A 2-dimensional topological superconductor:

Consider the following 2D tight binding model of spinless electrons with hopping on a square lattice and superconducting terms of the form:

$$
\begin{gathered}
H=H_{t}+H_{\mu}+H_{\Delta} \\
H_{t}=-\left(\sum_{i, j} t \psi_{i, j}^{\dagger} \psi_{i+1, j}+t \psi_{i, j}^{\dagger} \psi_{i, j+1}\right)+\text { h.c. } \\
H_{\mu}=-\sum_{i, j} \mu \psi_{i, j}^{\dagger} \psi_{i, j} \\
H_{\Delta}=\frac{\Delta}{2} \sum_{i, j}\left(\psi_{i, j}^{\dagger} \psi_{i+1, j}^{\dagger}-\psi_{i, j}^{\dagger} \psi_{i-1, j}^{\dagger}+i \psi_{i, j}^{\dagger} \psi_{i, j+1}^{\dagger}-i \psi_{i, j}^{\dagger} \psi_{i, j-1}^{\dagger}\right)+\text { h.c. }
\end{gathered}
$$

a) Explain why in this case we cannot write on-site superconducting terms.
b) Transforming to k-space $\psi_{i^{\prime}, j}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{\vec{k}} \Psi^{\dagger}(k) e^{i \vec{k} \cdot\left(i^{\prime}, j\right)}$, write the Hamiltonian in the form

$$
H=\frac{1}{2} \sum_{k} \Psi^{\dagger}(k) h(k) \Psi(k)
$$

with $\boldsymbol{\Psi}=\left(\boldsymbol{\psi}(\boldsymbol{k}), \boldsymbol{\psi}^{\dagger}(-\boldsymbol{k})\right)^{\boldsymbol{T}}$ and $\boldsymbol{h}(\boldsymbol{k})=\left(\begin{array}{cc}\boldsymbol{\varepsilon}(\boldsymbol{k}) & \boldsymbol{d}(\boldsymbol{k}) \\ \boldsymbol{d}^{*}(\boldsymbol{k}) & -\boldsymbol{\varepsilon}(-\boldsymbol{k})\end{array}\right)$
Diagonalize it and find the spectrum. Is there a gap to excitations? If so, find the values of $\frac{t}{\mu}$ in which the gap closes.
c) Study the Chern number of the model as a function of $\frac{t}{\mu}$.
d) Find a low energy theory near the critical point with a positive $\frac{t}{\mu}$ To do so, expand the Hamiltonian to first order in momentum (around which point?), and get the form

$$
h(k)=\alpha \sigma_{x} k_{y}+\beta \sigma_{y} k_{x}+m \sigma_{z} .
$$

What are α, β, m ? (for consistency, make sure $m=0$ in the transition).
e) Using the above continuum model in real space ($k \rightarrow-i \partial_{x}$), examine the situation where the parameter m is spatially dependent:

$$
m=\left\{\begin{array}{c}
m_{0}, x>0 \\
-m_{0}, x<0
\end{array}\right.
$$

Show that the system has a zero energy mode localized near $x=0$. What is its localization length? What happens to it at the critical point.

$$
\begin{aligned}
& H=H_{t}+H_{\mu}+H_{\Delta} \\
& H_{t}=-t \sum_{i j}\left[\psi_{i j}^{+} \psi_{i+1, j}+\psi_{i, j}^{+} \psi_{i, j+1}+h c .\right] \\
& H_{\mu}=-\mu \sum_{i j} \psi_{i, j}^{+} \psi_{i j} \\
& H_{\Delta}=\Delta \sum_{i j}\left[\psi_{i j}^{+} \psi_{i+1 j}^{+}+i \psi_{i j}^{+} \psi_{i, j+1}^{+}\right]+h_{c} .
\end{aligned}
$$

a) fermions are spinless and $\psi_{i j}^{*} \psi_{i j}^{+}=0$!
b)

