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Abstract

The subject of this work are quantum-dot-based impurities in correlated
systems. Modern nano-technology allows advanced experiments, where en-
gineered quantum impurities are placed inside a correlated host, allowing a
controlled way of studying their physics. A commonly engineered quantum
impurity is the quantum dot, a small droplet of electron liquid con�ned in
a small region of space. In this thesis we study structures of quantum dots
that are attached to electronic leads as concrete realizations of various types
of quantum impurities.

We suggest a new realization of Kondo impurities which allows a spin-
resolved measurements, and can be generalized to the more complex SU(N)-
Kondo impurities. We focus on the realization of SU(2) and SU(3) Kondo
and study the transmission through these impurities. We �nd in the unitary
limit a 3/4 quantum conductance in the SU(3) case.

We study the coherence properties of transmission through Kondo im-
purities, by considering an open Aharonov-Bohm ring with an embedded
quantum dot. We develop a novel many-body scattering theory which en-
ables us to calculate the conductance through the dot, the transmission phase
shift, and the normalized visibility. We �nd, for the non-Fermi liquid �xed
point of the two-channel Kondo, that the transmission phase is π/2 despite
the fact that a scattering phase shift is not de�ned. The normalized visibility
at zero temperature is found to be 1/2, indicating that exactly half of the
conductance is carried by coherent single-particle processes.

Also, we present a model of two interacting levels that are attached to
two electronic leads, where one of the levels is attached very weakly to the
leads. We analyze, using rate equations, the average current and the noise
of electrons transmitted through the two levels. We show that the shot noise
is enhanced by the interactions, and that the Fano factor depends on the
properties of the couplings between the levels and the leads. We study both
sequential tunneling and cotunneling processes and show that there is a range
of parameters in which the cotunneling processes a�ect the noise signi�cantly,
even though most of the current is carried by sequential tunneling.

Most of the results that are presented here were already published; the
discussion of the SU(N)-Kondo appears inPRL 106, 10640. The shot noise
and Fano factor of two-level systems are analyzed in PRB 85, 045325. The
work that discusses the transmission through Kondo impurities was submit-
ted for publication in PRB, and a preprint can be found on the Arxiv.
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 תקציר

בתוך תווך המורכב מחלקיקים עם ( Quantum dots)קוונטיות -עבודה זו עוסקת בזיהומים קוונטיים מבוססי נקודות

טכנולוגיה מאפשרת את ביצועם של ניסויים מתקדמים בהם זיהומים -התקדמותה של הננו, כיום. קורלציות ביניהם

ניסויים כאלה מאפשרים ללמוד בצורה מבוקרת . קוונטיים מלאכותיים מיוצרים ומשולבים בתוך מערכות עם קורלציה

התקן אלקטרוני מזערי בו אלקטרונים , יהום מלאכותי נפוץ היא הנקודה הקוונטיתז. את הפיסיקה של מערכות אלו

אנו חוקרים מימושים של זיהומים קוונטיים שונים בעזרת , בעבודה זו. מאולצים להיות באזור מצומצם למדי במרחב

 .התקנים בהם נקודות קוונטיות מצומדות לאלקטרודות חיצוניות

את . המאפשרת מדידה נפרדת לכל ספין ,(Kondo)דשה לממש זיהומים מסוג קונדו אנו מציעים דרך ח, ראשית    

מוכללת , הקשורה לספין SU(2)עבור זיהומי קונדו מורכבים יותר בהם הסימטריה המימוש המוצע אפשר להכליל 

 ואנ. דרכם הולכת האלקטרוניםוחוקרים את  SU(3)ו  SU(2)אנו מתמקדים במימושים של . SU(N)לסימטריה 

 .מהמוליכות הקוונטית¾ המוליכות בטמפרטורה אפס היא  SU(3)מוצאים כי במקרה של 

המערכת הקונקרטית . מעבר אלקטרונים דרך זיהומי קונדותכונות הקוהרנטיות של אנו חוקרים את , לאחר מכן    

אנו מפתחים תיאורית . בוהם-בעזרתה אנו לומדים על תכונות אלה היא נקודה קוונטית המשולבת בתוך טבעת אהרונוב

את הפאזה שאלקטרונים צוברים כשהם , פיזור חדשנית המאפשרת לנו לחשב את המוליכות דרך הנקודה הקוונטית

ישנה נקודת שבת של תהליך , נתיבי-לזיהומים מסוג קונדו דו. המנורמלת( visibility)עוברים דרכה ואת הנראות 

ידי אלקטרון העובר דרך -אנו מראים כי הפאזה הנצברת על, בנקודת שבת זו. וג נוזל פרמיסשאינה מ, מחדש-הנרמול

סימן , ½הנראות בנקודת שבת זו היא בדיוק . וזאת למרות שפאזת פיזור לא מוגדרת עבור מקרה זה   πהזיהום היא 

 .קוהרנטייםלכך שבדיוק חצי מהמוליכות קשורה לתהליכים 

, המצומדות לשתי אלקטרודות חיצוניות, דל של שתי רמות אנרגיה עם אינטראקציות ביניהןאנו מציגים מו, בנוסף    

את הזרם הממוצע ואת הרעש , בעזרת משוואות קצב, אנו מנתחים. כאשר אחת הרמות מצומדת חלש בהרבה מהשניה

ושמקדם פאנו אנו מראים כי האינטראקציות מגבירות את הרעש . המתקבלים ממעבר אלקטרונים דרך שתי הרמות

(Fano )אנו לוקחים בחשבון גם מנהור מסדר ראשון . תלוי בפרטי הצימוד בין הרמות לבין האלקטרודות החיצוניות

(sequential tunneling ) וגם מנהור מסדר שני(cotunneling ) ומראים כי קיים תחום במרחב הפרמטרים שבו

וזאת למרות שרובו המכריע של הזרם הוא תוצר של  תהליכי המנהור מסדר שני משפיעים על הרעש באופן ניכר

 .תהליכי מנהור מסדר ראשון
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Chapter 1

Introduction

The problems of correlated electrons systems are among the most di�cult
and interesting problems of physics. Particles in correlated electrons sys-
tems in�uence each other and therefore, in principle, one needs to consider
complex many-body states in order to describe these systems. When de-
scribing electrons in a metal, the huge number of interacting particles makes
this task e�ectively impossible. Fortunately, in most cases, the simple Fermi
liquid picture describes well the physics of electrons in metal. In the Fermi
liquid theory, the interacting electrons are replaced by renormalized weakly
interacting quasi-fermions with the same charge and spin as the original elec-
trons [1, 2, 3]. The Fermi liquid description is so successful, that the rare
cases where it fails are usually referred to as 'non-Fermi-liquids'.

This work deals with quantum impurities that are embedded into a corre-
lated electrons host. The interactions between the electrons and the impurity
can change dramatically the behavior of the system, resulting in a completely
di�erent theoretical description for the correlated hosting particles. A canon-
ical example of a quantum impurity in a metallic host is the Kondo impurity
model [4, 5] that describes a magnetic impurity in a non-magnetic metal. The
Kondo model was established in order to explain a non-monotonic behavior
of the electrical resistance in various metals as a function of the temperature.
The dominant mechanism for the resistivity in metals is electrons scattering
by vibrating nuclei. Since these vibrations increase with temperature, the re-
sistivity increases monotonically with temperature in most metals. However,
in 1934, a resistance minimum was measured in gold, indicating that another
scattering mechanism exists [6]. Kondo showed in 1964, that electrons scat-
tering o� magnetic impurities gives a ln(T ) contribution to the resistivity,
which can explain the observed minimum in the resistance.

In the simple Kondo model, free electrons, ψs, interact with a local mag-
netic impurity, ~S. This situation is described by the Hamiltonian

HKondo =
∑

k,s

εkψ
†
ksψks + J

∑

k,s

∑

k′s′

ψ†ks~σss′ψk′s′ · ~S , (1.1)

where J is the Kondo interaction strength, and ~σ are the three Pauli matri-
ces. At relatively high temperatures, the interactions are small and J can
be treated perturbatively. When the temperature is reduced, J becomes
larger, and as the temperature goes below a characteristic energy scale- the
Kondo temperature TK- the spins of the electrons screen the impurity and

1



2 CHAPTER 1. INTRODUCTION

J cannot be treated perturbatively anymore. In the two extremes, the high
temperatures (T � TK) and the very low temperatures (T � TK), the sys-
tem is close to renormalization group (RG) �xed points, both of which are
described by Fermi liquid theories: At T � TK a free electrons �xed point,
and at T � TK , the Kondo �xed point, in which the impurity is screened by
the spins of the surrounding electrons.

There are two natural ways to generalize the Kondo physics: the multi-
channel-Kondo, and the SU(N)-Kondo. In the multi-channel-Kondo (MCK),
a few disconnected channels screen the impurity [7]:

HMCK =
k∑

i=1

∑

k,s

εkψ
†
kisψkis +

k∑

i=1

Ji
∑

k,s

∑

k′s′

ψ†kis~σss′ψk′is′ · ~S . (1.2)

If the strengths of the couplings of the di�erent channels, Ji, are identical,
then the system �ows to a non-Fermi liquid �xed point at zero temperature.
In this case, the spin SU(2)-level 1 symmetry is generalized to a SU(2)
symmetry at level k.

In the SU(N)-Kondo case, the system is generalized to have N �avors
instead of spin up and spin down [8, 9, 10]:

HSU(N) =
N∑

f=1

∑

k

εkψ
†
kfψkf + J

N2−1∑

α=1

∑

k,f

∑

k′f ′

ψ†kfT
α
ff ′ψk′f ′S

α . (1.3)

The three 2×2 Pauli matrices are generalized to the N2−1 N×N generators
of the SU(N) group. There are therefore N species of spin-less-like electrons
in the leads, which are rotated into each other by SU(N) transformations.
This model �ows to one of N possible RG �xed points, depending on the
details of the impurity. All these �xed points are described by Fermi-liquid
theories.

Modern technology allows the fabrication of nano-scale devices, which
are small enough to manifest the laws of quantum mechanics. The nano-
scale system which we are interested in is the quantum dot. A quantum
dot device [11, 12, 13] is a small droplet of electron liquid con�ned in a
small region of space. The droplet can be attached by tunneling processes
to external leads, allowing electronic transport across the system. Another
electrode, the gate, is capacitively coupled to the dot, and by varying the
potential on the gate-electrode one can control the number of electrons in
the dot. Quantum dot devices are not only important in themselves, but
they can also be used as a very powerful experimental tool. The possibility
to control the strength of the dot-to-environment coupling, the number of
electrons in the dot, and the fact that it is possible to integrate it with
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Vg

G

2e2/h

N=1 N=2 N=3 N=4 N=5

T � TK

T � TK

Figure 1.1: Schematic picture of the conductance through a quantum dot at
temperatures much below the charging energy of the dot. N is the number of
electrons in the dot. The red line is the conductance at temperatures much
above the Kondo temperature, T � TK , and the blue line is the conductance
at the Kondo regime, T � TK . The conductance at the odd valleys (odd
number of electrons in the dot) is enhanced because of the Kondo e�ect.

other electronic systems, allow us to realize many physical concepts using
quantum dots. In the context of impurities, one can think of a dot as a
tunable impurity; the dot serves as impurity, with the attached electrodes
being the hosting environment.

When the ground state of a quantum dot is tuned by a gate voltage to
carry a �xed number of electrons, decreasing the temperature to below the
charging energy of the dot, reduces the conductance through the dot, because
of Coulomb blockade [11, 12, 13, 14]. Hence, when the conductance through
the dot is measured as the function of the gate voltage, the conductance at
values of the gate potential, with a well de�ned charge in the dot is reduced.
Similarly, the conductance peaks whenever there is a degeneracy between
two states with di�erent number of electrons in the dot (see Fig. 1.1).

When the temperature is lowered even further, then whenever the ground
state of the dot is tuned to carry an odd number of electrons, the conductance
through the dot is enhanced, until it reaches (for a symmetrically coupled
dot) 2e2/h at zero temperature [15, 16, 17]. The enhancement of the con-
ductance is due to the single-channel Kondo (1CK) e�ect [4, 5]- the dot
acts as a magnetic impurity that interacts with the spins of the electrons in
the surrounding leads. At low temperatures, below the characteristic Kondo
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temperature, TK , a spin resonance is formed, and the conductance through
the resonance is perfect and equals e2/h per spin (see Fig. 1.1).

In the following parts of the introduction we provide a background ma-
terial which is important for the main subjects of this work. In Sec. 1.1,
we discuss the transport though quantum dots in the Coulomb blockade
regime, the sequential tunneling, and the cotunneling processes. In Sec. 1.2,
we hint the relations between the Anderson model and the Kondo model.
In Sec. 1.3, we shortly discuss existing realizations of various Kondo impu-
rities with quantum dots and their limitations. In Sec. 1.4, we bring the
background material and highlight important questions about the coherence
properties of transmission through Kondo impurities. In Sec. 1.5, we discuss
the shot noise, the Fano factor, and what can we learn by measuring them.
This part gives necessary background material both for high-temperature
description of the SU(N)-Kondo systems, and for the the two-level model
analysis.

1.1 Low-temperature transport through quan-

tum dots

We describe the transport through a quantum dot using the Anderson model [18].
We consider a quantum dot with discrete spinful levels which is attached to
two leads, left and right (see Fig. 1.2). This system is described by the
Hamiltonian [19, 20]:

Hn =
∑

a=L,R

∑

k,s

εkc
†
akscaks +

∑

n,s

εnd
†
nsdns + Ec(N − CgVg/e)2 − Es~Σ2

+

(∑

a,n

tan
∑

k

c†aksdns + H.C.

)
, (1.4)

where the operator caks annihilates an electron with momentum k and spin
s in lead a, the operator ds annihilates an electron in the dot at energy
level n with spin s, N =

∑
n,s d

†
nsdns, and ~Σ =

∑
n,s,s′ d

†
ns
~σss′

2
dns′ . Cg is the

capacitance between the dot and the gate, Vg is the gate voltage, Ec is the
charging energy of the dot, and Es is the total spin energy of the dot.

The conductance through the dot is carried by electron tunneling between
the dot and the leads. At the lowest order in the tunneling coe�cients, tan,
electrons can tunnel from one of the leads into an empty level in the dot,
or from an occupied level into the leads. Such tunneling events are called
sequential tunneling, and they are allowed whenever an empty level (occupied
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Left lead Right lead

(a) (b) (c)

Figure 1.2: Schematic picture of a multi-level quantum dot attached to two
leads. (a) Example of a sequential tunneling process. (b) Example of an
elastic cotunneling process. (c) Example of an inelastic cotunneling process.

level) is aligned with available electron (hole) in the leads (see Fig. 1.2). The
next leading order tunneling processes are the so-called cotunneling processes
in which an electron or a hole tunnels between two leads through a virtual
state in the dot (see Fig. 1.2). There are two types of cotunneling processes:
elastic cotunneling- where the state of the dot is not changed by the tunneling
process, and inelastic cotunneling- where the state of the dot is changed
(either its spin, or its energy) by the cotunneling process.

1.2 Transport through quantum dots in the Kondo

regime

In this section, we shortly present the relation between the Anderson model
and the Kondo model. We consider a single level dot that is coupled to two
leads, left and right. The Anderson model Hamiltonian of this system can
be written as

H1 =
∑

a=L,R

∑

k,s

εkc
†
akscaks+εg

∑

s

d†sds+Ud
†
↑d↑d

†
↓d↓+

(∑

a

ta
∑

k

c†aksds + H.C.

)
,

(1.5)
where the energy of the single level (tuned by a gate voltage) is casted into
εg. Double occupation of the level requires an additional charging energy U .

The Anderson model Hamiltonian (1.5) is related to the Kondo Hamil-
tonian (1.1) via the Schrie�er-Wol� transformation [21]. In order to get the



6 CHAPTER 1. INTRODUCTION

Kondo Hamiltonian, we �rst perform the following rotation of the two leads:
(
ψ
ξ

)
=

(
cos(α) sin(α)
− sin(α) cos(α)

)(
cL
cR

)
, (1.6)

with the angle α = tan−1(tR/tL). In the new basis, only one linear combi-
nation of the two leads, ψ, is coupled to the dot, and the orthogonal linear
combination, ξ is decoupled from the other parts of the system. The sec-
ond step is to perform a unitary transformation of the Hamiltonian (1.5):
H̃ = eAHe−A, where A† = −A. The dot is tuned to a Coulomb valley, where
sequential tunneling is not allowed. By choosing the operator A properly,
one can eliminate the �rst order in tunneling part of the Hamiltonian and
bring it to the form

H̃1 =
∑

k,s

εkξ
†
ksξks +

∑

k,s

εkψ
†
ksψks − U

[ |tL|2 + |tR|2
εg(U + εg)

]∑

k,s

∑

k′s′

ψ†ks~σss′ψk′s′ · ~Σ ,

(1.7)
which is equivalent to the Kondo Hamiltonian (1.1) with an additional free
fermion-�eld, ξ (higher order terms are neglected). The total spin of the dot
replaces the magnetic impurity, and the Kondo coupling strength is

J =
(
|tL|2 + |tR|2

)( 1

U + εg
− 1

εg

)
. (1.8)

1.3 Realizations of two-channel and SU(N)Kondo

Realizations of 2CK

As already mentioned, the 1CK physics can be generalized to more complex
models, known as the multi-channel Kondo models, where a few independent
channels compete to screen the impurity [7]. In the 2CK case, when the
couplings of the two channels to the impurity are identical the system �ows
to a non-Fermi liquid �xed point at zero temperature. The 2CK system was
�rst discussed as a purely theoretical problem [7], but it was soon invoked as
a candidate explanation for remarkable low-energy properties of some heavy
fermion materials [22, 23, 24, 25] and glassy metals [26, 27, 28, 29, 30] and
more recently in graphene [31, 32, 33]. In the past decade, a few single-
impurity realizations of the 2CK system were proposed [34, 35, 36, 37, 38],
o�ering the hope of microscopically manipulating system parameters, and
one of the proposals [37], that suggested a realization with quantum dots,
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was built and measured [39]. The conductance through a 2CK impurity,
within one of the two channels, at the non-Fermi liquid �xed point is e2/2h
per spin, assuming equal coupling to the two leads in that channel [40].

Realizations of SU(N) Kondo

Physical systems that exhibit SU(N > 2) Kondo are quite rare, and usually
complex. In practice, they are limited to N = 4, where the spin and another
degree of freedom are exploited to form a four-fold degeneracy. Examples
of such systems are: double-quantum-dot systems [41, 42, 43, 44], triangular
triple-quantum-dot systems [45] and carbon nanotubes [46, 47, 48].

In one of our works [49], we suggest a new way to realize Kondo impurities
with quantum dots that can be easily generalized into SU(N > 2) Kondo,
by using a structure of N quantum dots. For concreteness, we focus on the
case N = 3 as it is relatively easy to construct, yet rich enough to exhibit
most of the features of the larger N cases. In addition to the realization of
SU(N)-Kondo, our system allows spin-resolved measurements, giving access
to physical quantities that are not accessible from other existing realizations
of Kondo impurities. Recently, such a device with N = 2 was built, and
spin-resolved spectroscopy of the Kondo e�ect was made [50].

