nd

∆ =
g

Ω

∑
k

〈BCS|ψ−k,↓ψk↑ |BCS〉 = −1

2

g

Ω

∑
k

sin (2θk) =
g

Ω

∑
k

∆

2λk
. (21)

By transforming the sum over k into an integral over energy, using the density of states n(ξ),

and recalling that the attractive interaction occurs only at a thin shell of order ωD around

the Fermi-energy, we write

1 =
g

2

ˆ ωD

−ωD
dξ

n(ξ)√
∆2 + ξ2

≈ gn(0)

ˆ ωD

0

dξ√
∆2 + ξ2

= gn(0) sinh−1
(ωD

∆

)
. (22)

We can solve this for ∆, assuming that it is small compared to ωD, �nding

∆ ≈ 2ωDe
− 1
gn(0) , (23)

which is indeed much smalled than ωD.

Finally, it is instructive to �nd the critical temperature from this formalism. To do this we

need to write the self-consistency equation at �nite temperatures. We can use the machinery

we already have and write ∆ as a sum of Matsubara frequencies using the coherent state

path integral formulation. However, since we understand the excitations of the Hamiltonian

(18), we can do something simpler and write

〈ψ−k,↓ψk↑〉 =
1

2
sin (2θk)

[
〈γ†k,↑γk,↑〉 − 〈γ−k,↓γ

†
−k,↓〉

]
(24)

=
1

2
sin (2θk) [nF (λk)− (1− nF (λk))] . (25)

Plugging this into the de�nition of ∆, we get the �nite temperature self consistent equation

∆ =
g

Ω

∑
k

〈ψ−k,↓ψk↑〉 =
g∆

2Ω

∑
k

1− 2nF (λk)

λk
=
g∆

2Ω

∑
k

tanh
(
βλk

2

)
λk

, (26)

⇒ 1 =
g

2Ω

∑
k

tanh
(
βλk

2

)
λk

. (27)

As before, we will transform the sum over k into an integral over energy, again using the
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density of states n(ξ) to obtain the well-known BCS gap equation

1 = gn(0)

ˆ ωD

0

dξ

tanh

(
β
√

∆2+ξ2

2

)
√

∆2 + ξ2
. (28)

A comparison between this mean-�eld approximate solution and experimental measurements

is shown in Fig.1b.

Above the critical temperature ∆ = 0, and close to the critical temperature, on the

superconducting side, ∆ ≈ 0. Therefore, We can now �nd the critical temperature by

setting ∆ = 0 into the gap equation. We �nd

1 = gn(0)

ˆ ωD

0

dξ
tanh

(
βξ
2

)
ξ

≈ gn(0)

ˆ ωD

Tc

dx
1

x
,

⇒ Tc = CωDe
− 1
gn(0) , (29)

where C is some numerical factor of order 1.

To summarize this part, we now have a microscopic theory that explains the condensation

of pairs and the emerging gap to excitations. However, this picture doesn't actually allow

us to �nd the electromagnetic response of the system. To capture this part, we need to

include an additional degree of freedom in our picture: the Goldstone mode associated with

changing the phase of ∆. Such a treatment necessarily goes beyond the above mean �eld

treatment, which treats ∆ as a constant. This is the focus of the next section.

3 Deriving the Ginzburg-Landau theory for supercon-

ductivity

To make contact with the phenomenological analysis, and include the phase mode in the

analysis, we turn to derive the Ginzburg-Landau functional from the microscopics using the

Hubbard-Stratonovich transformation. This is very similar in spirit to what we already saw

in the second tutorial when we discussed magnetism.

The partition function is given by

Z =

ˆ
D
[
ψ̄, ψ

]
e−
´ β
0 dτdx{∑σ ψ̄σ[∂τ+ieφ+ 1

2m
(−i∇−eA)2−µ]ψσ−gψ̄↑ψ̄↓ψ↓ψ↑} , (30)
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where we have introduced coupling to the electromagnetic �eld in the form of the minimal

coupling: ∂τ → ∂τ + ieφ, and −i∇ → −i∇ − eA. The �rst step towards obtaining the

Ginzburg-Landau theory is to decouple the interacting term by introducing a Hubbard-

Stratonovich �eld ∆

e
´ β
0 dτ

´
dxgψ̄↑ψ̄↓ψ↓ψ↑ ∼

ˆ
D
[
∆̄,∆

]
e
−
´ β
0 dτ

´
dx

[
|∆|2
g
−(∆̄ψ↓ψ↑+∆ψ̄↑ψ̄↓)

]
. (31)

The resulting action is identical to the mean-�eld action we had in the previous section if we

treat ∆ as a constant �eld, thus interpreting it ∆ as the superconducting order parameter.