$$
\begin{aligned}
& H_{z}=-\frac{t}{N} \sum_{i j} \sum_{k, q}\left[\psi_{k}^{+} \psi_{q} e^{-i q_{x}}\right. \\
& \left.\psi_{k}^{+} \psi_{q} e^{-i q_{y}}\right] e^{i(k-q) \cdot r}= \\
& =-t \sum_{k} \psi_{k}^{+} \psi_{k}\left[2 \cos \left(k_{k}\right)+2 \cos \left(k_{y}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& H_{\mu}=-\mu \sum_{k} \psi_{k}^{+} \psi_{k} \\
& H_{\Delta}=\frac{\Delta}{2} \sum_{i j}\left[\psi_{i j}^{+} \psi_{i+1, j}^{+}-\psi_{i j}^{+} \psi_{-1, j}^{+}\right. \\
& \left.+i \psi_{i j}^{+} \psi_{i, j+1}^{+}-i \psi_{i j}^{+} \psi_{i, j-1}^{+}\right]+h . c= \\
& =\frac{\Delta}{2 N} \sum_{i j} \sum_{k q} \psi_{k}^{+} \psi_{\varepsilon}^{+}\left[e^{i \varepsilon_{2}-e^{-i q}}\right. \\
& \left.+i e^{i \varepsilon y}-i e^{-i q_{y}}\right] e^{i(\xi+k) r}+h . c \\
& =-\Delta \sum_{k} \psi_{k}^{+} \psi_{\cdot k}^{+}\left[i \sin \left(k_{\pi}\right)-\sin \left(k_{,}\right)\right] \\
& \quad+h . c .
\end{aligned}
$$

define $\Psi=\left(\begin{array}{ll}\psi_{k} & \psi_{-k}^{+}\end{array}\right)^{\top}$ and:

$$
\begin{aligned}
& H_{t}+H_{\mu}=\sum_{k} \psi_{k}^{+} \psi_{k}^{i^{-2}} \xi(k)
\end{aligned}
$$

$$
1 \quad \ldots \quad \vec{o}_{\ldots} \rightarrow
$$

$$
\begin{aligned}
& -\sum \sum_{k} l T_{k} T_{k}\left\langle(k)-T_{k} T_{k}<(k)\right) \\
& =\frac{1}{2} \sum_{k}\left[\psi_{k}^{+} \psi_{k} \varepsilon(k)-\psi_{-k} \psi_{-k}^{+} \xi(-k)\right] \\
& +\frac{1}{2} \sum_{k} \varepsilon(k)= \\
& =\frac{1}{2} \sum_{k} \Psi^{+}(k)\left(\begin{array}{cc}
\varepsilon(1) & 0 \\
0 & -\delta(k)
\end{array}\right) \Psi(k) \\
& +\frac{1}{2} \sum_{10} \varepsilon(k) \\
& H_{D}=\frac{1}{2} \sum_{k} \Phi^{+}(k)\left(\begin{array}{cc}
0 & d(k) \\
d^{+}(k) & 0
\end{array}\right) \Psi(k) \\
& d(k)=2 \Delta\left[\sin \left(k_{y}\right)-i \sin \left(k_{x}\right)\right] \\
& \Rightarrow H=\frac{1}{2} \sum_{k=} \Psi^{+}(k) h_{B d G}(k) \underline{\Psi}(k) \\
& +\frac{1}{2} \sum_{k} \sum(k)
\end{aligned}
$$

$$
\begin{aligned}
& \eta_{B d G}(k)=a(k) \cdot \sigma \\
& d_{z}(k)=-2 t \cos \left(k_{1}\right)-2 r \cos \left(k_{y}\right) \\
& \text { - } \\
& d_{s}(k)=2 \Delta \sin \left(k_{y}\right) \\
& d_{y}(k)=2 \Delta \sin \left(k_{x}\right) \\
& \Rightarrow E= \pm|\vec{d}(k)|= \pm \sqrt{\varepsilon^{2}(k)+4 \Delta^{2}\left(\sin ^{2}(k)\right.} \\
& \overline{\left.+\sin ^{2}\left(k_{y}\right)\right]}= \\
& \pm \sqrt{\left[2 t \cos \left(k_{n}\right)+2 t \cos \left(k_{y}\right)+\mu\right]^{2}+} \\
& +4 \Delta^{2} \sin ^{2}\left(k_{x}\right)+4 \Delta^{2} \sin ^{2}\left(k_{y}\right) \\
& E \stackrel{?}{0} \Rightarrow k_{x}=0, \pi \\
& k_{\gamma}=0_{r} \pi \\
& \Rightarrow\left\{\begin{array}{l}
\vec{k}=(0,0) \Rightarrow \frac{t}{\mu}=-\frac{1}{4} \\
\vec{k}=(0, \pi),
\end{array}\right.
\end{aligned}
$$

$$
\left(\begin{array}{l}
\overrightarrow{\vec{k}}=(\pi, 0) \Longrightarrow \mu=0 \\
\vec{k}=(\pi, \pi) \Rightarrow \frac{t}{\mu}=\frac{1}{4}
\end{array}\right.
$$