1.4 Coherent transmission through Kondo im-

purities

The Fermi liquid nature of the 1CK �xed point states that the system can be
described using exclusively single-particle excitations. It means that at zero
temperature, when a single particle hits the impurity, it can only be scattered
into a single-particle. In the original Kondo problem (1.1), the outgoing single
particles and the incoming single particles are connected by a π/2 scattering
phase shift [51]. Thus, in the con�guration of a quantum dot coupled to two
leads, in the scattering ψ − ξ basis (1.6), incoming single particle states in
the ψ-lead are scattered o� the dot into outgoing single particle states in
the ψ-lead, with a π/2 scattering phase shift. In the left-right basis it has
been shown [52] that at zero temperature, incoming electrons from one of
the leads, always scatter coherently through the dot into the other lead. The
phase that these electrons accumulate while they cross the dot was found to
be identical to the scattering phase shift, π/2 [52].

At the non-Fermi liquid �xed point of the 2CK, the simple picture of
elastic scattering of single particles is no longer valid. At zero temperature,
a single particle that interacts with a 2CK impurity, can be scattered only
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into a many-body state [40, 53]. Thus, there is no elastic single-particle
scattering o� a 2CK impurity at the non-Fermi liquid �xed point. Given
that there are no elastic single-particle scattering events o� the impurity, one
might imagine that the transport through a 2CK impurity has no coherent
part. Nevertheless, we showed [54] that at this �xed point exactly half of
the conductance is carried by coherent processes. This result is in agreement
with the relation between the inelastic scattering cross section and the total
cross section that was found in Refs. [55, 56]. The conductance through a
2CK impurity has a coherent part because the electrons that interact with
the e�ective spin of the dot are described by the ψ linear combination of the
two leads (1.6) . The other linear combination of electron operators in the
two leads, ξ, is decoupled from the dot. While there are no elastic single
ψ-particle scattering events, coherent transport via ξ-particles is possible.

The coherent properties of the transport through an impurity can be
measured in a two-path experiment, in which electrons are sent from a source
lead through two possible paths into a drain lead (see Fig. 1.3). We assume
that the propagations along the di�erent paths are independent of each other,
namely, changes in the properties of one path do not a�ect the propagation
along the other path. One of the paths contains the impurity of interest, and
the two paths encircle a magnetic �ux φ. The interference between the two
paths depends on φ through the Aharonov-Bohm (AB) e�ect. Hence, the
conductance of the setup contains two parts: a �ux-independent part, which
is related to the separate conductances of the two paths, and a �ux-dependent
part, which is related to the interference of the two paths.

Two measurable quantities can be extracted from a two-path experiment:
the transmission phase shift of the �ux-dependent conductance, and the ratio
between the amplitude of the �ux-dependent part and the �ux-independent
part of the conductance. We cast [54] the source-to-drain conductance of the
two-path device into the form

Gsd = Gd +Gref + 2
√
η
√
GdGref cos

(
eφ

~c
+ ϕt

)
, (1.9)

where Gd is the conductance through the path with the impurity when the
reference path is switched o�, and Gref is the conductance through the refer-
ence path when the impurity's conduction is switched o�. The impurity will
generally be realized as one or more quantum dots, so we will interchange-
ably refer to �impurity� and �dot� depending on context. We assume that
the paths are independent: manipulations of the dot (for example, with gate
potential) do not in�uence the conductance of the reference path, and vice
versa. The transmission phase, ϕt, is related to the relative phase between
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Source DrainFlux-φ

tref

tdimpurity

Figure 1.3: Schematic picture of a two-path setup. Electrons are sent from
the source lead toward the drain lead through two paths, whose partial waves
interfere with each other. The transmission amplitudes of the two paths are
td and tref, and they encircle a magnetic �ux φ. The coherent transport
through the impurity can be studied by embedding it into one of the paths.

the two paths, and the normalized visibility η is related to the size of the co-
herent part of the conductance compared to the total conductance. Note: the
phase of the reference path is arbitrary, determined by path length, potential
landscape, etc. So is the phase of the path with the impurity, excluding the
transmission phase of the impurity itself. Below we assume for simplicity
that each of these phases is 0 mod 2π, so that ϕt is purely the transmission
phase of the impurity itself. The de�nition of η, implicit in Eq. (1.9), is such
that for Fermi liquids, at zero temperature and without spin, η = 1. This
can be easily checked by applying the Landauer formalism [57, 58, 59, 60] for
the two-path experiment setup.

The normalized visibility η can be reduced to below one by four mech-
anisms: First, if the transmitted electrons accumulate an energy-dependent
phase when they are scattered through the impurity, or just along either
path, then at nonzero temperature η is reduced because of the thermal av-
eraging. Second, if the phase depends on the spin, the spin summation can
also reduce η. Third, if part of the conductance is carried by incoherent
scattering processes, where single electrons are scattered into many-body
states, the interference and therefore η are reduced. Fourth, electrons that
are subjected to external dephasing lose their coherence, so external dephas-
ing also decreases the interference and η. External dephasing depends on the
speci�c model and the details of the setup. Hence in this dissertation, we
focus mainly on the �rst three mechanisms, and only qualitatively explore
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the e�ect of external dephasing on η.

Since Gd and Gref can be measured directly, the normalized visibility can
be experimentally determined. This requires two measurements: the conduc-
tance through one of the paths, and the two-path conductance. Measuring
the transmission phase of a 1CK impurity in a two-path setup was already
suggested before [52], and the predicted ϕt = π/2 was measured [61], demon-
strating coherent electron transmission through a many-body state. Yet, no
special attention was given to the amplitude of the �ux-dependent part of
the conductance. In particular, non-Fermi liquid cases, where η can give
information on the underlying physics (and also ϕt is di�erent from that in
the 1CK case), were not treated.

1.5 Shot noise, Fano factor and Coulomb inter-

actions

In this thesis, we also present a work we did on the shot noise in asymmetric
interacting two level systems [62]. The motivation for this work goes back
to my MSc thesis [63], where we analyzed the asymmetry-dependence of the
Fano factor in two-level quantum dots, in order to explain the experimental
results reported in Ref. [64]. In the current work, we fully analyze how
the shot noise and the Fano factor depend on the asymmetry, we study
how the temperature a�ects this dependence and in addition, we extensively
study the e�ect of cotunneling processes (next leading order perturbation).
Surprisingly, we �nd that the latter play an important role in this system,
and there is a range of parameters where the noise is governed by the rare
cotunneling processes even though most of the average current is carried by
sequential tunneling processes.

Let us �rst present some necessary background on shot noise, Fano factor,
and the e�ects that Coulomb interactions impose on them. Fluctuations in
electrical current, which we simply call noise provide additional information
about the charge transport that is not accessible from average current mea-
surements (for a review see Ref. [65]). Among the various noise sources we
focus on the shot noise. The discreteness of the transferred charge causes
�uctuations in the current. These �uctuations, named shot noise, depend on
the charge of the conducting particles and therefore measurements of shot
noise provide information on the discrete nature of the conducting particles
and their correlations. The shot noise of a Poisson process of uncorrelated
current pulses of charge e is SShot = 2e〈I〉, where 〈I〉 is the time averaged
current. The noise is proportional to the average current since in a Pois-
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son distribution the mean equals the variance, therefore the mean number of
current pulses equals its variance. The Fano factor, F = Sshot

2e〈I〉 , is a dimen-
sionless parameter that characterizes the granularity of the current. When
driving a current through a single spinless electronic level, the correlations
that are imposed by the Pauli exclusion principle reduce the Fano factor; the
Fano factor varies between half and one depending on the symmetry of the
couplings between the level and the external leads [66, 67, 68].

Correlations can also be imposed by Coulomb interactions [69]. In most
cases, the e�ect of Coulomb repulsion on the noise of a mesoscopic sys-
tem is similar to the e�ect of the Pauli exclusion principle. Both impose
a time delay between consecutive current pulses and therefore we expect
negative correlations between them that suppress the shot noise [70]. How-
ever, several theoretical works on various systems have showed that Coulomb
interactions might also lead to a super-Poisson shot noise with a Fano fac-
tor F > 1. Examples of such systems are: quantum dots that are coupled
to ferromagnetic leads [71, 72, 73, 74], multi-levels quantum dots [75, 76],
multi-dots structures [77, 78, 79, 80, 81, 82], and also three terminal quan-
tum dots [83, 84, 85]. There are also experimental works [86, 87, 88, 89, 64]
in which a super-Poisson noise was measured in quantum dots, rather than
the sub-Poisson noise, which is expected from the single level model of the
quantum dots.

A simple mechanism that might explain the enhancement of the Fano
factor in such systems is tunneling through two levels that are coupled to
the leads, where one of the levels is coupled much stronger than the other
level. The two levels are interacting, namely, there is a Coulomb repulsion
between electrons that occupy the two levels. In this case, the electrons that
cross the system tunnel mainly through the level that is strongly coupled to
the leads. However, once in a while an electron can tunnel into the weakly
coupled level and then, because of the Coulomb interactions, the tunneling
of other electrons through the strongly coupled level is prevented, and the
current is blocked. The current resumes only after the electron tunnels out
of the weakly coupled level. Therefore the intuitive picture is a current that
is blocked occasionally and therefore the noise is enhanced. The idea of two
interacting levels as a possible source of super-Poisson noise was discussed in
the context of quantum dots that are coupled to ferromagnetic leads [71, 72]
and also in the context of double quantum dots structures [77].

In this thesis, we present a detailed analysis of the two levels model with
Coulomb interactions, this analysis is based on the work which we report in
Ref. [62]. In particular, we study how the shot noise and the Fano factor
depend on the left-right asymmetry, namely, the asymmetry between the
couplings to the two external leads. The fact that the enhancement of the
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shot noise depends on the left-right asymmetry of the coupling to the leads
emerges from previous works (e.g., the results of Refs. [74] and [77]), and also
from my MSc thesis [63]. Nevertheless, a complete theoretical analysis of this
dependence was missing. The two levels mechanism for noise enhancement
can be found in many physical realizations such as single level with spin
dependant coupling and double quantum dots, or two levels in a quantum
dot, in a strong magnetic �eld. Although the quantitative details of each
system are di�erent, the qualitative behavior of the noise enhancement is the
same.

This thesis covers three main projects, which deal with di�erent aspects of
the subject of quantum-dot-based impurities in correlated electron systems:
realization of SU(N)-Kondo impurities, transmission properties of Kondo
impurities, and shot noise in asymmetric two-level systems. In Chapter 2,
we present the techniques that we used in our research. Some parts of this
Chapter are relevant only to parts of these projects, and therefore, the context
of the presented material is emphasized when it is needed. In Chapter 3, we
present the main results of our study. We divide this chapter into three
parts, each of them corresponds to one of the main projects. In Chapter 4,
we summarize this work as a whole and provide an outlook for possible
further study. In the four Appendices, we give additional material which is
not essential for the understanding of the main ideas this thesis expresses,
and yet can enlighten parts of this work.



Chapter 2

Methods

In this part, we present the techniques that we used in order to derive the
results that we later report on Chapter 3. Some of the techniques are relevant
for more than one project that included in this dissertation, but part of them
are relevant for only one project, or even part of it. Hence, on each section
in this chapter, we refer to the relevant works and emphasize the context of
the presented material.

2.1 Realization of SU(N)-Kondo using quan-

tum dots and edge states

2.1.1 The basic building blocks

We suggest [49] a new realization of the Kondo e�ect and its generalization
to SU(N), using edge states of the quantum Hall e�ect that interact with
quantum dots (see Fig. 2.1). The basic building block that we use is a
quantum dot coupled to the edge state of an integer quantum Hall liquid.
The Hamiltonian of a single building block is therefore

H1 =
∑

k

εkψ
†
kψk + εgd

†d+

(
W
∑

k

ψ†kd+ H.C.

)
. (2.1)

The edge state is described by a chiral spinless fermion, ψ. The operator
d† populates the dot, which is assumed to have a single energy level εg that
is controlled by an outer gate. W is the tunneling coe�cient, we use the
notation W (rather than the previous-t notation) in order to emphasize that
there is only one edge state (and not two leads).

Consider now N such building blocks as drawn in Figs. 2.1(a) and 2.1(c)
for N = 2, 3. We suggest using quantum dots with strong Coulomb interac-
tions between them but very small tunneling between di�erent dots (smaller
than TK). Double-dot systems ful�lling even stricter conditions already ex-
ist [90, 91, 92, 93] with good control over the couplings to the leads, the gate
voltages, and with practically zero tunneling between the dots. The imple-
mentation of Kondo e�ect due to the Coulomb interactions in those systems
was demonstrated [90, 92, 93]. Promising triple-dots systems are also ex-
perimentally available [94, 95] making the current proposed realization of

13
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SU(3)-Kondo reasonably possible. We want to stress that obtaining the
SU(N)-Kondo physics at low energies (IR) does not require a high accuracy
of the symmetry between the N di�erent blocks. As long as the deviations
from the symmetry are not relevant under RG, the system exhibits Kondo
physics in the IR.

The Hamiltonian that describes a system with N building blocks is

HN =
∑

α=1...N

∑

k

εkψ
†
kαψkα + εg

∑

α

d†αdα (2.2)

+

(
W
∑

α

∑

k

ψ†kαdα + h.c.

)
+
∑

α<β

Uαβd
†
αdαd

†
βdβ.

The indices α, β label the di�erent building blocks and Uαβ is the charging
energy between the dots α and β. We have made the assumption of identical
sub-systems (that is εk ,W and εg are �avor-independent), and we assumed
that there is no tunneling between the dots. These assumptions are not cru-
cial. Small di�erences between the energies of the dots and small changes in
the tunneling coe�cients have an e�ect similar to a small magnetic �eld and
a small exchange �eld in the familiar SU(2) Kondo e�ect. We therefore only
require that the di�erences are small compared to the Kondo temperature:
∆εg � TK and |∆W |2/εg � TK . Jumping ahead, these deviations from the
symmetry will at most change the IR behavior by marginal operators and
the conductance through �avor i would be given by e2

h
sin2(πni) (ni is the

average occupation of the ith dot). Small tunneling terms between the dots
(tαβd

†
αdβ+h.c.) can be mapped to small di�erences in the energies of the dots

by simply rotating the basis of the dots, we only require that |tαβ| � TK .

In the N = 2 case, the Hamiltonian (2.2) can be mapped to the spinful
dot Hamiltonian (1.5) after the rotation to the ψ−ξ basis (1.6) (not including
the trivial part of the free ξ lead). The two blocks act as up and down pseudo-
spins and the system realizes the SU(2)-Kondo physics. By using N building
blocks, we obtain the SU(N)-Kondo. For concreteness, we later focus on the
case N = 3 as it is relatively easy to construct, yet rich enough to exhibit
most of the features of the larger N cases.

Besides the ability to realize SU(N) Kondo, the systems that we suggest
have more advantages: First, as our realization is based on edge states it can
be easily integrated into an electronic Mach-Zehnder interferometer, allowing
accurate phase shift measurements. Second, our realization allows measure-
ments of a single pseudo-spin (or generally a single �avor) transport. Third,
we can break the SU(N) symmetry, potentially allowing a non Fermi liquid
behavior such as in the two impurity Kondo model and its generalizations [8].
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(a) (b)

(c) (d)

Figure 2.1: (a) Realizing SU(2) Kondo using two edge states and two quan-
tum dots. Electrons can tunnel from each edge state to its nearest dot.
There is a strong coulomb interaction between the dots. The left/right sub-
systems act as di�erent pseudo spins. This realization allows phase shift
measurements. (b) Realizing SU(2) Kondo using four edge states and two
quantum dots. The edge states are split to allow an independent transport
measurement of each pseudo-spin. (c) Realizing SU(3) Kondo using three
edge states and three quantum dots with strong coulomb interaction between
them. Electrons can tunnel from edge state to the nearest dot only. The three
sub-systems act as di�erent �avors. (d) Realizing SU(3) Kondo using four
edge states and three quantum dots. Here, we split the upper edge state to
allow transport measurements between the two new upper edge states.
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Fourth, it paves the way to possible generalizations to fractional quantum
Hall edges, which may show a richer structure.

2.1.2 Realization of SU(N)-Kondo

Let us assume temporarily identical charging energies, Uαβ = U . In this case
the Hamiltonian (2.2) possesses a SU(N) symmetry acting on the states of
the dots by Si =

∑
α,β d

†
αT

i
αβdβ, where T

i are theN×N generators of SU(N).
Having m electrons in the dots amounts to an impurity in a representation of
SU(N) withm anti symmetrized indices, each in the fundamental representa-
tion [9, 8]. We will discuss below to what extent di�erentm's can be realized,
but for now we consider a general m. In this case, after a Schrie�er-Wol�
transformation the Hamiltonian (2.2) is:

HK =
∑

α

∑

k

εkψ
†
kαψkα + J

∑

i

∑

α,β

∑

k,k′

ψ†kαT
i
αβψk′βS

i,

where J ∼ W 2/U and the index i runs over the N2 − 1 SU(N) generators.
Conformal �eld theories with SU(N) Kac-Moody level 1, which is the case
here, have N gaussian invariant boundary states that correspond to N pos-
sible Fermi liquid �xed points of the RG. The natural conjecture, supported
by the Friedel sum rule, is that populating the array of dots by 0 ≤ m < N
electrons leads to a �ow to each of these boundary states, characterized by
boundary conditions ψi(x = 0+) = e2imπ

N ψi(x = 0−).
We now discuss the feasibility of the SU(N) picture. We make a distinc-

tion between two cases: N = 2, 3, where the situation Uαβ = U (or close
to it) can be achieved, and SU(N ≥ 4), where there is no way to achieve
identical charging energies.

SU(N ≤ 3) Kondo: We arrange the dots on the vertices of a triangle,
such that the distances between pairs of dots are roughly the same. We do
not require that the triangle be exactly equilateral. However, it is convenient
to start from this idealized case, and then verify that the dynamics of the
system does not change signi�cantly in the non strictly equilateral physical
case. In the exactly equilateral case Uαβ = U , the Hamiltonian:

HN =
∑

α=1...N

∑

k

εkψ
†
kαψkα + εg

∑

α

d†αdα

+

(
W
∑

α

∑

k

ψ†kαdα + h.c.

)
+
∑

α<β

Uαβd
†
αdαd

†
βdβ,

is SU(N) × U(1) symmetric and the system therefore �ows to a SU(N)
symmetric �xed point at zero temperature. The SU(N) symmetry breaking
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operators are marginal at most:
∑

αβ λαβψ
†
αψβ with λαβ ∼ εg/Uαβ, hence,

small deviations from the point Uαβ = U can then be analyzed using the IR
theory where they are at most marginal.