However, now we will not do that, but instead treat it as a dynamical �eld, with amplitude

and phase �uctuations.

The second step is to integrate out the fermions. To do so we de�ne the Nambu-spinor

Ψ =
(
ψ↑ ψ̄↓

)T
in terms of which the partition function is

Z =

ˆ
D
[
ψ̄, ψ

]
D
[
∆̄,∆

]
e−S ,

S =

ˆ β

0

dτ

ˆ
dx

[
|∆|2

g
− Ψ̄G−1Ψ

]
, (32)

G−1 =

( [
G(p)

]−1
∆

∆̄
[
G(h)

]−1

)
, (33)

where [
G(p)

]−1
= −∂τ − ieφ−

1

2m
(−i∇− eA)2 + µ , (34)

[
G(h)

]−1
= −∂τ + ieφ+

1

2m
(i∇− eA)2 − µ . (35)

Integrating out the fermions, to get an e�ective action for ∆ is simple, and the result is

Z =

ˆ
D
[
∆̄,∆

]
e−S ,

S =

ˆ β

0

dτ

ˆ
dx

[
|∆|2

g

]
+ log

[
det
(
G−1

)]
. (36)

Again, the mean-�eld results can be obtained from this e�ective theory by deriving the

equations of motion, and neglecting quantum �uctuations in ∆. Doing so will reproduce the
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gap equation we got in the mean-�eld analysis in section 2. However, here we want to go

beyond mean-�eld by considering the e�ects of �uctuations. To do so We will assume that

∆ is small, which is true close to the transition, and expand log [det (G−1)] = tr [log (G−1)]

to lowest orders in ∆. First we write

G−1 = G−1
0 + ∆̂ = G−1

0

(
1 + G0∆̂

)
, (37)

where G−1
0 ≡ G−1(∆ = 0), and ∆̂ =

(
0 ∆

∆̄ 0

)
, such that

tr
[
log
(
G−1

)]
= tr

[
log
(
G−1

0

)]
+ tr

[
log
(

1 + G0∆̂
)]

= tr
[
log
(
G−1

0

)]
−
∞∑
n=1

1

2n
tr

[(
G0∆̂

)2n
]
. (38)

We will not calculate the traces here, but those who are interested in such details are referred

to Altland & Simons, chapter 6. Neglecting temporal �uctuations (making it a semi-classical

Ginzburg-Landau theory) the result is

SGL = β

ˆ
dx
[r

2
|∆|2 +

c

2
|(∂x − 2ieA) ∆|2 + u |∆|4

]
, (39)

with r = nT−Tc
TC

. This is exactly the phenomenological theory you saw in class.

Let's see how the unique experimental properties of superconductors arise from this

action. Below Tc we have r < 0 so the potential r
2
|∆|2 + u |∆|4 has a minimum at |∆|2 =√

−r
4u

= ∆2
0. However, the phase of ∆, i.e., the Goldstone mode, is not determined by the

potential. Therefore, we write ∆ = e2iθ∆0 in the Ginzburg-Landau actionto get

SGL = 2c∆2
0β

ˆ
dx (∂xθ − eA)2 . (40)

We want to �nd the electromagnetic response of the system, so we need to treat it as

dynamical �eld. Therefore, we should also add its kinetic term SMaxwell = β
2

´
dx(∇×A)2

(assuming φ = 0, and the �eld is static), such that the total action is

S [A, θ]

β
=

ˆ
dx

[
2c∆2

0 (∂θ − eA)2 +
1

2
(∇×A)2

]
. (41)
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In order to get an e�ective action for the gauge �eld A we integrate over the Goldstone

mode. You already saw that explicitly in class, so I will not repeat this here, but the result

is that after integrating out θ, the electromagnetic �eld acquires a mass (Higgs mechanism)

S [A]

β
=

1

2

ˆ
dx
[ρ0

m
A2 + ∂iA∂iA

]
, (42)

where we have adopted the notations used in class. Deriving the equations of motion, we

get ρ0

m
A = ∇2A, and taking the curl we reproduce the London equation

ρ0

m
B = ∇2B , (43)

which was discussed in class. In particular, it was already shown that it results in the decay

of the magnetic �eld as we go into the bulk of the superconductor.

The second e�ect we want to see is the zero DC resistivity. To do that, we �nd the

electric current

j(r) =
δ

δA(r)

ˆ
dx

ρ0

2m
A2 =

ρ0

m
A (44)

Taking the time-derivative, working in a gauge where φ = 0 and E = −i∂τA we �nd that

the electric �eld satis�es

E = −im
ρ0

∂τ j . (45)

Therefore, for a constant DC current there will be no electric �eld, and thus no voltage drop,

hence dissipation-less current.
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