C)

i) lon choose Δ, μ, t in each meyion and calculate:

$$
\begin{aligned}
& c h=\frac{1}{2 \pi} \int d^{2} k F_{x, y}(k) \\
& F_{x, y}(k)=\frac{1}{2} \varepsilon_{\mu \nu \rho} \hat{d}_{\mu} \partial_{x} \hat{d}_{\nu} \nu_{y} \hat{d}_{\rho} \\
& \hat{d}_{x}=\frac{\vec{d}_{x}}{|d|}
\end{aligned}
$$

*(ii) expend around $\mu=4 t$

Cam end $\vec{R}=\langle\pi, \pi)+\vec{P}$

$$
\begin{aligned}
& \vec{d}=\left(\begin{array}{l}
-2 \Delta P_{y} \\
-2 \Delta P_{x} \\
4 t-\mu \\
-\frac{18}{\prime}
\end{array}\right) \Rightarrow \frac{1 d \mid=2 \sqrt{\Delta^{2} P_{x}^{2}+}}{+\Delta^{2} P_{y}^{2}+\left(t-\frac{\mu}{4}\right)^{2}} \\
& \partial_{\mu} \left\lvert\, d l=\frac{4 s^{2} P_{\mu}}{|d|}\right. \\
& \partial_{\mu} \hat{d}_{\nu}=\partial_{\mu} \frac{d \nu}{|d|}=\frac{\partial_{\mu} d \nu}{|d|}-\frac{d \nu}{|d|^{2}} \partial_{\mu}|d| \\
& =\frac{\partial_{\mu} d r}{\mid d /}-\frac{4 d_{\nu} \Delta^{3} P_{\mu}}{1 d 1^{3}} \\
& \partial_{x} \hat{d}_{x}=\frac{8 \Delta^{3} P_{x} P_{y}}{1 d 1^{3}} \\
& \partial_{x} \hat{d}_{y}=\frac{-2 \Delta|d|^{2}}{|d|^{3}}+\frac{8 \Delta^{3} p_{x}^{2}}{|d|^{3}} \\
& \partial_{x} \hat{d}_{z}=-4 \angle P_{x} \nu^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 2_{y} \hat{d}_{x}=-\frac{1 d /^{3}}{1 d \|\left.^{3}\right|^{2}}+\frac{8 \Delta^{3} p_{y}^{2}}{1 d /^{3}} \\
& \partial_{y} \hat{d}_{y}=\frac{8 \Delta^{3} p_{x} P_{y}}{1 d /^{3}} \\
& 2_{y} \hat{d}_{z}=-\frac{4 \xi \Delta^{2} p_{y}}{1 d /^{3}} \\
& F_{x, y}(p)=\frac{4 \varepsilon \Delta^{2}}{\left[4 \Delta^{2} p^{2}+\varepsilon^{2}\right]^{3 / 2}} \\
& C h=\frac{1}{2 \pi} \int d^{2} p F_{x y}(p)= \\
& =\frac{1}{2 \pi} \int p d p d \theta F_{x y}(p)=\int_{0}^{\infty} p F^{2} F_{x y}(p) \\
& =\frac{1}{2} \frac{\varepsilon}{\mid \Delta 1} \int_{0}^{-} d p \frac{p}{\left[p^{2}+\left(\frac{\varepsilon}{2 \Delta}\right)^{2}\right]^{3 / 2}}= \\
& =\frac{1}{2} \frac{\varepsilon}{|\Delta|}\left|\frac{\Delta}{\varepsilon}\right|=\frac{\operatorname{sisn}(\varepsilon)}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \Delta c h_{\mu=4 t}=c h(\varepsilon>0)-\dot{c h}(\varepsilon<0) \\
& \quad=1
\end{aligned}
$$

for $\mu=0, \vec{K}_{ \pm}=\left(0, \pi_{1}+\vec{P}\right.$

$$
\begin{aligned}
& \vec{d}_{ \pm}=\left(\begin{array}{cc}
\pm & 2 \Delta P_{y} \\
F 2 \Delta P_{x} \\
-\mu 1
\end{array}\right) \\
& F_{x, y}^{ \pm}(p)=-\frac{4 \mu \Delta^{2}}{\left[4 p^{2} \Delta^{2}+\mu^{2}\right]^{3 / 2}} \\
& c h=-\frac{1}{2} \frac{\mu}{|\nu|} \int_{0}^{\infty} d p \frac{p}{p^{2}+\left(\frac{\mu}{2 \Delta}\right)^{2}} \\
& =-\frac{1}{2} \frac{\mu}{1 \Delta 1}\left(\frac{D}{\mu}\right)=-\frac{1}{2} s g n(\mu)
\end{aligned}
$$