SU(N ≥ 4) Kondo: Unlike the N ≤ 3 case, we can no longer assume
Uαβ = U because the distances between the various pairs of dots, adjacent
and non adjacent, cannot be made approximately equal. We can however
arrange the dots on a two dimensional regular polygon, then Uαβ = Uα−β. In
this case, the system has a ZN symmetry (rotation by 2π/N) and a U(1)N

symmetry associated with charge conservation of each �avor. In the next
paragraph we show that the ZN ×U(1)N symmetry ensures that the SU(N)
symmetric single occupation �xed point (m = 1 or m = N − 1) is attractive.
In the physical case, the ZN symmetry is not exact, nevertheless analyzing
the IR �xed point shows that symmetry breaking operators are marginal at
most.

The stability of the �xed point in the ZN × U(1)N symmetric case pro-
ceeds as follows: The general marginal operator near the IR is of the form∑

αβ λαβψ
†
αψβ. The U(1) symmetry on each of the edges, i.e. charge con-

servation in each subsystem, implies invariance under independent multipli-
cation of each ψα by a phase. Hence the matric λαβ = λαδαβ. The ZN
symmetry then enforces that all the λα are equal. The only remaining per-
missible operator, λ

∑
α ψ
†
αψα, does not break the SU(N) symmetry. Since

the SU(N) �xed point is attractive, there is a �nite range of UV couplings
in which the theory �ows to this IR �xed point. In the physical case the
ZN ×U(1)N symmetry is approximate and the only exact symmetry is total
charge conservation which is the sum of the N di�erent U(1)s. This sym-
metry in enough to exclude all the relevant operators in the theory (ψ and
ψ†). The allowed operators ψ†αψβ are marginal at most. Notice that if the
system is tuned to have 1 < m < N − 1 electrons in the dots then without
further tuning the ground states do not form a representation of SU(N) and
therefore the theory is not SU(N)× U(1) symmetric.

This picture explains the experimental results in [44] and [47] where in-
dications of SU(4) Kondo were obtained starting from UV systems which
lack the exact symmetry. The picture is further supported by a perturbative
scaling analysis and by NRG computations for N = 4 [41], suggesting a large
basin of attraction for this �ow.
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2.2 Two-path experiments, transmission phase,

visibility, and normalized visibility

In this section, we discuss two-path setups and de�ne the transmission phase
ϕt and the normalized visibility η. These quantities are essential for study-
ing the coherent properties of transmission through impurities, and we later
calculate them for various Kondo impurities (see Sec. 3.2).

The prototype of two-path experiments is the double-slit experiment. In
a double-slit experiment particles are launched toward the double slit, where
they split into partial waves which interfere with each other. In the elec-
tronic version of the double-slit experiment, schematically drawn in Fig. 1.3,
a coherent electron beam is emitted from a source lead toward a drain lead,
via a beam splitter that allows electron �ow along two di�erent paths that
encircle a magnetic �ux φ. The source-to-drain conductance is given by

Gsd =
e

h

∑

s

ˆ
dε

(
−∂f
∂ε

)
Ts(ε), (2.3)

where Ts(ε) is the probability for an incoming electron with energy ε and
spin s to be transmitted through the double slit, and f(ε) is the Fermi-Dirac
distribution function. If all the electrons that pass through the double slit
do so elastically and coherently, the probability Ts(ε) is given by [57]

Ts = |td,s|2 + |tref,s|2 + 2 |td,stref,s| cos

(
eφ

~c
+ θs

)
, (2.4)

where td,s and tref,s are the transmission amplitudes of the two slits. The
transmission amplitudes are complex quantities with a phase di�erence, eφ~c +
θs, between them. The phase di�erence contains a contribution θs deter-
mined by the details of the transmission through the double-slit setup, and
a magnetic-�ux-dependent part eφ

~c coming from the AB e�ect.
Equation (2.4) is valid only if all the electrons are coherently transferred

through the double slit [96]. If some of the electrons are transferred inco-
herently through one of the slits, then, since these electrons do not interfere,
the �ux-dependent term of Ts is reduced. If we embed into one of the paths
a quantum dot (as in the lower path in Fig. 1.3), we can examine the dot's
coherence properties by measuring the conductance. In such a device, the
phase that electrons accumulate as they cross the dot is encoded in the rel-
ative phase between the two paths θs.

In experiments, the measured source to drain conductance is typically
cast in the form

Gsd = G0 +Gφ cos

(
eφ

~c
+ ϕt

)
. (2.5)
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G0 is the part of the conductance which is independent of the magnetic �ux,
and is related to the independent conductances of the two paths, and Gφ is
the amplitude of the �ux-dependent part of the conductance. In the general
case, ϕt is di�erent from θs, but if td,s, tref,s, and θs are independent of spin
and energy, then ϕt = θ↑ = θ↓. In standard two-path experiments, the
ratio Gφ/G0, is called "visibility", and it measures the strength of the �ux-
dependent conductance oscillation compared to the average conductance.

The ratio Gφ/G0 can be reduced by several mechanisms. Trivially, a
mismatch between the transmission amplitudes, |td| 6= |tref|, decreases the
ratio |tdtref|/(|td|2 + |tref|2), and therefore reduces Gφ/G0. In addition to
the trivial transmission amplitude mismatch, four other mechanisms noted
earlier (see Sec. 1.4) can reduce Gφ/G0: thermal averaging, spin averaging,
inelastic scattering, and externally-induced dephasing.

There is a conceptual di�erence between transmission amplitude mis-
match of the two paths, and the other three mechanisms for Gφ/G0 reduction
(we assume for the moment that there is no external dephasing). Unlike the
transmission amplitude mismatch, these other mechanisms cannot be probed
by simple single-path conductance measurements of the system. To isolate
the transmission mismatch from elastic versus inelastic scattering and energy
or spin dependent phase, we decompose the conductance (2.5) into the form
of Eq. (1.9):

Gd +Gref + 2
√
η
√
GdGref cos

(
eφ

~c
+ ϕt

)
.

Gd and Gref are the independent conductances through the two paths, which
can be measured directly by closing o� one and then the other path. Equation
(1.9) de�nes a new quantity, the normalized visibility η. If all the electrons
transmit coherently through the two paths, and accumulate the same phase,
then η = 1, independent of possible transmission amplitudes mismatch.

We want to make a comment about the feasibility of interference mea-
surements in two-path experiments: In real experiments, there is a typical
coherence length, lcoh, along which the propagating electrons preserve their
coherence. This length depends on the details of the realization of the two-
path setup, and we assume that it is much larger than the lengths of the
two paths lref , ld � lcoh. However, this assumption is not enough: Elec-
trons with di�erent energies propagate along the two paths, accumulating an
energy-dependent phase di�erence θs = ε(lref − ld)/vF , where vF is the Fermi
velocity. As a result, the thermal averaging introduces a new lengthscale, the
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φ
Source Drain

φ
Source Drain

φ

(a) Closed AB ring (b) Open AB ring

Figure 2.2: (a) Closed AB ring: electrons that are emitted from the source
tunnel to the drain through the ring either clockwise or counter-clockwise.
The two interfering paths encircle a penetrating �ux, φ. Time reversal sym-
metry constrains the conductance: G(φ) = G(−φ). (b) Open AB ring: elec-
trons that propagate along the ring may leak out to side leads that are
attached to the ring. The restriction G(φ) = (−φ) ceases to be valid.

thermal length [97] lT = vF/πKBT :ˆ
dε

(
−∂f
∂ε

)
2 |td,stref,s| cos

[
eφ

~c
+ θs(ε)

]

= 2 |td,stref,s| cos

[
eφ

~c

]
lref − ld
lT

1

sinh[(lref − ld)/lT ]
. (2.6)

Hence we also require that the di�erence in length between the two paths is
much shorter than the thermal length [98] |lref − ld| � lT . In this case, the
di�erence in length introduces a second-order correction to the amplitude of

the oscillations: lref−ld
lT

1
sinh[(lref−ld)/lT ]

≈ 1− 1
6

(
lref−ld
lT

)2

∼ 1− T 2.

Open Vs. Closed Aharonov-Bohm ring

Although we will not need or discuss all its details, it is useful to have in
mind a concrete physical system that realizes a two paths experiment, the
AB ring. In an AB ring setup with closed geometry, as schematically drawn
in Fig. 2.2(a), electrons tunnel between two leads through a conducting ring
which encircles a magnetic �ux. Electrons can propagate through each of the
two arms of the ring, and as the two possible ways interfere, the conductance
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depends on the magnetic �ux. Yet, there is a major di�erence between the
closed AB ring setup and the double-slit experiment. In a naive electronic
double-slit experiment picture, the phase of the interference depends contin-
uously on the �ux-tuned relative phase between the two paths. In the closed
AB ring, however, Onsager relations impose the restriction G(φ) = G(−φ),
which yields [99, 59] ϕt = ±π. This phase rigidity has been measured [100],
and although it is an interesting phenomenon by itself, it prevents a direct
measurement of the phase di�erence between the two arms of the ring.

We can overcome this by using an open-AB-ring setup, as schematically
depicted in Fig. 2.2(b). In such an experimental setup, that was used by
Schuster et al. [101] and later on by others [102, 103, 104, 61], electrons that
propagate along the ring can leak out of the ring into side leads. The loss of
electrons during the propagation through the ring relaxes the two-terminal
Onsager restriction [60] G(φ) = G(−φ). Although the open geometry solves
the phase rigidity problem, the intuitive double-slit picture is not assured. In
a double-slit setup, the transmissions through the two slits are independent
of each other, and particles traverse the two slits only once. Therefore, we
require that in the open AB ring setup, the propagation of particles along
each path is independent of the details of the other path, and that there
are no multiple traversals of the ring. We rely on the same features when
de�ning the procedure for measuring η. An example of a model for an open
AB ring with a detailed analysis of the conditions required for the realization
of a double-slit setup appears in Ref. [105].

Another di�erence between the AB ring and the ideal double-slit experi-
ment is the e�ect that the penetrating magnetic �ux has on the propagation
along the two paths. In the ideal double-slit experiment, magnetic �ux tunes
only the relative phase of the paths. In contrast, in a real AB ring with
an embedded dot, the Kondo temperature of the dot, and the conductance
through the dot, may depend on the magnetic �ux. These e�ects of the
magnetic �ux on AB rings, were studied before and appear in the litera-
ture [106, 107, 108, 109, 110, 111, 112]. But these e�ects can be made small,
particularly for open AB rings [110]. From now on, we thus assume an open
geometry that realizes a double-slit experiment.

2.3 Single-particle transmission properties and

the T -matrix

In this section, we present a general discussion on the relation between scat-
tering of electrons o� the impurity and the conductance of the system. We
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relate the three measurable quantities, Gd, ϕt, and η, that were de�ned in
Eq. (1.9), to the scattering matrix and the T -matrix of the ψ-particles.

We develop a novel many-body scattering theory [54] which enables us to
derive the mathematical expressions for ϕt and η. We also show, that if one
measures only the total conductance of the two spins together, then at T �
TK the phase ϕt is always equal to π/2, and it has no perturbative corrections

up to order O(T/TK)2 for the Fermi liquid �xed points and O(T/TK)
2

2+k

for the non-Fermi liquid �xed points of the k-channel Kondo systems. The
theoretical part that appears in this section is essential for the derivation of
the results that we present in Sec. 3.2.

We consider an open AB geometry that realizes a two-path setup, and
we zoom in on the path that contains the impurity. We make a distinction
between the external leads (the source and the drain), and the internal leads
through which the electrons propagate toward the impurity. We refer to the
latter as left and right leads (see, for example, Fig. A.1). Electrons from
the source can be transmitted into the left lead, then they propagate toward
the impurity. After the electrons are scattered o� the impurity they can
propagate along the right lead and then be transmitted out into the drain.
A speci�c model that describes this situation is proposed and presented in
Appendix A. While the source and the drain are coupled very weakly to the
internal leads (because of the losses needed to ensure each electron traverses
the ring only once), the electrons in the internal leads can, in principle,
interact very strongly with the impurity. Hence, in general, the left and the
right leads are described by complex many-body states. A general state in
the two leads can be characterized by two numbers, nL and nR, measures of
charge carried in each lead. There are, of course, many possible states with
charges enL and enR, since states with the same charges in the two leads can
di�er by multiple particle-hole excitations. We use the notation |nL, nR, i〉
for these states, where the index i labels the possible states with charges enL
and enR in the two leads. Note: in the k-channel Kondo case, if there is no
charge transfer between the di�erent channels, nL and nR are the charges in
one of the channels, and states with the same values of nL and nR can also
di�er by excitations in the other k− 1 channels.

The scattering matrix, S, connects incoming and outgoing states in the
leads

|n′L, n′R, j〉out = Sn
′
L,n
′
R,j

nL,nR,i
|nL, nR, i〉in . (2.7)

Charge conservation imposes n′L + n′R = nL + nR = m, so S is a block-
diagonal matrix, as sectors with di�erent integer value m, are not mixed.
Since the source and the drain are coupled very weakly to the internal leads,
in the limit of zero source-drain bias voltage at low temperature, we assume
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that only one particle at a time is launched from the external leads toward
the impurity. Hence, we focus only on the block m = 1 of the S-matrix.
When a single electron is sent from the source, through the left lead, into the
impurity, there are three possible options:

• The electron is re�ected back to the left lead,

• The electron is transmitted to the right lead,

• A complex many-body state is produced, where a total charge ne is
transmitted to the right lead and a charge (1 − n)e is re�ected to the
left lead (n = 0,±1,±2...) .

We want to distinguish between the elastic single-particle scattering pro-
cesses and the scattering processes that involve many-body states. We there-
fore use the following notation: we denote by |L〉 the incoming or outgoing
single-electron states in the left lead, and similarly |R〉 in the right lead. In
the notation |nL, nR, i〉,

|L〉 = |1, 0, 0〉 , |R〉 = |0, 1, 0〉 , (2.8)

where we arbitrarily choose i = 0 for the single-particle states with total
charge one. The many-body states (also with total charge one) are denoted
by |χin〉, where

|χin〉 = |1− n, n, i〉 . (2.9)

We use the following notation for the S-matrix elements that connect incom-
ing single-particle states with outgoing single-particle states:

S1,0,0
1,0,0 = r , S1,0,0

0,1,0 = t , S0,1,0
0,1,0 = r′ , S0,1,0

1,0,0 = t′ . (2.10)

The matrix elements that connect single-particle states with many-body
states are:

S1−n,n,i
1,0,0 = Bni

L , S1−n,n,i
0,1,0 = Bni

R , (2.11)

S1,0,0
1−n,n,i =

(
AniL
)∗

, S0,1,0
1−n,n,i =

(
AniR
)∗

. (2.12)

Schematically, the nL + nR = 1 block of the S-matrix is


|L〉out

|R〉out

|χ〉out


 =




r t′ AL
†

t r′ AR
†

BL BR C





|L〉in
|R〉in
|χ〉in


 , (2.13)

where the matrix C denotes the matrix elements of S that connect incoming
many-body states with outgoing many-body states. Here we don't include
spin, but generalization of what follows to spinful electrons is straightforward.
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Since the S-matrix is unitary and block diagonal, its nL + nR = 1 block
is also unitary. This leads to the following relations:

|r|2 + |t|2 +
∑

n,i

∣∣Bni
L

∣∣2 = 1 , (2.14)

|r′|2 + |t′|2 +
∑

n,i

∣∣Bni
R

∣∣2 = 1 , (2.15)

|r|2 + |t′|2 +
∑

n,i

∣∣AniL
∣∣2 = 1 , (2.16)

|r′|2 + |t|2 +
∑

n,i

∣∣AniR
∣∣2 = 1 . (2.17)

Consider now the average current at the right lead. The current is carried
either by transmitted charge (from the left), or by re�ected charge

I =
e

h

ˆ
dε

[
fl(ε)

(
|t|2 +

∑

n,i

n
∣∣Bni

L

∣∣2
)

+ fr(ε)

(
|r′|2 +

∑

n,i

n
∣∣Bni

R

∣∣2 − 1

)]

=
e

h

ˆ
dε

[
fl(ε)

(
|t|2 +

∑

n,i

n
∣∣Bni

L

∣∣2
)
− fr(ε)

(
|t′|2 +

∑

n,i

(1− n)
∣∣Bni

R

∣∣2
)]

.

(2.18)

At equilibrium, the current is zero, therefore

|t|2 +
∑

n,i

n
∣∣Bni

L

∣∣2 = |t′|2 +
∑

n,i

(1− n)
∣∣Bni

R

∣∣2 , (2.19)

and the current becomes

I =
e

h

ˆ
dε [fl(ε)− fr(ε)]

(
|t|2 +

∑

n,i

n
∣∣Bni

L

∣∣2
)
. (2.20)

Thus, the conductance is

Gd =
e2

h

ˆ
dε

(
−∂f
∂ε

)(
|t|2 +

∑

n,i

n
∣∣Bni

L

∣∣2
)
. (2.21)

The coherent part of the conductance is obtained directly from Eq. (2.21)

Gcoh =
e2

h

ˆ
dε

(
−∂f
∂ε

)
|t|2 . (2.22)
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The contribution of the incoherent processes, where the single particles are
scattered into many-body states, is

Gincoh =
e2

h

ˆ
dε

(
−∂f
∂ε

)∑

n,i

n
∣∣Bni

L

∣∣2 . (2.23)

Suppose now, that there is a unitary transformation that mixes the two
leads and block-diagonals the nL+nR = 1 block of the S-matrix. Physically,
it means that there is a linear combination of the two leads, ξ = − sin(α)L+
cos(α)R, which is decoupled both from the impurity and from the orthogonal
combination of the leads, ψ = cos(α)L + sin(α)R . This is the case, for
example, in the Anderson model for a single level quantum dot that is coupled
to two leads. The fact that ξ is a free decoupled �eld simpli�es the above
expressions as it imposes the following restrictions on the S-matrix in the
ψ − ξ basis: Sξx = Sxξ = 0 (x = ψ, ~χn), and Sξξ = 1. In particular, the
restriction Sψξ = Sξψ = 0 requires t′ = t which, together with Eq. (2.19),
yields the relation

∑

n,i

n
∣∣Bni

L

∣∣2 =
∑

n,i

(1− n)
∣∣Bni

R

∣∣2 . (2.24)

Moreover, we can relate Bni
L and Bni

R . Since (omitting the in and out
subscripts)

Bni
L = 〈χin|L〉 = cos(α)〈χin|ψ〉 − sin(α)〈χin|ξ〉, (2.25)

Bni
R = 〈χin|R〉 = sin(α)〈χin|ψ〉+ cos(α)〈χin|ξ〉, (2.26)

and as 〈χin|ξ〉 = 0 we get

Bni
L = cos(α)〈χin|ψ〉 , (2.27)

Bni
R = sin(α)〈χin|ψ〉 . (2.28)

We obtain the relation
Bni
R = tan(α)Bni

L . (2.29)

Plugging this relation into Eq. (2.24) gives

[1 + tan2(α)]
∑

n,i

n
∣∣Bni

L

∣∣2 = tan2(α)
∑

n,i

∣∣Bni
L

∣∣2 . (2.30)

Thus, we get the important equalities
∑

n,i

n
∣∣Bni

L

∣∣2 = sin2(α)
∑

n,i

∣∣Bni
L

∣∣2 , (2.31)

∑

n,i

n
∣∣Bni

R

∣∣2 = sin2(α)
∑

n,i

∣∣Bni
R

∣∣2 . (2.32)
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Together with Eqs. (2.14) and (2.15), the sum rules (2.31) and (2.32), tell
us that the incoherent part of the conductance, which is carried by single-
particle to many-particles scattering processes, can also be determined by
the coherent single-particle part of the S-matrix.

Notice also that
∑

n,i〈ψ|χin〉〈χin|ψ〉 =
∑

ni |〈ψ|χin〉|2 is the sum of proba-
bilities to �nd outgoing states if the incoming state is |ψ〉. Since we sum over
all possible outgoing states besides |ψ〉 and |ξ〉, and as 〈ξ|ψ〉 = 0 we �nd that

∑

n,i

〈ψ|χin〉〈χin|ψ〉 = 1− |out〈ψ|ψ〉in|2 = 1− |Sψψ|2, (2.33)

so
∑

n,i

∣∣Bni
L

∣∣2 = cos2(α)(1− |Sψψ|2) , (2.34)

∑

n,i

∣∣Bni
R

∣∣2 = sin2(α)(1− |Sψψ|2) . (2.35)

The conductance (2.21) can be written as

Gd = −e
2

h

ˆ
dε
∂f

∂ε

[
|t|2 + sin2(α) cos2(α)(1− |Sψψ|2)

]
, (2.36)

and the contribution of the single-particle processes to the conductance, out
of the total conductance is

Gcoh/Gd =

´
dε∂f

∂ε
|t|2´

dε∂f
∂ε

(
|t|2 + sin2(α) cos2(α)(1− |Sψψ|2)

) . (2.37)

The fact that there is a linear combination of L and R which is decoupled
both from the impurity and from the orthogonal linear combination imposes
restrictions on the values of r, t, r′, t′ (since Sψξ = Sξψ = 0 and Sξξ = 1). By
applying the unitary transformation on the S-matrix one �nds that

Sψψ = 1 +
t

cos(α) sin(α)
. (2.38)

Plugging (2.38) into (2.36) and (2.37) gives

Gd = −e
2

h

sin2(2α)

4

ˆ
dε
∂f

∂ε

(
|Sψψ − 1|2 +

[
1− |Sψψ|2

])
, (2.39)

Gcoh/Gd =

´
dε∂f

∂ε
|Sψψ − 1|2´

dε∂f
∂ε

(
|Sψψ − 1|2 + [1− |Sψψ|2]

) . (2.40)



2.3. SINGLE-PARTICLE TRANSMISSION PROPERTIES 27

At this point we can already see two important features: First, Gcoh/Gd

depends only on Sψψ and in particular does not depend directly on α. Second,
if |Sψψ| = 1 (but Sψψ 6= 1) then Gcoh/Gd = 1, and if Sψψ = 0 then Gcoh/Gd =
1/2. In other words, for a zero temperature Fermi liquid theory η = 1, and for
a theory where ψ has no single-particle to single-particle scattering processes
(like in the 2CK case at zero temperature) η = 1/2.

Using the de�nition S = 1 + iT for the T -matrix, we get the known
result [113, 114, 115] for the conductance through the impurity

Gd =
e2

h

sin2(2α)

4

ˆ
dε

(
−∂f
∂ε

)
2Im {Tψψ} . (2.41)

The ratio of the coherent part to the total conductance is

Gcoh/Gd =

´
dε
(
−∂f

∂ε

)
|Tψψ|2´

dε
(
−∂f

∂ε

)
2Im {Tψψ}

. (2.42)

2.3.1 Normalized visibility

There is no way to measure directly the contribution of the single-particle
processes to the conductance. Namely, there is no direct measurement of
Gcoh/Gd . However, a two-path experiment gives access to the transmission
amplitude, t. If in addition to the impurity, the two leads are connected via
an independent free reference arm, then the �ux-dependent part of the con-

ductance is Gflux =
´
dε
(
−∂f

∂ε

)
2Re

{
trefte

i eφ~c

}
. Since |tref | can be extracted

from the conductance of the reference arm when the other arm closed o�, t
is accessible from the �ux-dependent conductance.

While Gcoh is proportional to the thermally-averaged value of the trans-
mission squared [see Eq. (2.22)], Gflux is proportional to the thermally-averaged
value of the transmission,

´
dε
(
−∂f

∂ε

)
t(ε). The normalized visibility that we

have de�ned in Eq. (1.9) is therefore slightly di�erent from Gcoh/Gd

η =

∣∣´ dε (−∂f
∂ε

)
Tψψ
∣∣2´

dε
(
−∂f

∂ε

)
2Im {Tψψ}

. (2.43)

Although Gcoh/Gd is closely related to the measurable quantity η, they are
identical only at zero temperature, or where Tψψ is independent of the energy.
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2.3.2 Transmission phase

The phases of t and Tψψ are related to the phase shift of the scattering theory
of the ψ-particles. If we write Sψψ = |Sψψ|e2iδψ , then

arg(Tψψ) = arctan

(
1− |Sψψ| cos(2δψ)

|Sψψ| sin(2δψ)

)
. (2.44)

The phase arg(Tψψ) yields the value δψ for |Sψψ| → 1 and π/2 in the limit
|Sψψ| → 0. The transmission phase is the phase of the thermally averaged
T -matrix

ϕt = arg

{ˆ
dε

(
−∂f
∂ε

)
Tψψ(ε)

}
. (2.45)

2.3.3 The π/2 phase-lock of the transmission through

Kondo impurities at T � TK

The �ux-dependent part of the conductance, Gflux, depends on the average
value of Tψψ. Until now, the averaging was over di�erent incoming energies
(thermal averaging). When we add the spin degree of freedom, we average
Tψψ also over spin. This is because in Gflux, we sum over the two spins

Gflux = −
∑

s

ˆ
dε
∂f

∂ε
2Re

{
treftse

i eφ~c

}
(2.46)

=−
∑

s

ˆ
dε
∂f

∂ε
2Re

{
i cos(α) sin(α)trefTs,ψψei

eφ
~c

}
.

We have assumed that tref is independent of the spin. If the system is spin-
symmetric, T↑,ψψ = T↓,ψψ ≡ Tψψ can be extracted from Gflux. The normalized
visibility in this case is

η =

∣∣´ dε (−∂f
∂ε

)
Tψψ
∣∣2´

dε
(
−∂f

∂ε

)
2Im {Tψψ}

, (2.47)

and the transmission phase is

ϕt = arg

{ˆ
dε

(
−∂f
∂ε

)
Tψψ(ε)

}
. (2.48)

In the absence of spin-symmetry, Gflux does not necessarily give us access
to Ts,ψψ. To see this, consider the simple case where all the particles are scat-
tered into single particles, namely, |Sψψ| = 1 for both spins. This situation
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describes, for example, the Fermi-liquid �xed points of 1CK or 2CK with an
applied magnetic �eld. In this case, Ts,ψψ = i(1 − e2iδψs) = 2 sin(δψs)e

iδψs .
In the Kondo case, the system has the following particle-hole symmetry [see,
for example, the Hamiltonian in Eq. (1.1)]

ψks → ψ†−k,−s , (2.49)

that enforces [51, 116] δψ↑(ε) = −δψ↓(−ε) . The transmission phase at zero
temperature is

ϕt = arg
[
sin(δψ↑)(e

iδψ↑ − e−iδψ↑)
]

=
π

2
, (2.50)

and the normalized visibility at zero temperature

η =

∣∣sin(δψ↑)(e
iδψ↑ − e−iδψ↑)

∣∣2

2Im {sin(δψ↑)(eiδψ↑ − e−iδψ↑)}
= sin2(δψ↑) . (2.51)

We see that the transmission phase is locked at π/2 , independent of the
phases of Ts,ψψ . We also see that the normalized visibility can be smaller
than one, even though all the scattering processes are single-particle to single-
particle scattering. Interestingly, information about the phases of Ts,ψψ (the
phase shifts of the scattering theory), is now encoded in η . There are two
ways to extract Tψψ despite the π/2 phase-lock of Kondo impurities: either
to use the normalized visibility to extract the phase shift, or to measure the
transmission of each spin separately.

2.4 Rate equations method

In this section, we present the rate equations technique for transport cal-
culations, which we used for obtaining the results in two di�erent systems:
The UV conductance of the SU(N)-Kondo systems (see Sec. 3.1), and for
the extensive study of the transport properties in the interacting two level
system (see Sec. 3.3).

We shortly review the technique that was developed in Ref. [117] and the
generalization of it to include cotunneling processes that was developed in
Ref. [118]. Consider a small system with n possible states, |1〉, |2〉, . . . , |n〉,
which is weakly tunnel-coupled to external leads. The system can be in one of
its n states, and its dynamics is driven by tunneling processes. For example,
in the triple-dot structure of the SU(3)-Kondo, the system has eight states:
empty dots, single electron in one of the dots (three states), two electrons in
the dots (three states), and full occupation of the three dots. Generally, there
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are many tunneling processes that change the state of the system from |i〉 to
|f〉 which we denote their rates by ωαi,f where α labels the di�erent possible
tunneling processes. The rate ωi,f =

∑
α ω

α
i,f is the total transition rate from

the state |i〉 to the state |f〉. The dynamics of the system is described by the
rate equations

∂

∂t
P (f, t/i) =

∑

k∈S

[P (k, t/i)ωk,f − P (f, t/k)ωf,k] , (2.52)

where P (f, t/i) is the probability of the system to be in the state |f〉 at time t
if it was in the state |i〉 at t = 0, so the initial condition is P (f, t = 0/i) = δi,f .
Eq. (2.52) neglects coherence superpositions of di�erent states [the terms
P (f, t/i) are the diagonal matrix elements of the density matrix]. Neglecting
the coherent superpositions of the states is justi�ed when the coherence time
is much shorter than the delay time between consecutive tunneling events.
Alternatively, if there is a quantum number that distinguishes the two states
(e.g., spin), if at some point in time the density matrix that describes the
system is diagonal, then coherent superpositions are zero at all later times.

It appears to be useful to write the rate equations in a matrix form. We
de�ne the vector (there are four such vectors)

Pi(t) ≡ [P (1, t/i), P (2, t/i), . . . , P (n, t/i)], (2.53)

and the matrix

M =




−
∑

k 6=1

ω1,k ω2,1 ω3,1 . . .

ω1,2 −
∑

k 6=2

ω2,k ω3,2 . . .

ω1,3 ω2,3 −
∑

k 6=3

ω3,k . . .

...
...

...
. . .




. (2.54)

The rate equations become ∂
∂t
Pi(t) = MPi(t), with the initial condition

Pi(t = 0) = (0, . . . , 0, 1, 0, . . . , 0) ≡ êi. The solution of Eq. (2.52) is readily
found to be Pi(t) = eMtêi. Let P st be the stationary solution, namely,

MP st = 0 and (since it is a probabilities vector)
∑

n

P st
n = 1.

current. We de�ne the quantity saαi,f , the total number of electrons that
tunnel through the tunnel-junction a to the right during the process α that
changes the system's state from |i〉 to |f〉. The junction α connects the
system to one of the external leads. For example, the junction between the
two level system to the left lead or the right lead. If saαi,f has a negative sign, it
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corresponds to electrons that are moving to the left. The stationary current
through the junction a can be written as

〈Ia〉 = e
∑

i,f∈S

∑

α

saαi,fP
st
i ω

α
i,f . (2.55)

Zero frequency noise. The noise is related to the auto-correlation function
via Wiener-Khinchin theorem

Sab(ω) = 2

ˆ ∞
−∞

dτeiωτ [〈Ia(t+ τ)Ib(t)〉 − 〈I〉2], (2.56)

where we are interested in the zero frequency limit. We write here a compact
expression for the noise, details of the derivation can be found in Ref. [118].
The zero frequency noise can be written as

Sab(ω → 0) = 2e2{trUab −Wb ·M−1Ȳa −Wa ·M−1Ȳb}, (2.57)

with the following vectors:

(Uab)i ≡
∑

f∈S

∑

α

saαi,fs
bα
i,fP

st
i ω

α
i,f , (2.58)

(Ȳa)j ≡
∑

i∈S

∑

α

saαi,jP
st
i ω

α
i,j −

〈Ia〉
e
P st
j , (2.59)

(Wb)k ≡
∑

f∈S

∑

α

sbαk,fω
α
k,f . (2.60)

We have used the trace of a vector to denote the sum of its elements. Al-
though the matrix M is not invertible, there is only one traceless vector Va

(i.e. the sum of all its elements is zero) that satis�es MVa = Ȳa [118] and
we use this vector as M−1Ȳa.

2.5 Two interacting levels

In this section we describe two models that we used in the analysis of the
transport through asymmetric interacting two-level systems, which is pre-
sented in Sec. 3.3. We start with the Anderson model, with two interacting
levels that are attached to two leads (see Fig. 2.3). For simplicity, we discuss
a spinless problem, adding the spin degree of freedom does not change the
qualitative behavior of the system and not important for the understanding
of the underlying physics. One of the levels (level 2 in Fig. 2.3) is attached
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very weakly (compared to the other level) to the leads. A simultaneous oc-
cupation of the two levels is possible, however this situation is not likely
to happen as it requires an additional charging energy, U , because of the
Coulomb interaction. This model describes, for example, an interacting two
level quantum dot in a strong magnetic �eld. The Hamiltonian that describes
the system is

H = Hleads +H2levels +Ht, (2.61)

where

Hleads =
∑

k

εLkL
†
kLk +

∑

k

εRkR
†
kRk,

H2levels = E1d
†
1d1 + E2d

†
2d2 + Ud†1d1d

†
2d2,

Ht =
∑

i,k

(
tLi L

†
kdi + tRi R

†
kdi

)
+ H.C. .

Here, Lk (Rk) are left (right) lead annihilation operators, di is the ith level
annihilation operator, and we have assumed that the tunneling coe�cients
(tL,Ri ) are independent of the energy. We also assume that all the tunneling
coe�cients have the same sign.

We calculate the average current and the zero-frequency noise using rate
equations method in which we assume that the two levels are weakly coupled
to the leads. By weakly coupled we mean that the widths of the levels are
much smaller than the temperature, or alternatively, at low temperatures it
means that the bias voltage (see Fig. 2.3) is much larger than the levels'
widths

γi = πν
(∣∣tLi

∣∣2 +
∣∣tRi
∣∣2
)
�
∣∣µR,L − Ei

∣∣ , (2.62)

where µR,L are the electro-chemical potentials of the leads and we have as-
sumed for simplicity the same density of states, ν, in the two leads.

2.5.1 Qualitative simpli�ed model

Before we continue with the analysis of the Anderson model using rate equa-
tions, we want to present a simpli�ed intuitive model, which we suggested in
Ref. [62]. This simpli�ed model captures, at least qualitatively, most of the
results that we later achieve through a more rigorous analysis. The advantage
of this model is that it helps us to establish a simple physical picture that
we can use to interpret the results that we get through the rate equations
formalism.

Consider the two level system which is depicted in Fig. 2.3 and assume
strong interactions, i.e., a large U . At this point, we also assume, for sim-
plicity, zero temperature. As a function of E1, there are two regions where
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Two level system

Left lead Right lead

µL

µR

E1

E2

eVbias

γ1 = πν
(
|tR1 |2 + |tL1 |2

)

γ2 = πν
(
|tR2 |2 + |tL2 |2

)

tR1

tR2

tL1

tL2

Figure 2.3: A schematic picture of the model. The energies of the two levels
are E1 and E2. The bias voltage is the di�erence between the two chemical
potentials: eVbias = µL − µR. Here the width of level 2 is much smaller
than the width of level 1 which is assumed to be much smaller than the bias
voltages: γ2 � γ1 � |µR,L−E1,2|. We assume that the tunneling coe�cients
are independent of the energy and we also assume for simplicity that they
all have the same sign, and that the two ratios between the left tunneling
coe�cients and the right tunneling coe�cients are identical, tL1 /t

R
1 = tL2 /t

R
2 .
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we expect to have current: at µR < E1 < µL where the two levels are be-
tween the chemical potentials (assuming that |E1 − E2| � Vbias), and at
µR < E1 + U < µL where one of the levels is occupied and e�ectively, be-
cause of the Coulomb interaction, the other level is shifted up and placed
between the chemical potentials. We choose to focus at this point on the
later: µR < E1 + U < µL. Since level 2 is coupled weaker than level 1 to
the leads, most of the time the current �ows through level 1 (i.e. level 2
is occupied and electrons enter and leave level 1). However, after a while,
the electron in level 2 can tunnel out to the right lead and by that, because
of the Coulomb interaction, it reduces the e�ective energy of level 1 (from
E1 + U to E1) making the tunneling out of level 1 impossible. The current
is therefore blocked. The current resumes only after a new electron from the
left lead tunnels into level 2. Hence, the picture is a current (through level
1) that is stopped occasionally (by tunneling out of level 2). This situation
is schematically drawn in Fig. 2.4.

Shot noise on top of a telegraph noise

The current, as drawn in Fig. 2.4, �uctuates between two modes: A zero-
current mode where the current is dramatically suppressed, and a nonzero
mode where the current is carried by pulses of charge (electrons) that tunnel
through level 1. We therefore suggest the following simpli�ed model: the
current I(t) is a multiplication of two signals

I(t) = Ishot(t)× Ctelegraph(t), (2.63)

where Ishot(t) is the current through level 1 and Ctelegraph(t) is a random
telegraph signal that �uctuates between two values, zero and one, according
to the occupation of level 2. In this simpli�ed model, the current �ows only
through level 1 and only when level 2 is occupied. We neglect the e�ects that
the Pauli principle imposes on the current Ishot(t) and treat it as a sequence
of current pulses of charge e with a Poissonian statistics characterized by a
rate Γ1. The changes in the value of Ctelegraph are Poissonian events with the
rates 1/τ1 and 1/τ0 for the events of changing the value of Ctelegraph from one
to zero and zero to one, respectively. The �uctuations in the current Ishot(t)
are known as shot noise, and the �uctuations in the signal Ctelegraph(t) are
known as telegraph noise [119].

Assuming that Ishot and Ctelegraph are uncorrelated, the average current is

〈I〉 = 〈Ishot〉〈Ctelegraph〉 = eΓ1
τ1

τ1 + τ0

. (2.64)
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Level ’2’ is occupied

Level ’2’ is empty

τ1τ0

1/Γ1

Time

Current

Figure 2.4: A qualitative description of the transport through the two level
system in the region µR < E1+U < µL. Electrons are tunneling through level
1 until the electron in level 2 tunnels out and then the current is blocked. The
tunneling events through level 1 resume when another electron tunnels into
level 2. The current behaves as a multiplication of two signals: A sequence
of current pulses through level 1 and a telegraphic signal, the occupation
of level 2. Γ1 is the average rate of tunneling events through level 1, τ0 is
the average time duration until level 2 is �lled, and τ1 is the average time
duration until level 2 gets empty.

The noise is related to the auto-correlation function of the total current via
Wiener-Khinchin theorem

S(ω) = 2

ˆ ∞
−∞

dτeiωτ (〈I(t+ τ)I(t)〉 − 〈I〉2) (2.65)

= 〈Ishot〉2Stelegraph(ω) + 〈Ctelegraph〉2Sshot(ω) +
1

π
Sshot(ω) ∗ Stelegraph(ω).