 $=-2$

d) $\frac{\mu}{\tau}=4 \Rightarrow \vec{k}=(\pi, \pi)+\vec{p}$

$$
\begin{aligned}
h=\vec{d} \cdot \vec{\sigma}= & -2 \Delta p_{y} \sigma_{x}-2 \Delta p_{x} \sigma_{y} \\
& -z \sigma_{t} \\
\Rightarrow \alpha= & -2 \Delta=\beta \\
m= & -\varepsilon=4 t-n=-\delta \mu
\end{aligned}
$$

e)

$$
\begin{aligned}
h(x, y)= & i 2 \Delta \sigma_{x} \partial_{y}+2 \Delta \sigma_{y} i \partial_{x} \\
& -\sum(x) \sigma_{z} \\
h(x, y) \psi(x, y)= & 0
\end{aligned}
$$

$$
\begin{aligned}
& \psi(x, y)=e^{i k_{y} y} x(x) \\
& \left(-2 \Delta k_{y} \sigma_{x}+2 \Delta i \sigma_{y} \partial_{x}-i(x) \sigma_{z}\right] x=0 \\
& 2 \Delta \partial_{x} x=A x \\
& A=-\varepsilon(x) i \sigma_{y} \sigma_{z}-2 \Delta k_{y} i \sigma_{y} \sigma_{x} \\
& =\left\{\left(G_{1} \sigma_{x}-2 \Delta k_{y} \sigma_{z}\right.\right. \\
& =\left(\begin{array}{cc}
-2 \Delta k_{y} & \varepsilon\left(c_{x}\right) \\
2(x) & 2 \Delta k_{y}
\end{array}\right) \\
& \partial_{x} u x=\frac{1}{2 \Delta} \underbrace{u A u^{+}}_{\Lambda} u x
\end{aligned}
$$

simpler: set $K_{y}=0$

$$
\left(2 \Delta i \sigma_{y} \partial_{x}-\sum(x) \sigma_{z}\right) x=0
$$

$$
\begin{aligned}
& \Rightarrow \partial_{x} x=\frac{\varepsilon(x)}{2 \Delta} \sigma_{x} x \\
& \Rightarrow x_{ \pm}=\frac{1}{\sqrt{2}}\binom{1}{1} / \frac{1}{\sqrt{2}}\binom{1}{-1} \\
& \Rightarrow \partial_{x} x_{ \pm}= \pm \frac{\varepsilon(x)}{2 \Delta} x_{ \pm} \\
& x_{ \pm}=x_{ \pm}(x=0) e^{ \pm \frac{1}{2 \Delta} \int_{0}^{x} d x \varepsilon \sigma_{0}} \\
& \varepsilon=m_{1}=\left\{\begin{array}{l}
m_{n} x=0 \\
-m_{0} x<0 \\
x
\end{array}\right. \\
& x_{ \pm}=\frac{1}{\sqrt{2}\binom{1}{-1} e^{-\frac{1}{2 \Delta}} \int_{0}^{x} d x \varepsilon(x)} \\
& =\frac{1}{\sqrt{2}}\binom{1}{-1} e^{-\frac{m_{n}}{2 \Delta}|x|} \\
& \psi=\frac{1}{\sqrt{2}}\binom{1}{-1} e^{-\frac{m_{1}}{2 \Delta}(x)} e^{i k_{1} y} \\
& h \psi=E \psi=2 \Delta k_{y} \psi
\end{aligned}
$$

$$
\begin{aligned}
& E=2 \Delta K \\
& \xi=\frac{2 \Delta}{m_{0}}-\gg
\end{aligned}
$$

(*) you meat only follow Dirac cones:

$$
\begin{aligned}
\mu=4 t \Rightarrow & -2 \Delta\left(k_{y} \sigma^{x}+k_{x} \sigma^{y}\right)+ \\
& \sum \sigma^{z}
\end{aligned}
$$

notate : $\sigma_{x} \rightarrow \sigma_{y} \rightarrow \sigma_{y}$

$$
\begin{gathered}
\sigma_{y} \rightarrow-\sigma_{x} \rightarrow \sigma_{x} \\
\sigma_{z} \rightarrow \sigma_{z} \rightarrow-\sigma_{z} \\
\vec{k} \cdot \vec{\sigma}+\frac{\varepsilon}{2 \Delta} \sigma_{z}=\vec{k} \cdot \vec{\sigma}+m \sigma_{z} \\
\omega n=n(m>0)-n(n<0)=1 \\
\Rightarrow n(m<0)=n(\xi<0)=
\end{gathered}
$$

$$
\begin{aligned}
& =h(m>0)-1=-1 \\
& \mu=0 \Leftrightarrow \ldots \\
& \mu=-4 t-1 . .
\end{aligned}
$$