Using the known results for the shot noise and the telegraph noise [119] we
get

S(ω) = 2e2Γ1
τ1

τ1 + τ0

+
4e2Γ2

1

(τ1 + τ0)((1/τ1 + 1/τ0)2 + ω2)
. (2.66)
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Fano factor and asymmetry dependence

Before we study the Fano factor and its left-right asymmetry dependence, it
seems necessary to inquire about the linear dependence of the noise on the
current as the second term in (2.66) is quadratic in Γ1. Since the rates 1/τ1

and 1/τ0 are the rates of tunneling out of and into level 2, they depend, up to
a symmetry factor, linearly on γ2 that was de�ned in Eq. (2.62). Similarly,
Γ1 is linear in γ1. Therefore, under the reasonable assumption that γ1/γ2 is
independent of the left-right asymmetry (that is, the couplings of the levels
to the leads cannot be changed independently), 1/τ1 and 1/τ0 are linear in Γ1.
Hence, the zero-frequency noise, S(0), depends linearly on Γ1 and therefore
depends linearly on the current.

The probability of �nding level 2 occupied, which is the probability of
�nding Ctelegraph = 1, is Pf = τ1

τ0+τ1
. Similarly, the probability of �nding level

2 empty, which at zero temperature is the probability of �nding only level 1
occupied is Pe = τ0

τ0+τ1
. The Fano factor is

F =
S(0)

2e〈I〉 = 1 +
2τ 2

0 τ1Γ1

(τ0 + τ1)2
= 1 + Γ1τ12P 2

e . (2.67)

Notice that Γ1τ1 is the average number of tunneling events during a Ctelegraph =
1 stage, which is the average number of tunneling events through level 1 be-
fore a tunneling event out of level 2 takes place. At zero temperature it can
be estimated as |tR1 |2/|tR2 |2, or, assuming the same left-right asymmetry for
the two levels, Γ1τ1 = γ1/γ2. The Fano factor (2.67) becomes

F = 1 + 2
γ1

γ2

P 2
e . (2.68)

The probability Pe depends on the asymmetry between the coupling to
the left and the right leads, i.e. on the ratio |tLi |2/|tRi |2. To see this consider
the simple case of zero temperature and large U. For µL > µR (see Fig. 2.3),
the rate of tunneling out of level 2 is, according to Fermi's golden rule,
Γf→e = 2π

~ |tR2 |2. Similarly, the rate of tunneling into level 2 is Γe→f = 2π
~ |tL2 |2.

If we neglect cotunneling e�ects there are no direct tunneling processes from
level 1 to level 2, so the steady state probabilities satisfy

PeΓe→f = PfΓf→e . (2.69)

Pf is the probability of �nding both level 1 and level 2 occupied. In the limit
|E1−E2| � Vbias, the probability of �nding only level 1 occupied, Pe, equals
the probability of �nding only level 2 occupied. In the limit of large U , the
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probability of �nding both level 1 and level 2 empty (for µR < E1 +U < µL)
is zero. Thus, Pf + 2Pe = 1. The steady state solution (2.69) becomes

Pe =
Γf→e

Γe→f + 2Γf→e

=
1

|tLi |2/|tRi |2 + 2
. (2.70)

By increasing |tLi |2/|tRi |2, we decrease Pe. In the limit |tLi |2/|tRi |2 → ∞,
Pe → 0 so the Fano factor (2.68) F → 1. By decreasing |tLi |2/|tRi |2 we increase
Pe and in the limit |tLi |2/|tRi |2 → 0 it gets its maximal value Pe = 1/2 and
the Fano factor is maximal, F = 1 + γ1

2γ2
≈ γ1

2γ2
.

Finite temperature

At zero temperature, the only possible tunneling event that follows a tun-
neling event from the system to the right lead, is from the left lead into the
empty level. Therefore, changing the value of Ctelegraph from one to zero in the
simpli�ed model, corresponds to a tunneling event from level 2 to the right.
In addition, every tunneling event from level 1 to the right, corresponds to a
current-pulse in the simpli�ed model. Hence, we can estimate the number of
tunneling events during a Ctelegraph = 1 stage as Γ1τ1 ≈ |tR1 |2/|tR2 |2. At �nite
temperature, there is also a �nite probability that a tunneling event from
the system to the right will be followed by a tunneling event from the right
lead back to the empty level. In the limit |tLi |2/|tRi |2 → 0 the probability of
tunneling from right to left may become important. If the couplings to the
right are much stronger than the couplings to the left, electrons may tunnel
many times back and forth between the right lead and the system before a
tunneling event from the left lead to the system takes place. The time scales
τ1 and τ0 in this case, become smaller than 1/Γ1, and the value of Γ1τ1 goes
to zero. Therefore, we expect that at �nite temperature the Fano factor will
have the value one in the limit |tLi |2/|tRi |2 → 0. To conclude, as we decrease
|tLi |2/|tRi |2 the Fano factor (2.67) gets larger, but at �nite temperature, at
some point, if we decrease |tLi |2/|tRi |2 even further, the Fano factor will start
to decrease toward the value one at |tLi |2/|tRi |2 → 0.

Cotunneling e�ects

Similar to �nite temperature, cotunneling processes may suppress the Fano
factor at |tLi |2/|tRi |2 → 0. Consider the limit |tLi |2 � |tRi |2. Without cotun-
neling, if level 2 is empty, the electron in level 1 need to wait a long time
before it can tunnel out to the right lead since such a tunneling event must
follows a tunneling event into level 2 which, at zero temperature, is possible
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only from the left lead. Cotunneling processes, however, allow the two pro-
cesses at once; occupying level 2 and evacuating level 1 in a single quantum
process. In particular, the electron in level 1 can virtually tunnel out to the
right lead while another electron is virtually tunnel from the right lead into
level 2 (we use the term virtually to emphasize the fact that the intermediate
state does not conserve energy). In the limit |tLi |2/|tRi |2 → 0 the total rate of
such processes may become larger than the rate of sequential tunneling from
the left lead into level 1. Thus the occupation of level 2 and therefore the
telegraphic signal, Ctelegraph(t), �uctuates much faster than the pulses' rate
1/Γ1, and the value of Γ1τ1 goes to zero. Therefore we expect a suppression
of the Fano factor due to the cotunneling processes toward the value one in
the limit |tLi |2/|tRi |2 → 0.

Weak interactions

Up to this point, we have assumed strong interactions, namely, a very large
U . If U is not large compared to the bias voltage, U < eVbias, changing
the occupation of level 2 doesn't block completely the current through level
1 since electrons can tunnel through level 1 in both cases; while level 2 is
empty or occupied. Yet, we can still use the intuitive picture of a sequence
of current pulses through level 1 and a random telegraph signal describing
the occupation of level 2. The rate of the pulses depends on the occupation
of level 2 and we consider two di�erent rates: Γ1 describes the tunneling
rate through level 1 while level 2 is full and Γ̃1 describes the tunneling rate
through level 1 while level 2 is empty (previously Γ̃1 was zero). Similar to
Eq. (2.63), we consider the current

I(t) = Ishot(t)× Ctelegraph(t) + Ĩshot(t)× [1− Ctelegraph(t)] , (2.71)

where Ishot (Ĩshot) is a sequence of current pulses with a characteristic rate
Γ1 (Γ̃1). The Fano factor is

F = 1 +
2(Γ1 − Γ̃1)2τ 2

0 τ
2
1

(τ0 + τ1)2(τ1Γ1 + τ0Γ̃1)
, (2.72)

where τ1 is the average time duration in which level 2 is occupied and elec-
trons tunnel through level 1 with an average rate Γ1, and τ0 is the average
time duration in which level 2 is empty and electrons tunnel through level 1
with an average rate Γ̃1.

At low temperatures, KBT � eVbias, if µ
R < E1 < µL and µR < E1 +U <

µL, the tunneling rate through level 1 barely depends on the occupation of
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level 2, i.e. Γ1 ≈ Γ̃1. We can approximate (2.72) by

F ≈ 1 +
2(∆Γ1)2

Γ1Γ2

P 2
e (1− Pe)

2 , (2.73)

where ∆Γ1 ≡ Γ̃1 − Γ1 and Γ2 = (τ0 + τ1)−1 (at low temperatures this is
the tunneling rate through level 2). Notice that Pe = τ0

τ0+τ1
, which is the

probability of �nding level 2 empty, is di�erent from the probability of �nding
only level 1 occupied, since now the two levels can be empty simultaneously.

2.5.2 The Anderson model- tunneling rates

We now go back to the Anderson model for the two interacting levels (2.61).
We want to analyze the system with rate equations, so we describe it using
the four states, |n1, n2〉, where n1 and n2 label the occupation of the two
levels. The system dynamics is driven by transitions between states that
are caused by tunneling processes. For example: Transition from the state
|0, 0〉 to the state |1, 0〉 happens when an electron is tunneling from the left
lead or the right lead into level 1 while level 2 is empty. The term Ht in the
Hamiltonian (2.61) allows tunneling processes and the rates of the transitions
are derived perturbatively in Ht.

Sequential tunneling rates

To the lowest order in Ht the transition rates can be calculated using Fermi's
golden rule. We use the notation ω→i,j for the rate of a tunneling process that
changes the system's state from 'i' to 'j' by tunneling an electron from the
left to the right direction (and similarly ω←i,j for electron that moves from
right to left). For example, ω→00,10 = ΓL1FFD(E1−µL) is the rate of tunneling
from the left lead into level 1 while level 2 is empty, where we have de�ned

ΓLi ≡ ν
2π

~
|tLi |2, ΓRi ≡ ν

2π

~
|tRi |2, (2.74)

and the Fermi's function FFD(x) = (1 + eβx)−1 gives the probability for the
availability of an electron for the tunneling process. In Fig. 2.5 we depict the
lowest order tunneling processes, to which we refer as sequential tunneling
processes. The rates of all the sequential tunneling processes are listed in
Appendix B.

Cotunneling rates

The next leading order perturbation in Ht generates cotunneling processes
with intermediate virtual states. Usually, when the tunneling coe�cients are
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Figure 2.5: A schematic picture of the lowest order in Ht transitions (the
sequential tunneling processes) and their notations.
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small [γ1,2 of Eq. (2.62) are much smaller than the temperature or bias volt-
age] the higher order perturbation theory is not crucial as it barely improves
the approximation. However, this is not always true. Consider, for example,
the limit tRi � tLi ; in this case, a cotunneling process, which takes an electron
out of level 2 into the left lead and takes another electron from the left lead
into level 1, can become more likely to happen than a sequential tunneling
from level 2 to the right lead. In other words, a second leading order pertur-
bation in tLi can be more important that a �rst leading order perturbation
in tRi . We discuss later the importance of the cotunneling processes in the
two level model and at the moment we emphasize that this is more than a
small improvement of the approximation. We discuss two types of cotunnel-
ing processes: elastic-cotunneling, namely, processes that contribute current
but don't change the state of the two level system, and inelastic-cotunneling,
namely, processes that change the state of the two level system (and might
not contribute to the current through it).

Elastic-cotunneling rates. Figure 2.6 depicts schematically the elastic-
cotunneling processes that we take into account in the transport calculations
of the two level system. Each process has two possible intermediate states.
For example, electron can tunnel through an empty system via level 1 or
2, thus, cotunneling processes of the form |0, 0〉 −→ |0, 0〉 have two possible
intermediate states: |1, 0〉 and |0, 1〉. The two possible paths interfere and
we need to sum the amplitudes of the two possibilities rather than their
probabilities. If there is a quantum number that distinguish the two levels
(e.g., if the system is a single spinful level with spin-dependent couplings
to the leads) the two path do not interfere, and we simply sum their rates.
We use the notation ω→i,i (ω

←
i,i) for elastic-cotunneling processes in which an

electron is tunneling to the right (left) direction (see Fig. 2.6). Elastic-
cotunneling processes in which an electron tunnels back and forth between
one of the levels and one of the leads don't change the state of the system
and don't contribute any current, and therefore don't appear directly in the
transport calculations. The total elastic-cotunneling rates are the sum of
the rates of all the possible processes, namely, integration over all incoming
electron's energies. For example,

ω→00,00 =
2πν2

~

ˆ
dεFFD

(
ε− µL

) [
1− FFD

(
ε− µR

)] ∣∣∣∣
tL1 t

R
1

ε− E1

+
tL2 t

R
2

ε− E2

∣∣∣∣
2

.

(2.75)

The rates of all the elastic-cotunneling processes are listed in Appendix B.
Equation (2.75) is a formal expression and the actual rate, which we use in
the rate equations, cannot be directly calculated from it. The reason is the
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Figure 2.6: A schematic picture of the elastic cotunneling processes and their
notations. Each process has two possible virtual intermediate states. The
rate is the sum of the amplitudes of the two possible paths (rather than
the sum of their probabilities). The processes ω←i,i are the same as ω→i,i after
exchanging the �nal states with the initial states.

divergence of the integral due to the �nite widths of the two levels (which
we treat as two delta functions in energy). This divergence was already
discussed before [120, 121], and a regularization scheme for the calculation
of the cotunneling rates was developed. We summarize the regularization
scheme in Appendix C. It is worth noting that one can avoid the necessity
of regularization by using the diagrammatic technique that was developed
in Refs. [122, 123, 124]. We �nd that additional correction due to levels
shifts and broadening captured by this approach [125] are irrelevant in the
large bias limit (γi � eVbias) that we consider. Calculation procedure of
the average current and current noise using this technique was developed in
Ref. [126] and gives the same results in the γi � eVbias limit.

Inelastic-cotunneling rates. In Fig. 2.7, we depict the cotunneling
processes that change the state of the two level system, i.e. the inelastic-
cotunneling processes. To this order inHt, the inelastic-cotunneling processes
change the system's state between the following states: |1, 0〉 ←→ |0, 1〉,
|0, 0〉 ←→ |1, 1〉. The latter are somewhat more complex than the other
cotunneling processes as they have four possible intermediate states (see
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Fig. 2.7). We use the notation ω�
i,j for the rate of processes in which the

system changes its state from |i〉 to |j〉 in the following way: the electron
that enters or leaves level 1 tunnels to the right direction, while the elec-
tron that enters or leaves level 2 tunnels to the left, and similarly we de�ne
ω�
i,j, ω

⇒
i,j, ω

⇔
i,j. We use the notation ω↔00,11, ω

↔
11,00 for processes in which the

two electrons enter or leave the two levels by tunneling one to the right and
the other to the left. The rates of all the inelastic-cotunneling processes are
listed in Appendix B.

Beyond the cotunneling approximation. The rate equations based
calculation is valid as long as the tunneling coe�cients are small enough as
we insert the tunneling processes only up to second order in the perturbation
Ht. Practically, it means that either γi/eVbias or γi/KBT need to be small
numbers. Yet, the next leading order in Ht generates logarithmic contri-
butions that diverge at low temperatures and bias voltages [5]. Hence, for
bias voltages smaller than a characteristic energy scale, the Kondo tempera-
ture, the perturbative approach fails. The Kondo temperature in our case is
TK ∼

√
γ1Ue

−U/2γ1 and in all cases in this work we consider much larger bias
voltages. We also want to note that small corrections due to the renormal-
ization of the energy levels and broadening play very minor role in the large
bias case that we consider. They at most slightly modify the quantitative
results with no important e�ect on the qualitative behavior.
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Figure 2.7: A schematic picture of the inelastic cotunneling processes and
their notations. The processes ω01,10 are the same as ω10,01 after exchanging
the two levels. The processes ω11,00 are the same as ω00,11 after exchanging
the �nal states with the initial states.



Chapter 3

Results

In this chapter we present the main results for three projects: First, we
present the analysis of the SU(2) and SU(3) systems that we suggest. Sec-
ond, we present our results about the coherence properties of transmission
through Kondo impurities. Last, we present our analysis of the shot noise
and Fano factor of asymmetric two-level systems.

3.1 Realization of SU(2) and SU(3) Kondo

We �rst look at the UV limit (high temperature or bias voltage) and later
discuss the Kondo physics at the IR. Special attention is given to the measure-
ment of each pseudo-spin/�avor independently. In order to measure trans-
port properties in one �avor we split an edge into two di�erent edges which
are coupled to the same dot, as drawn in Fig. 2.1(d). In equilibrium, one lin-
ear combination of the two edge states is decoupled from the upper dot and
the orthogonal linear combination plays the role of a single edge state that is
coupled to the upper dot. Transport is measured by applying a voltage dif-
ference between the two edges allowing measurements of average current 〈I〉,
zero frequency shot noise Sshot, and the Fano factor F = Sshot

2e〈I〉 of each �avor
separately. Measuring correlations between two �avors can be carried out by
splitting two edges as drawn in Fig. 2.1(b), where we can apply di�erent bias
voltages on di�erent �avors.

3.1.1 UV description

We assume a constant density of states ν in the edges and a very weak
coupling between the dots and the edge states (ν|W |2 � T, or ν|W |2 �
Vbias), and use the rate equations method [117] to calculate the conductivity
and the current noise.

Figs. 3.1(a) and 3.1(c) plot the Coulomb peaks structures of the SU(2)
and SU(3) systems. Contrary to naive expectations, at �nite temperature the
outer peaks are not centered around εF , εF − U , in the N=2 case, or around
εF , εF − 2U in the N=3 case. Due to the asymmetry between occupied and
empty states near the outer peaks, the peaks are shifted by T ln(N)/2. We
discuss this point in Appendix D.

45
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The Fano factor of a single spinful quantum dot which is attached to two
spinful leads is 5/9 at the Coulomb peaks. In the system of Fig. 2.1(b) it
corresponds to applying the same bias voltage on the two pseudo spins and
measuring the total current (I↑+I↓). However, in the systems of Figs. 2.1(b)
and 2.1(d), we can apply distinct bias voltages and measure distinct currents
for the di�erent pseudo spins or �avors. The Fano factors that we obtain are:

F2 = 7/9 , F o
3 = 7/8 , F c

3 = 11/18 ,

where F2 is the Fano factor near the N=2 Coulomb peaks, and F o
3 (F c

3 ) is
the Fano factor near a outer (central) peak of the N=3 case. The Fano factor
is related to the e�ective charge of the current pulses that cross the dots, it
is therefore counter-intuitive to �nd di�erent Fano factors in the total and
single �avor currents. The di�erence is a result of the zero frequency cross-
correlations between the di�erent �avors. Using rate equations we �nd in the
N = 2 case:

S↑↓(0) ≡ lim
ω→0

ˆ
dteiωt2 [〈I↑(t)I↓(0)〉 − 〈I↑〉 〈I↓〉] (3.1)

= −2πν|W |2e2

~
4

27
tanh

eV↑
4T

tanh
eV↓
4T

,

where V↑,↓ are the pseudo-spin bias voltages. Similarly, in the N=3 case, for
α 6= β:

S
(i)
αβ(0) = −2πν|W |2e2

~
R(i) tanh

eVα
4T

tanh
eVβ
4T

, (3.2)

where the index i = o, c labels a central (outer) peak, and Ro = 1/16,
Rc = 1/27.

3.1.2 The IR Kondo �xed point

In Figs. 3.1(b) and 3.1(d) we depict the zero temperature conductance of
a single pseudo spin/�avor in the N = 2, 3 cases. The conductance was
calculated using self consistent Hartree approximation. We average over the
solutions of the self consistent equations for the average occupations of the

levels [127] nα = 1
2
− 1

π
tan−1 Ed+U(

∑
β 6=α nβ)

γ
, where γ represents the identical

width of the levels. The Friedel sum rule and spin/�avor symmetry are
then used to determine the phase shift δα = δ = π

∑N
α=1 nα/N and the

conductance sin2(δ). Let us focus on the N=3 case [Fig. 3.1(d)]. When the
gate voltage is tuned to have only a single electron or a single hole in the
three dots, the conductance is enhanced due to the �avor-interaction and
the Coulomb valleys disappear. An unusual plateau is created instead of the
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three peaks of the UV limit. As long as the dots are occupied by a single
electron or a single hole we �nd the conductivity

GSU(3)−Kondo =
3

4

e2

h
. (3.3)

At the exact particle hole symmetric point, εg = εF − U , we �nd a full e2/h
conductivity and a sharp peak is formed, indicating the larger symmetry.

3.1.3 Edge states cross-correlations in the Kondo limit

We now discuss the �nite frequency �avors correlations in the IR limit. The
cross-�avors correlations is a new observable made available by our realiza-
tion, whereas it is not experimentally accessible in most existing realizations
of Kondo e�ect. This cross-�avors correlations is of order ω/TK relative to
the familiar large thermal noise in the total �avor. For ω = 100MHz and
TK ∼ 1K, ω/Tk ∼ 1% which, being the only contribution in the cross channel,
can be readily observed.

Formally, we de�ne Ji(x) =: ψ†i (x)ψi(x) : and

Jc(x) =
N∑

i=1

Ji(x), ~J(N)(x) =
N∑

ij=1

: ψ†i (x)~T
(N)
ij ψj(x) : ,

where N = 2, 3, ~T (2) are the three Pauli matrices, and ~T (3) are the eight Gell-
Mann matrices. The e�ective Hamiltonians of the two systems are [51, 8, 9]:

H2 =
1

8π

ˆ
dx

[
J2
c (x) +

1

3
~J2
(2)(x) + λ2

~J2
(2)(x)δ(x)

]
, (3.4)

H3 =
1

8π

ˆ
dx

[
J2
c (x) +

3

8
~J2
(3)(x) + λ3

~J2
(3)(x)δ(x)

]
, (3.5)

with λN ∼ 1/Tk. We calculate the noise functions

Sij(ω;x, x′) =

ˆ
eiωt 〈{Ji(x, t), Jj(x′, t′)}〉 , (3.6)

and we �nd that they receive O (ω/Tk) correction (i 6= j):

S
(N)
ii (ω;x, x′) = e−iω(x−x′)ω

π
coth

βω

2

(
1− iλ̃N

ω

π
Fxx′

)
,

S
(N)
ij (ω;x, x′) =

iλ̃N
N − 1

e−iω(x−x′)
(ω
π

)2

coth
βω

2
Fxx′ , (3.7)

with Fxx′ = θ(x) − θ(x′), N = 2, 3, λ̃2 = 6λ2 and λ̃3 = 32
3
λ3. Due to Fxx′ ,

Sij receive correction only if the two currents are measured at two di�erent
sides of the dots.
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Figure 3.1: SU(2) system: (a) The conductivity of a single pseudo spin at
high temperature (T � γ) for two di�erent T/U ratios. We choose the
Fermi energies of the leads to be zero. The Coulomb peaks are not exactly
centered around 0, −U due to the asymmetry between empty/occupied states
near the peaks. (b) Self consistent Hartree solution of the zero temperature
conductivity of a single pseudo spin for two di�erent γ/U ratios. SU(3)
system: (c) The conductivity of a single �avor at high temperature (T � γ)
for two di�erent T/U ratios choosing the Fermi energy to be zero. The outer
peaks are not exactly centered around 0, −2U due to the asymmetry between
empty/occupied states near the peaks. (d) Self consistent Hartree solution
of the zero temperature conductivity of a single �avor for two di�erent γ/U
ratios.
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3.2 Transmission properties of Kondo impuri-

ties

In this section, we present the results of the transmission phase ϕt, and
normalized visibility η of Kondo impurities [both were de�ned in Eq. (1.9)].
We focus on the 1CK impurity and the 2CK impurity, since there are concrete
realizations of such impurities with quantum dots, and only quote the results
for the general k-channel Kondo. In the 2CK case, we consider both its non-
Fermi liquid �xed point, and its Fermi liquid �xed points, reached by turning
on a �nite magnetic �eld or a �nite channel anisotropy.

3.2.1 Single channel Kondo

In the 1CK case, the Ts,ψψ matrix element, up to second order in 1/TK , is [40]

Ts,ψψ (ε) = i

[
2 + i

2ε

TK
− 3

(
ε

TK

)2

−
(
πT

TK

)2
]
. (3.8)

Since
´
εdε
(
−∂f

∂ε

)
= 0, then

´
dε
(
−∂f

∂ε

)
Ts,ψψ(ε) is purely imaginary, there-

fore the transmission phase is

ϕt =
π

2
+O (T/TK)3 . (3.9)

The transmission phase matches the scattering phase shift of the 1CK (up
to T/TK corrections) when potential scattering is neglected. The normalized
visibility

η = 1−
(
πT

TK

)2

+O (T/TK)3 . (3.10)

Two mechanisms reduce the nonzero-temperature normalized visibility, elas-
tic scattering with energy-dependent phase shift, δψ(ε) = π/2 + ε/TK , and
the appearance of inelastic scattering. Both are allowed by the dominant
irrelevant operator near the 1CK �xed point [40].

Finite magnetic �eld

At zero magnetic �eld, the T -matrix is independent of spin (i.e., T↑,ψψ =
T↓,ψψ), because of the symmetry between the two spins. Therefore, the trans-
mission phase and the normalized visibility of the spin-summed conductance,
are the same as the transmission phase and the normalized visibility of each
spin separately. However, when a magnetic �eld is applied, the T -matrix
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becomes spin-dependent. Hence, the transmission phase and the normalized
visibility of each spin are, in general, di�erent from each other and from the
measured (spin-summed) quantities.

Consider, for example, the zero temperature case, where, as long as B �
TK , the system is described by a Fermi liquid theory, so [116] Ts,ψψ = i(1 −
e2iδψs). As we discussed in Sec. 2.3, the particle hole symmetry ψks → ψ†−k,−s,
enforces δψ↑(ε) = −δψ↓(−ε). In this case,

δψs(0) =

(
π

2
− αs

B

TK

)
, (3.11)

where α↑ = 1, and α↓ = −1. Notice that since δψs is half of the phase of
Sψψ, it is de�ned up to ±π. As we measure the conductance of the two
spins together, the total transmission phase ϕt = π/2 independent of B [see
Eq. (2.50)], and the normalized visibility is less than one, η = sin2(π

2
− B

TK
) ≈

1− ( B
TK

)2 [see Eq. (2.51)], even though all the scattering processes are single-
particle to single-particle scattering.

A possible way to overcome this π/2 phase-lock of the transmission phase,
is to measure the conductance of a distinct spin [49]. The distinct spin
transmission phase at zero temperature would simply be δψs, and there is a
2B
TK

di�erence between the spin up and spin down phases. The normalized
visibility of each distinct spin would be η = 1, as we expect for a Fermi liquid
�xed point.

3.2.2 Two channel Kondo

In the 2CK case, two disconnected channels interact with the impurity. We
consider a case where we can measure the transport in one of the channels,
and there is no charge transfer between the di�erent channels (this was the
case, for example, in the experimental setup of Ref. [39]). Notice that in this
case, the index i in the states |nL, nR, i〉 [see, for example, equation (2.7)],
labels states with di�erent particle-hole excitations in the leads and also
states with di�erent excitations in the other channel.

If the two channels are equally coupled to the impurity, then the system
�ows to a non-Fermi liquid �xed point. In this case, up to �rst order in
1/
√
TK , the matrix element Ts,ψψ is [40]

Ts,ψψ (ε) = i
(

1− 3λ
√
πTI(ε)

)
, (3.12)

where

I(ε) =

ˆ 1

0

du

(
u−

iε
2πT F21(u)

√
1− u
u
− 4

π

1
√
u(1− u)

3
2

)
. (3.13)
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λ ∼ 1/
√
TK is the strength of the leading irrelevant operator near the 2CK

�xed point, and F21(u) is the hypergeometric function F21(u) ≡ 1
2π

´ 2π

o
dθ

(u+1−2
√
u cos θ)

3
2
.

The thermally averaged value of Ts,ψψ is

ˆ
dε

(
−∂f
∂ε

)
Ts,ψψ(ε) = i

(
1 + 4λ

√
πT
)
. (3.14)

Since
´
dε
(
−∂f

∂ε

)
Ts,ψψ(ε) is purely imaginary, the transmission phase is

ϕt =
π

2
+O (T/TK) . (3.15)

The normalized visibility is

η =
1

2

(
1 + 4λ

√
πT
)

+O (T/TK) . (3.16)

These results are not surprising, since at zero temperature, there are no
single ψ-particle to single ψ-particle scattering processes at the non-Fermi
liquid �xed point. Thus, Sψψ = 0 for both spins, and hence ϕt = π/2
[see Eq. (2.44)]. Since in this case Tψψ = i, we �nd a normalized visibility
η = 1/2, indicating that half of the conductance is carried by elastic single-
particle scattering [55, 56].

The sign of λ depends on the initial strength of the Kondo coupling. λ
is positive for strong coupling, and negative for weak coupling [40]. The
normalized visibility can, in principle, be enhanced by nonzero temperature,
unlike the usual case where the temperature reduces interference e�ects. The
enhancement of the normalized visibility is due to the fact that the nonzero
temperature allows single ψ-particles scattering o� the impurity (sψψ 6= 0).

Finite magnetic �eld and �nite channel anisotropy

The non-Fermi liquid �xed point is unstable, since �nite magnetic �eld and
�nite channel anisotropy turn on relevant perturbations near the non-Fermi
liquid �xed point [128]. In the presence of such perturbations, the system
�ows under renormalization group to a Fermi liquid �xed point, at zero
temperature, rather than the non-Fermi liquid one. In the case of channel
anisotropy, the channel which is coupled more strongly to the dot �ows to
the 1CK-like �xed point, and the other channel �ows to a free-electrons-like
�xed point. Under a �nite magnetic �eld, the system �ows to a Fermi liquid
�xed point which is di�erent from the 1CK �xed point.
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In this subsection we study the 2CK case under these two possible per-
turbations. At zero temperature, Ts,ψψ is given by [129, 130]

Ts,ψψ(ε) = i


1−

−(ν∆
√
TK) + iαs(

cBBz√
TK

)
√

(ν∆
√
TK)2 + ( cBBz√

TK
)2
G(ε/T ∗)


 , (3.17)

where ∆ is the di�erence between the coupling strengths of the two channels,
and cB is a dimensionless number of order one. T ∗ ∼ TK(ν∆)2 + (cBB)2/TK
is an energy scale that characterizes the �ow away from the non-Fermi liquid
�xed point. G(x) = 2

π
K(ix), where K(x) is the complete elliptic integral of

the �rst kind. α↑ = 1, α↓ = −1, and we have assumed ~B = Bz. At zero
temperature, the averaged value of Tψψ is

1

2

∑

s

Ts,ψψ = i


1− −(ν∆

√
TK)√

(ν∆
√
TK)2 + ( cBBz√

TK
)2


 . (3.18)

Thus, for ∆ = 0, 〈Tψψ〉 = i. Hence, the transmission phase is ϕt = π/2
and the normalized visibility is η = 1/2 even for B 6= 0, where all the
electrons are elastically scattered with a phase δψ,s = αsπ/4. A spin-resolved
measurement, however, would lead to ϕt = αsπ/4 and η = 1, since for ∆ = 0

ˆ
dε

(
−∂f
∂ε

)
Ts,ψψ = i (1− iαs) . (3.19)

In Table 3.1, we summarize the results for the zero temperature normalized
visibility and transmission phase for the various relevant perturbations, where
we de�ne

cos(γ) ≡ ν|∆|√TK√
(ν∆
√
TK)2 + ( cBBz√

TK
)2
, (3.20)

sin(γ) ≡ cBBz/
√
TK√

(ν∆
√
TK)2 + ( cBBz√

TK
)2
. (3.21)

Channel anisotropy. Recall that we are measuring the conductance
through one of the channels. At zero magnetic �eld, if ∆ > 0, the ψ-particles
form together with the impurity a singlet, while the electrons in the other
channel are simply free. Thus, η and ϕt are the same as in the 1CK case. On
the other hand, if ∆ < 0, the electrons in the other channel form a singlet
with the impurity, and the ψ-particles are free. Therefore at zero temperature
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the conductance through the impurity, the dot, is zero. In this case there is
no interference, and hence, η = 0 and ϕt is not de�ned. Although this is a
Fermi liquid, η < 1 near this �xed point since most of the charge is re�ected.
To explain it we now discuss the nonzero-temperature case.

At nonzero temperature, the ∆ < 0 case should be treated more deli-
cately. Up to second order in 1/T ∗, Ts,ψψ is [130]

Ts,ψψ(ε) =
ε

4T ∗
+ i

9

64

( ε

T ∗

)2

+ i
7

64

(
πT

T ∗

)2

. (3.22)

Most of the charge is re�ected and only a small amount of charge can be
transmitted, either elastically or inelastically. This is similar to the 1CK
case, where at nonzero temperature most of the charge is transmitted, and
only a small part is re�ected either elastically or inelastically. Up to second
order in 1/T ∗, the portion of elastic transmission through the impurity out
of all scattering events of incoming particles with energy ε is

|Ts,ψψ(ε)|2
2Im {Ts,ψψ(ε)} =

2/9

1 + 7
9

(
πT
ε

)2 . (3.23)

In the ε � T limit, 2/9 of the charge is transmitted elastically. The phase
that the particles accumulate in this limit is proportional to ε, ϕt(ε) ≈ 9ε

16T ∗
.

The thermal averaging, however, has a crucial e�ect in this limit. The

thermally-averaged T -matrix ,〈Tψψ〉 = i 5
32

(
πT
T ∗

)2
, is purely imaginary and

proportional to T 2, and therefore

η(T ) = 5

(
πT

8T ∗

)2

, ϕt = π/2 . (3.24)

Finite magnetic �eld. At �nite magnetic �eld, we see that in order to
access the phase shift of the ψ-particles, δψs, one needs to measure each spin
separately. Notice that at ∆ → 0 (γ → π/2), the spin-averaged normalized
visibility and the transmission phase are the same as in the non-Fermi liquid
�xed point (B = 0,∆ = 0): η = 1/2 and ϕt = π/2. In order to distinguish
the Fermi-liquid �xed points from the non-Fermi liquid �xed point, one can
measure the temperature dependence of the conductance through the impu-
rity. Non trivial

√
T -dependence indicates a non-Fermi liquid �xed point.

Alternatively, as we already mentioned, spin dependent measurements of ηs
and ϕts give di�erent results for the Fermi liquid and the non-Fermi liquid
�xed points.
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Table 3.1: Zero temperature normalized visibility and transmission phase for
various relevant perturbations.

ηs ϕts η ϕt
B = 0,∆ = 0 1/2 π/2 1/2 π/2
B = 0,∆ > 0 1 π/2 1 π/2
B = 0,∆ < 0 0 - 0 -
B 6= 0,∆ = 0 1 αsπ/4 1/2 π/2
B 6= 0,∆ > 0 1 αs(π/2− γ/2) cos2(γ/2) π/2
B 6= 0,∆ < 0 1 αsγ/2 sin2(γ/2) π/2

Generalization to k-channels

We have focused on the 1CK and the 2CK impurities, since there are concrete
realizations of these impurities with quantum dots. Yet, it is worthwhile to
study the more general k-channel Kondo case. In the Fermi liquid �xed points
at zero temperature, all the ψ-particles are scattered into ψ-particles, namely,
|Sψψ| = 1. In the non-Fermi liquid 2CK �xed point, none of the ψ-particles
are scattered into ψ-particles, namely, |Sψψ| = 0. In the more general k-
channel Kondo case, however, where k > 1 channels screen the impurity, a
�nite part of the ψ-particles are elastically scattered o� the impurity. At
zero temperature, the single ψ-particle element of the S-matrix is [40]

SkCK
ψψ =

cos
(

2π
2+k

)

cos
(

π
2+k

) . (3.25)

The conductance, up to O (T/TK)
4

2+k , is [40]

Gd =
e2

h
sin2(2α)

[
1−

cos
(

2π
2+k

)

cos
(

π
2+k

) + cK

(
T

TK

) 2
2+k

]
, (3.26)

where the factor cK can be calculated numerically [40]. The normalized
visibility is

η =
1

2

[
1−

cos
(

2π
2+k

)

cos
(

π
2+k

) + cK

(
T

TK

) 2
2+k

]
+O (T/TK)

4
2+k , (3.27)

and since SkCK
ψψ is real, the transmission phase is

ϕt =
π

2
+O (T/TK)

4
2+k . (3.28)
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3.2.3 External dephasing

In Sec. 2.2 of Chapter 2, we de�ned the normalized visibility η, which is the
amplitude of the AB oscillations, normalized in a certain way. In Sec. 2.3,
we showed that η has a physical meaning, and that it is related to the pro-
portion of the total conductance carried by single-particle scattering. In this
subsection we want to comment about the feasibility of η-measurements.

So far, we have discussed three mechanisms that reduce the normalized
visibility: the possibility of non-coherent charge transfer through the dot
into many-body states, thermal averaging over a transmission with energy-
dependent phase, and averaging over spin-dependent transmission phase. AB
oscillations in a real-life experimental setup can also be suppressed by other
mechanisms that are not related to the physical properties of the examined
impurity. A real experimental two-path setup is usually coupled to a com-
plicated environment. For example, in an open AB ring setup the shapes
of the two paths, the quantum dot(s), the tunnel barriers, and many other
components of the setup are all de�ned by applying voltages to nearby nano-
patterned electrodes. Therefore, each component of the system is coupled
to an environment (metal electrodes, semiconducting leads) with associated
noise and degrees of freedom.

An electron that propagates through the two paths leaves a trace in the
environment; equivalently, a propagating electron that interacts with the
environment, accumulates a random phase [131], ϕ. As a result, the ampli-
tude of the AB oscillations is multiplied by the averaged value 〈eiϕ〉. The
normalized visibility in the presence of the environment is therefore [60]

√
η = 〈eiϕ〉

∣∣´ dε (−∂f
∂ε

)
Tψψ
∣∣

√´
dε
(
−∂f

∂ε

)
2Im {Tψψ}

≈
[
1− 1

2
〈δϕ2〉

] ∣∣´ dε (−∂f
∂ε

)
Tψψ
∣∣

√´
dε
(
−∂f

∂ε

)
2Im {Tψψ}

.

(3.29)

The details of the coupling to the environment depend on the details of
a speci�c experimental setup. Yet, we can roughly estimate the external
dephasing by assuming that the phase-randomness originates mostly from
the thermal �uctuations of the environment. At nonzero temperature T , the
electrodes in the environment su�er from Nyquist noise, and we can estimate
〈δϕ2〉 ∼ T . Hence, dephasing by the environment can reduce the normalized
visibility linearly in the temperature. In the Fermi liquid �xed points, η has
T 2 corrections without external dephasing. This means that at low tempera-
tures the dominant suppression of η would be due to external dephasing. In
the non-Fermi liquid �xed point of the 2CK, η has a

√
T dependence in the

absence of external dephasing. Thus, at low temperatures the change in η
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(enhancement for λ > 0 and reduction for λ < 0), is expected to be stronger
than its suppression due to external dephasing. The relation between the
system and the environment is outside the scope of this work. In particular,
we do not get into speci�c models for the environment. We want to note that
there are models that treat rigorously the e�ect of a speci�c environment on
the interference in AB rings (for example, a quantum-point-contact that is
coupled to an embedded quantum dot [132, 133]; or a �uctuating magnetic
�ux [134]).

In the 2CK non-Fermi liquid case, a noisy environment can, in principle,
turn on relevant operators. Thus, a noisy environment with strong e�ect
on the system would make the observation of the non-Fermi liquid behavior
di�cult. Hence, if a non-Fermi liquid behavior is indeed observed in an
experimental system, it indicates a relatively weak external dephasing.

3.3 Enhanced shot noise in asymmetric inter-

acting two-level systems

In this section we present the main results for the shot noise and the current
through interacting two-level system that is modeled by Eq. (2.61). The
calculations are based on the rate equations method which we presented
in Chapter 2 [Sec. 2.4]. The results are explained using the approximated
intuitive approach of signal analysis that we developed in Sec. 2.5.1.

3.3.1 Strong interactions

Current

In Fig. 3.2(a), we plot the symmetric current (ΓLi = ΓRi ) through the two level
system as a function of E1 at large U (U > eVbias) with the following param-
eters (Γ ≡ ΓR1 + ΓL1 + ΓR2 + ΓL2 ): KBT = ~Γ, eVbias = 10~Γ, E1 − E2 = ~Γ,
U = 100~Γ and ΓR,L1 = 10ΓR,L2 . Two Coulomb peaks with a width ∼ eVbias

appear in the current: at E1 ≈ 0 (the right peak), where the two levels are
between the leads' chemical potentials, µL and µR (similar to the schematic
picture in Fig. 2.3), and at E1 ≈ −U , where one of the levels is occupied so
the other level is e�ectively shifted and placed between µL and µR. The right
peak is a bit lower than the left peak because of the small energy di�erence
between the two levels (E1 > E2). At �nite temperature, this small energy
di�erence makes the probability of �nding level 2 occupied a bit larger than
the probability of �nding level 1 occupied. While near the right peak the



3.3. SHOT NOISE IN ASYMMETRIC INTERACTING TWO-LEVEL SYSTEMS 57

−2 −1 0 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E
1
/U

C
ur

re
nt

 [e
Γ]

(a)

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

ΓL/ΓR

C
ur

re
nt

 [e
Γ]

(b)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−4

ΓL/ΓR

C
ur

re
nt

 [e
Γ]

(c)

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

ΓL/ΓR

C
ur

re
nt

 [e
Γ]

(d)

Figure 3.2: The current through the two level system with the following
parameters (Γ ≡ ΓR1 +ΓL1 +ΓR2 +ΓL2 ): KBT = ~Γ, eVbias = 10~Γ, E1−E2 = ~Γ,
U = 100~Γ and ΓR,L1 = 10ΓR,L2 . We assume the same left-right asymmetry for
the two levels: ΓL1 /Γ

R
1 = ΓL2 /Γ

R
2 ≡ ΓL/ΓR. (a) The symmetric (ΓL/ΓR = 1)

current as a function of E1. (b) The current at the right peak, E1 = 0,
as a function of the left-right asymmetry. The dashed line is the sequential
tunneling current, and the solid line is the current including both sequential
and cotunneling processes. (c) The (cotunneling) current at the valley, E1 =
−U/2, as a function of the left-right asymmetry. The sequential tunneling
current is practically zero at the valley. (d) The current at the left peak,
E1 = −U , as a function of the left-right asymmetry. The dashed line is the
sequential tunneling current, and the solid line is the current including both
sequential and cotunneling processes.
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current through the strongly coupled level- level 1- is blocked by the occu-
pation of level 2, near the left peak the occupation of level 2 allows it, and
therefore the left peak is a bit higher. If the sign of the energy di�erence was
the opposite (E1 < E2) the right peak was higher than the left peak.

In Figs. 3.2(b) and 3.2(d) we plot the left-right asymmetry dependence
of the current at the right and left peaks respectively. We assume the same
left-right asymmetry for the two levels, ΓL1 /Γ

R
1 = ΓL2 /Γ

R
2 ≡ ΓL/ΓR. Due to

the lack of a particle-hole symmetry at the peaks the current is not maximal
when the system is symmetrically coupled to the leads. To understand this
consider the current at the left peak in the simple case of zero temperature
and no cotunneling processes. The right lead current (2.55) in this case is
simply 〈I〉 = P11(ΓR1 +ΓR2 ) ≈ P11ΓR1 where P11 is the probability of �nding the
system doubly occupied. The probability P11 can be easily calculated since
the probability of �nding the system empty in this case (zero temperature
and E1 = −U) is zero. Also, in the limit |E1 − E2| � Vbias the probability
of �nding only level 1 occupied, P10, and the probability of �nding only level
2 occupied P01 are identical and given by Pe of Eq. (2.70). The probability
of �nding the system doubly occupied is therefore P11 = 1 − 2Pe. The av-
erage current is 〈I〉 = ΓR1 (1 − 2Pe) = (ΓL1 + ΓR1 ) 1

ΓL/ΓR+1
(1 − 2

ΓL/ΓR+2
), and

it is maximal, for a �xed ΓL1 + ΓR1 , at ΓL/ΓR =
√

2. Indeed, the current in
Fig. 3.2(d) is maximal at ΓL/ΓR ≈

√
2 (the calculation is done at �nite tem-

perature and includes cotunneling therefore
√

2 is only an approximation).
Similarly, the maximum of the right peak is at ΓL/ΓR ≈ 1/

√
2. The current

at the valley E1 = −U/2, depicted in Fig. 3.2(c), carried by cotunneling
processes, is maximal where the two levels are symmetrically coupled to the
leads, ΓL = ΓR.

Fano factor

The current is carried by tunneling of electrons, namely current pulses of
charge 'e', resulting in a shot noise. On top of the tunneling events, as we
discussed in Sec. 2.5.1, there is also a telegraph noise; by tunneling into or
out of level 2, we change the tunneling rate through level 1. Since most of the
current is carried by tunneling through level 1 the current alternates between
two di�erent average values. For example, if we focus on the left peak of the
current, E1 = −U [see Fig. 3.2(a)], most of the tunneling events are via
level 1 while level 2 is occupied. However, because of the strong interactions,
each time the electron leaves the narrow level, level 2, the current drops
dramatically and resumes only when a new electron enters level 2.

In Fig. 3.3, we depict the Fano factor at the left peak (E1 = −U) of the
current through the two level system with the following parameters: eVbias =
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Figure 3.3: The Fano factor, F = S
2e〈I〉 at E1 = −U (the left peak of the

current) as a function of the left-right asymmetry with the following param-
eters: eVbias = 0.1U , E1−E2 = 0.01U and ~ΓL1 + ~ΓR1 + ~ΓL2 + ~ΓR2 = 0.01U .
We assume that the two levels have the same left-right asymmetry, ΓL/ΓR.
When we change ΓL/ΓR we keep the total width of each level �xed. (a) The
Fano factor for di�erent ratios of the two levels' widths (γi = ~(ΓRi + ΓLi )/2)
with KBT = 0.01U and eVbias = 0.1U . The dashed lines are the sequential
tunneling Fano factors and the solid lines are the calculated Fano factors
including cotunneling processes. In the inside box in the upper right corner
we zoom in on the small values of ΓL/ΓR. The Fano factor is larger than
one (super-Poissonian noise) and maximal in asymmetric coupling. (b) The
Fano factor as a function of the left-right asymmetry for di�erent values of
eVbias/T . The ratio between the levels' widths is ΓR,L1 = 10ΓR,L2 . The dashed
lines are the sequential tunneling Fano factors and the solid lines are the
calculated Fano factors including cotunneling processes. The cotunneling
processes dramatically decrease the Fano factor for large eVbias/T .
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0.1U , E1−E2 = 0.01U , and ~ΓL1 +~ΓR1 +~ΓL2 +~ΓR2 = 0.01U . By increasing
γ1/γ2, we increase the average number of electrons that tunnel through level
1 while level 2 is occupied [the quantity Γ1τ1 in Eq. (2.67)]. Indeed, similar to
what we expect for the simpli�ed model of Sec. 2.5.1 [Eqs. (2.67) and (2.68)],
the noise is larger for large γ1/γ2 as one can see from Fig. 3.3(a).

In Fig. 3.3, we plot the left-right asymmetry dependence of the Fano
factor. Similar to the simpli�ed case of Sec. 2.5.1, we �nd the following
asymmetry dependence of the Fano factor: for large ΓL/ΓR, the Fano factor
is F = 1, and as we decrease ΓL/ΓR, we see enhancement of the the Fano
factor. Also, as we discussed in Sec.2.5.1, the �nite temperature suppresses
the Fano factor below some ΓL/ΓR � 1 toward the value F = 1 in the limit
ΓL/ΓR → 0. The most interesting feature in Fig. 3.3 is the unexpected
in�uence that the cotunneling processes have on the Fano factor. At low
temperatures (KBT � eVbias), the cotunneling processes suppress the Fano
factor signi�cantly in the asymmetric coupling regime ΓL � ΓR (the dashed
lines in Fig. 3.3 represent calculations without cotunneling processes).

The physics behind the reduction of the Fano factor in the ΓL/ΓR �
1 limit can be explained by the simpli�ed picture of Sec. 2.5.1. At zero
temperature and taking into account sequential tunneling only, as we reduce
ΓL/ΓR the Fano factor is enhanced toward the value F ≈ γ1

2γ2
in the limit

ΓL/ΓR → 0 [see Eqs. (2.68) and (2.70)]. This suits the upper (red) dashed
line in Fig. 3.3. Finite temperature allows backward tunneling- opposite
to the voltage bias direction, which reduces the number of current pulses
through level 1 each time level 2 is occupied. The reason is that for ΓL � ΓR

electrons tunnel many times back and forth between the right lead and the
system before a tunneling event from the left lead to the system takes place.
Thus, the quantity Γ1τ1 in Eq. (2.67) (see also Fig. 2.4) is reduced and the
Fano factor is suppressed.

Cotunneling processes, similar to the �nite temperature, allow backward
tunneling. Virtual tunneling to the left is possible as a part of a full two
particle cotunneling process. The important cotunneling processes which
suppress the Fano factor in the asymmetric limit are the inelastic processes
than change the system's state between the states |1, 0〉 ←→ |0, 1〉. In the
asymmetric limit, the total rate of these processes becomes larger than the
rate of sequential tunneling from the left lead into level 1. As a result, the
occupation of level 2 changes faster than the time delay between consecutive
current pulses through level 1. The quantity Γ1τ1 is reduced and the Fano
factor is suppressed toward the value F = 1 in the extremely asymmetric
limit ΓL/ΓR → 0.

We want to mention the experimental work that was reported in Ref. [64],
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where a super-Poisson noise with a strong asymmetry dependence was mea-
sured in quantum dot that was attached to two leads at strong magnetic
�eld. One of the suggested explanations for the enhancement of the noise
in this system was an additional level that is weakly coupled to the leads.
Indeed, the strong dependence of the Fano factor on the asymmetry of the
dot-leads coupling, which is very similar to the asymmetry dependence of the
Fano factor we have in Fig. 3.3, indicates a possible two level system. We
must emphasize that although our results �ts qualitatively the experimental
measurements, the rate equations formalism is not suitable for quantitative
analysis of the experimental results since the quantum dot was attached rela-
tively strong to the leads, a situation that makes the rate equations approach
invalid. Nevertheless, qualitatively, we believe that the signi�cant asymme-
try dependence of the Fano factor is a strong evidence for the presence of a
second interacting level that was weakly attached to the leads in the experi-
mental setup.

Spinful electrons

In order to avoid unnecessary complexities, we have assumed that the elec-
trons are spinless. Physically, this situation can be realized by two-level
quantum dot at strong magnetic �eld or two single level quantum dots at
strong magnetic �eld. The spin degree of freedom can be added to the
problem in two ways: single spinful level with spin dependent couplings to
the leads or two spinful levels with di�erent couplings to the leads. The
single spinful level case is very similar to the system that we analyze, the
only di�erence is the fact that processes with di�erent spins cannot interfere.
Therefore some of the cotunneling rates are slightly di�erent (e.g., cotunnel-
ing of electron through an empty level). Nevertheless, we want to stress that
the most important cotunneling processes in the more physical situation of
relatively strong interactions, which are the inelastic processes |1, 0〉 ↔ |0, 1〉
(or | ↑〉 ↔ | ↓〉), have exactly the same rates as in our model. Moreover,
and this is the important point, the physics behind the noise enhancement in
the spinful case and in the spinless case, is the same. The noise is enhanced
because of the blocking e�ect which is a result of the Coulomb interactions.
Therefore, the same qualitative dependence on the asymmetry is expected.
This is true also in the two spinful levels case, and in fact also in multi-level
systems with interactions. If the blocking e�ect enhances the noise, we expect
similar dependence of the Fano factor on ΓL/ΓR with similar suppression due
to �nite temperature and cotunneling.
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3.3.2 Weak interactions

While U is large, say U > eVbias, the current at the left (right) peak, E1 ≈ −U
(E1 ≈ 0) is changed dramatically when an electron is tunneling into or out
of level 2, since the strong interaction blocks the tunneling through level 1.
This is not the case for small U . If U is small compared to Vbias the current
alternates between two relatively close values, and the e�ect on the noise is
smaller. Yet, if the ratio between the levels' widths, γ1/γ2 is large enough, the
enhancement of the noise can be important. In Fig. 3.4 we depict the current
and the Fano factor for relatively small U (U = eVbias/5) with the following
parameters (Γ ≡ ΓR1 + ΓL1 + ΓR2 + ΓL2 ): U = 2~Γ, eVbias = 10~Γ, KBT = ~Γ,
E1 − E2 = 0.5~Γ and γ1 = 10000γ2. We see again that the cotunneling
processes are important as they enhance the Fano factor signi�cantly (the
cotunneling processes contribute less than 20% of the current but almost
double the Fano factor). Notice also that unlike the Fano factor of the strong
U case, the Fano factor is maximal when the system is symmetrically coupled
to the leads, ΓL = ΓR.

To explain the enhancement of the noise in the small U case, we use the
intuitive picture that we studied in Sec. 2.5.1; a sequence of current pulses
through level 1 and a random telegraph signal describing the occupation of
level 2. The rate of the pulses depends on the occupation of level 2 and we
consider two di�erent rates: Γ1 describes the tunneling rate through level 1
while level 2 is full and Γ̃1 describes the tunneling rate while level 2 is empty.
The Fano factor is given by (2.73)

F ≈ 1 +
2(∆Γ1)2

Γ1Γ2

P 2
e (1− Pe)

2, (3.30)

where the rate Γ2 = (τ0 + τ1)−1 is the tunneling rate through level 2, ∆Γ1 ≡
Γ̃1 − Γ1, Pe = τ0

τ0+τ1
, and we have used the fact that Γ̃1 = Γ1 + ∆Γ1 ≈ Γ1

for U < eVbias. We see that although the Fano factor is usually reduced to

one for ∆Γ1

Γ1
� 1, in the extreme case of Γ2

Γ1
<
(

∆Γ1

Γ1

)2

the Fano factor can be

enhanced.
We can now understand why the Fano factor is enhanced noticeably due

to the cotunneling processes. For U < eVbias, the rate of the sequential tun-
neling through level 1 barely depends on the occupation of level 2 since the
energies E1 and E1 + U are close to each other compared to Vbias. The co-
tunneling processes however, are much more sensitive to U . In Fig. 3.5 we
illustrate this point by comparing the dependence of the sequential tunneling
and the cotunneling rates through level 1 on the occupation of level 2, with
the same parameters of Fig. 3.4(b). In Fig. 3.5(a), we plot the sequential
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Figure 3.4: The current and the Fano factor in the small U (U < eVbias)
region with the following parameters (Γ ≡ ΓR1 + ΓL1 + ΓR2 + ΓL2 ): U = 2~Γ,
eVbias = 10~Γ, KBT = ~Γ, E1 − E2 = 0.5~Γ and γ1 = 10000γ2. (a) The
current as a function of E1 at the symmetric point, ΓL = ΓR. The dashed
line is the current including sequential tunneling only, and the solid line
is the current including also cotunneling processes. (b) The Fano factor
at E1 = 0 as a function of the left-right asymmetry. The dashed line is the
sequential tunneling Fano factor and the solid line is the Fano factor including
cotunneling processes. The cotunneling processes enhance the Fano factor
signi�cantly.
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Level 2 is occupied
Level 2 is empty

Level 2 is occupied
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Figure 3.5: The dependence of the tunneling rates through level 1 on the
occupation of level 2 in the small U (U < eVbias) region with the following
parameters (Γ ≡ ΓR1 + ΓL1 + ΓR2 + ΓL2 ): U = 2~Γ, Vbias = 10~Γ, KBT = ~Γ,
E1 = 0, E2 = −0.5~Γ and γ1 = 10000γ2. Negative cotunneling rates mean
that the cotunneling processes decrease the current (see for example Ref.
[[118]]). (a) The sequential tunneling rate from the left lead through level
1 to the right lead (((ω→11,01)−1 + (ω→01,11)−1)−1 when level 2 is occupied and
((ω→10,00)−1 + (ω→00,10)−1)−1 when level 2 is empty). (b) The cotunneling rates
from the left lead through level 1 to the right lead (ω→11,11 + ω→01,01 when level
2 is occupied and ω→10,10 + ω→00,00 when level 2 is empty). (c) The di�erence
between the sequential tunneling rates of the two stages (level 2 is empty
and full). (d) The di�erence between the cotunneling rates of the two stages
(level 2 is empty and full).
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tunneling rates from the left lead through level 1 to the right lead when level
2 is empty- [(ω→10,00)−1 + (ω→00,10)−1]−1, and full- [(ω→11,01)−1 + (ω→01,11)−1]−1 (ex-
pressions for the rates are given in Appendix B, see Fig. 2.5 to clarify the
notations). In Fig. 3.5(b) we plot the cotunneling rates from the left lead
through level 1 when level 2 is empty- ω→10,10 + ω→00,00, and full- ω→11,11 + ω→01,01

(expressions for the rates are given in Appendix B, see Fig. 2.6 to clarify
the notations). In Figs. 3.5(c) and 3.5(d) we plot the di�erence between the
values of the tunneling rates through level 1 when level 2 is empty and the
values of the tunneling rates when level 2 is full [in Fig. 3.5(c) the sequential
tunneling rate and 3.5(d) the cotunneling rate]. We see that although the
sequential tunneling rate is order of magnitude larger than the cotunneling
rate, the cotunneling processes are much more sensitive to the occupation
of level 2, making the di�erence between the two values of the cotunneling
rate on the same order of the di�erence between the two values of the se-
quential tunneling rate. Thus, even though the cotunneling processes have a
small contribution to the current, they contribute the same as the sequential
tunneling to ∆Γ1 and therefore have an important contribution to the Fano
factor. We want to emphasize that the Fano factor is enhanced in the weak
interactions regime only if level 2 is coupled to the leads extremely weaker

than level 1, as we require Γ2

Γ1
<
(

∆Γ1

Γ1

)2

where
(

∆Γ1

Γ1

)2

is a very small number.

Since (2.73) depends quadratically on the multiplication of the probabil-
ities of �nding level 2 empty and full, Pe(1 − Pe), the enhancement of the
Fano factor due to ∆Γ1 is maximal where Pe(1−Pe) is maximal. In the limit
of small U , the energy of the system, wether it is empty, singly occupied or
doubly occupies, is more or less the same for E1 = 0, therefore Pe(1− Pe) is
maximal where the system is symmetrically coupled to the leads.
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Chapter 4

Conclusions

In the following, we summarize the main ideas that this thesis expresses. We
mention the novelties, compared to existing works, and provide an outlook
for possible further studies.

In this thesis, we have presented our suggested realization of SU(N)-
Kondo impurities with quantum dots structures. The physics of the familiar
Kondo e�ect is the low energy �xed point of a SU(2) symmetric system
with an impurity. Although the generalization of this problem to SU(N)
symmetric system was discussed, physical realizations of SU(N > 2) Kondo
models are rare, usually complex and limited to N = 4. In this work we
suggest a realization of Kondo e�ect using edge states of the quantum Hall
e�ect that interact with multiple quantum dot structure. This realization is
naturally generalized to SU(N) Kondo.

We have analyzed the transport properties of the suggested SU(2) and
SU(3) systems in the two �xed points: The high energy �xed point and the
low energy one. We showed new features of the pseudo-spin-resolved current:
The spin-spin correlations (or more generally the �avor-�avor correlations)
and the di�erent Fano factor of a single pseudo spin current. The ability
of measuring a distinct pseudo spin current in the suggested systems makes
these features experimentally accessible. Following our suggestion, an exper-
imental realization of SU(2)-Kondo with access to each spin separately was
built and measured [50], and a spin-resolved spectroscopy of the Kondo e�ect
was made. We also present explicitly the conductance of the SU(3) system
in the Kondo regime where it has an unusual fractional value 3/4.

Besides the ability of realizing SU(N) Kondo, the systems that we sug-
gest have four more advantages: First, as our realization is based on edge
states it can be easily integrated into electronic Mach-Zehnder interferom-
eter, allowing accurate phase shift measurements. Second, our realization
allows measurements of a single pseudo-spin [or generally a single �avor for
SU(N > 2)] transport. Third, breaking of the SU(N) symmetry can be
brought under a good experimental control, potentially allowing a non Fermi
liquid behavior such as in the two impurity Kondo model and its general-
izations. Fourth, it paves the way to possible generalization to fractional
quantum Hall edges which may show richer structure.

We also presented, in this thesis, our work on transmission phase shift
and normalized visibility of Kondo impurities. We explore interference
(and hence coherence) in transport through both Fermi liquid (conventional
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Kondo) and non-Fermi liquid (e.g., two-channel Kondo) states. It is not
obvious that there should even be coherent transport through a non-Fermi
liquid, since quasi-particles need to convert to more exotic excitations, and
then back to quasi-particles. But we �nd that substantial coherence does
remain even in this case.

We provide a novel many body scattering theory which enables a theoret-
ical analysis of the coherence of the transport. In addition to the commonly
measured quantity in two-paths experiments, the transmission phase shift,
we discuss the visibility- the ratio between the �ux-dependent part of the
conductance and the average conductance. We show that if the visibility is
normalized properly, then the normalized visibility is related to the portion
of the coherent part of the transport. Our many body scattering approach
enables us to calculate the conductance through the dot, the transmission
phase shift and the normalized visibility. In Fermi liquids at zero temper-
ature, the transmission phase shift is identical to the scattering phase shift
of the quantum dot, and the normalized visibility is one. We give the tem-
perature correction for these results, and the generalization to non-Fermi
liquid cases. In particular, we show that in the non-Fermi liquid �xed point
of the two-channel-Kondo, the normalized visibility at zero temperature is
half, indicating that exactly half of the conductance is carried by coherent
transport. In this case, we �nd that the transmission phase shift is π/2 even
though a scattering phase shift is not de�ned for such an impurity.

The conductance of a two-path setup with a penetrating magnetic �ux de-
pends on the magnetic �ux because of the Aharonov-Bohm e�ect. Measure-
ments of the �ux-dependent conductance give access to information about
the coherent nature of the transport. Manipulations on quantum dots allow
the realization of various types of Kondo �xed points. Hence, we discuss a
two-paths setup with an embedded quantum dot as a tool for studying the
coherent properties of transmission through Kondo impurities. In particular
we discuss the special non-Fermi liquid �xed point of the two-channel-Kondo
impurity. We show that regular measurements of the conductance of the two
spins together, are not su�cient in the absence of spin-symmetry. Special
particle-hole symmetry locks the phase shift at π/2, independent of the ac-
tual phase that electrons accumulate when they are transmitted through the
impurity. A way to overcome this phase-lock is to perform a spin-resolved
measurement.

In this thesis, we also study the shot noise enhancement in asym-
metric interacting two-level systems. Measurements of the shot noise,
S, provide additional information about the system, which is not accessi-
ble from measurements of the average current, 〈I〉. In several situations,the
Fano factor F = S/2〈I〉 gives the e�ective charge of the current carriers and
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therefore it is crucial to understand it thoroughly. We present a detailed
study of the Fano factor for interacting two-level systems and its dependence
on various parameters. In most cases, Coulomb interactions reduce S. How-
ever, several theoretical and experimental works have showed that Coulomb
interactions may also enhance S, resulting in a Fano factor F ≥ 1. In this
work, we study in detail a model of two-level system coupled to two electronic
leads where the coupling of one level is stronger than the other. There are
many physical realizations of two level systems, such as one spin-full level
in a quantum dot with a spin dependent coupling or two levels in a quan-
tum dot subjected to a strong magnetic �eld. In the absence of Coulomb
interactions, the expected Fano factor of such systems is 1

2
≤ F ≤ 1. We

show that strong interactions enhance the Fano factor signi�cantly in such
systems, and that the enhancement depends very strongly on the asymmetry
between the couplings to the two di�erent leads. Our results are relevant to
large variety of experimental situations and explain in detail and in a simple
intuitive way the dependence of the Fano factor F on various parameters of
the system.

In particular, the dependence of the Fano factor on the asymmetry of
the couplings to the leads was hardly discussed before, and a clear picture
of this dependence and its origin was missing. We calculate the current and
the shot noise using rate equations formalism and show that while at zero
temperature the Fano factor is a monotonic function of the asymmetry of
the couplings to the leads, at �nite temperature it has a maximum. In our
calculations we include both sequential tunneling processes and the more
complex cotunneling processes, and we show that the cotunneling processes
play a crucial role in such systems. There is a range of parameters in which
the cotunneling processes a�ect the noise signi�cantly, even though most
of the current is carried by sequential tunneling processes. In particular,
the cotunneling processes change the dependence of the Fano factor on the
asymmetry of the coupling to the leads. Even if the interactions are relatively
weak, if the coupling of one level is much stronger than the other the shot
noise can still be enhanced. Signi�cant part of this enhancement is due to
the rarer cotunneling processes.

Also, we develop a simple intuitive picture of the current through the two
levels as a multiplication of two signals: A sequence of current pulses and
a telegraphic signal. This simpli�ed picture capture, at least qualitatively,
most of the results that we achieve through the rigorous rate equations based
calculations and can be used to gain an intuitive understanding of the trans-
port through the system. We believe that our results can be used to identify
two level systems and to explain existing and possible future experiments,
where the shot noise is enhanced due to additional weakly coupled states.
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Appendix A

Model for a quantum dot impurity

embedded into an open AB ring

In this appendix, we present a model for a possible setup of a quantum dot
that is embedded into an open AB ring. Setups of this kind, can be used to
study the transmission through 1CK and 2CK impurities.

Consider the open AB ring setup that is depicted in Fig. A.1. The system
contains two external leads (source and drain) and two internal paths. The
external leads are coupled to the two paths by four transmission coe�cients
(tref
s , tref

d , tLs , t
R
d ) which are assumed to be very small. The two possible

paths are either through the quantum dot (the lower arm in Fig. A.1) or
through the reference arm (the upper arm in Fig. A.1). When an electron
is propagating along the lower arm, it has a �nite probability to leak outside
the system. However, once it gets close enough to the dot we assume that it
can only scattered (forward or backward) o� the dot. We refer to the area
near the dot from the left (right) as left (right) lead (not to be confused with
the external leads, source and drain). The Hamiltonian of the system is

H = Hexternal +Href +Hsystem +Ht , (A.1)

where each of the three �rst elements on the right hand side of (A.1) describes
one part of the system. Hexternal describes the external leads

Hexternal =
∑

r=S,D

∑

k,s

εkc
†
rkscrks , (A.2)

where crks are the annihilation operators of electrons with spin s in external
lead r. Href describes the free electrons in the reference arm. The lower arm
is described by the Hamiltonian

Hsystem =
∑

i=L,R

∑

k,s

εkc
†
iksciks +Hdot +

∑

i=L,R

∑

ks

(
tic
†
iksds + h.c.

)
, (A.3)

where crks are the annihilation operators of electrons with spin s in the
internal lead i, and ds annihilates an electron with spin s in the dot. Hdot

describes the quantum dot itself and any other system that might interact
with it but do not interact directly with the other part of the setup (e.g. a
capacitively coupled gate electrode, other dots etc.). The di�erent parts of
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φSource Drain

Reference arm

Left lead Right lead

Dot

tL tR

Losses
Losses

Losses Losses

trefs

tLs

trefd

tRd

Internal
leads

Figure A.1: Schematic model of a quantum dot embedded into an open AB
ring. The four transmission coe�cients between the two paths and the exter-
nal leads (tref

s , tref
d ,tLs ,t

R
d ), are very small. To the lowest order in the external

transmission coe�cients the propagations along the arms are independent
of each other. Because of the losses, time reversal symmetry is broken. We
encode the losses in the transmission coe�cients.

the setup are connected via Ht

Ht =
∑

ks

∑

r

tref
r c
†
rkscref,ks +

∑

ks

tLs c
†
SkscLks +

∑

ks

tRd c
†
DkscRks + h.c. . (A.4)

We don't get into the details of how the setup is coupled to other side leads.
To the lowest order in the external transmission coe�cients, Ht, the two

paths are independent of each other. Therefore, using the de�nitions of ϕt
and η [see Eq. (1.9)], the conductance can be written in the form

Gsd = Gd +Gref + 2
√
η
√
GdGref cos

(
eφ

~c
+ ϕt

)
,

where Gref is the conductance through the reference arm, and Gd is the
conductance through the dot. There is a linear combination of the internal
leads, ξ = − sin(α)cL + cos(α)cR, where α = arctan(tR/tL), which is decou-
pled both from the dot and from the orthogonal combination of the leads,
ψ = cos(α)cL + sin(α)cR . Following the discussion on Chapter 2 [Sec. 2.3]
the transmission through the dot is proportional to the T -matrix of the ψ-
particles.

So far, we haven't speci�ed what is the Hamiltonian of the dot, Hdot . In
other words, we haven't speci�ed other systems that interact with the dot
(and do not interact directly with the ring). In the following two subsections,
we discuss two speci�c cases: a 1CK case, where the dot is attached to a gate
electrode and tuned to form a 1CK impurity, and a 2CK case, where another
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large dot is coupled to the small dot with appropriate gate electrodes to form
a 2CK impurity [37].

A.1 Single-channel Kondo

The dot is capacitively coupled to a gate electrode. If a gate voltage is
applied, then at low enough energies, by tuning the gate voltage and the
tunneling barriers between the dot and the ring (tL,R), one can bring the
Hamiltonian (A.3) to the form of Kondo Hamiltonian [135]

Hsystem =
∑

k,s

εkψ
†
ksψks +

∑

k,s

εkξ
†
ksξks + J

∑

k,s

∑

k′,s′

ψ†ks~σss′ψk′s′ · ~S , (A.5)

where ξ = − sin(α)cL + cos(α)cR, and ψ = cos(α)cL + sin(α)cR. J is the

Kondo interaction strength, ~σ are the three Pauli matrices, and ~S is the
total spin of the dot. Up to second order in 1/TK the Ts,ψψ-matrix is [40]

Ts,ψψ (ε) = i

[
2 + i

2ε

TK
− 3

(
ε

TK

)2

−
(
πT

TK

)2
]
. (A.6)

A.2 Two-channel Kondo

We can tune the part of the system that is described by Hdot to form a 2CK
impurity (e.g., by adding another relatively large quantum dot, and couple
it to the small dot [37]). The Hamiltonian (A.3) becomes [37, 136]

Hsystem =
∑

k,s

εkψ
†
ksψks +

∑

k,s

εkξ
†
ksξks +

∑

k,s

εkD
†
ksDks

+
∑

k,s

∑

k′,s′

(
Jψψ

†
ks~σss′ψk′s′ + JDD

†
ks~σss′Dk′s′

)
· ~S , (A.7)

where Dks are the annihilation operators of the large dot, and JD (Jψ) is the
strength of the interaction between the spin of the electrons in the large dot
(in the ψ lead) and the total spin of the small dot. By tuning the parameters
properly, we can bring the system to the symmetric point Jψ ≈ JD, where it
displays a non Fermi liquid behavior [37]. In this case, up to order 1/

√
TK ,

the Ts,ψψ-matrix is [40]

Ts,ψψ (ε) = i
(

1− 3λ
√
πTI(ε)

)
,

where I(ε) was de�ned in Eq. (3.13).
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Appendix B

List of tunneling rates

In this appendix we give the expressions for all the tunneling rates that enter
the rate equations calculation for the two interacting levels.

B.1 Sequential tunneling rates

To the lowest order in Ht the transition rates can be calculated using Fermi's
golden rule. We use the notation ω→i,j for the rate of a tunneling process that
changes the system's state from 'i' to 'j' by tunneling an electron from the
left to the right direction (and similarly ω←i,j for electron that moves from
right to left). For example ω→00,10 is the rate of tunneling from the left lead
into level 1 while level 2 is empty. The rates of the sequential tunneling
processes are

ω→00,10 = ΓL1FFD(E1 − µL) , (B.1)

ω→00,01 = ΓL2FFD(E2 − µL) , (B.2)

ω→10,00 = ΓR1 FFD(µR − E1) , (B.3)

ω→01,00 = ΓR2 FFD(µR − E2) , (B.4)

ω→01,11 = ΓL1FFD(E1 + U − µL) , (B.5)

ω→10,11 = ΓL2FFD(E2 + U − µL) , (B.6)

ω→11,01 = ΓR1 FFD(µR − E1 − U) , (B.7)

ω→11,10 = ΓR2 FFD(µR − E2 − U) . (B.8)

We have de�ned

ΓLi ≡ ν
2π

~
|tLi |2, ΓRi ≡ ν

2π

~
|tRi |2, (B.9)

and the Fermi's function FFD(x) = (1 + eβx)−1 gives the probability for the
availability of an electron or a hole for the tunneling process. The left moving
rates, ω←i,j, have similar expressions with µL ↔ µR and ΓL1,2 ↔ ΓR1,2.

B.2 Elastic-cotunneling rates

Each elastic cotunneling process has two possible intermediate states. For
example, electron can tunnel through an empty system via level 1 or 2,
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thus, cotunneling processes of the form |0, 0〉 −→ |0, 0〉 have two possible
intermediate states: |1, 0〉 and |0, 1〉. The two possible paths interfere and
we need to sum the amplitudes of the two possibilities rather than their
probabilities. We use the notation ω→i,i (ω

←
i,i) for elastic-cotunneling processes

in which the electron tunnels to the right (left) direction. The total elastic-
cotunneling rates are the sum of the rates of all the possible processes, namely
integrating over all incoming electron's energies.

ω→00,00 =
2πν2

~

ˆ
dεFFD

(
ε− µL

) [
1− FFD

(
ε− µR

)] ∣∣∣∣
tL1 t

R
1

ε− E1

+
tL2 t

R
2

ε− E2

∣∣∣∣
2

,

(B.10)

ω→10,10 =
2πν2

~

ˆ
dεFFD

(
ε− µL

) [
1− FFD

(
ε− µR

)] ∣∣∣∣
tL1 t

R
1

ε− E1

+
tL2 t

R
2

ε− E2 − U

∣∣∣∣
2

,

(B.11)

ω→01,01 =
2πν2

~

ˆ
dεFFD

(
ε− µL

) [
1− FFD

(
ε− µR

)] ∣∣∣∣
tL1 t

R
1

ε− E1 − U
+

tL2 t
R
2

ε− E2

∣∣∣∣
2

,

(B.12)

ω→11,11 =
2πν2

~

ˆ
dεFFD

(
ε− µL

) [
1− FFD

(
ε− µR

)] ∣∣∣∣
tL1 t

R
1

ε− E1 − U
+

tL2 t
R
2

ε− E2 − U

∣∣∣∣
2

.

(B.13)

The left moving elastic-cotunneling rates, ω←i,i , have similar expressions with
µL ↔ µR. Equations (B.10)-(B.13) are formal expressions, and the rates
which we use as input for the rate equations, cannot be directly calculated
from these integrals. The reason is the divergence of these expressions due to
the �nite widths of the two levels (which we treat as two delta functions in
energy). We use a regularization scheme [120, 121] for the calculation of the
cotunneling rates. The regularization scheme is summarized in Appendix C.

B.3 Inelastic-cotunneling rates

We consider the inelastic-cotunneling processes that change the system's
state between |1, 0〉 ←→ |0, 1〉 and |0, 0〉 ←→ |1, 1〉. We begin with the
former; we use the notation ω�

i,j for the rate of processes in which the system
changes its state from |i〉 to |j〉 in the following way: the electron that enters
or leaves level 1 tunnels to the right direction, while the electron that enters
or leaves level 2 tunnels to the left, and similarly, we de�ne ω�

i,j, ω
⇒
i,j, ω

⇔
i,j.

For example, if the system's initial state is |1, 0〉 and the electron in level 1
tunnels to the right lead, while another electron from the right lead tunnels



B.3. INELASTIC-COTUNNELING RATES 77

to level 2, we denote the rate of this process by ω�
10,01. Again, there are two

possible intermediate states for the processes |1, 0〉 ←→ |0, 1〉, and we need
to sum them properly. The formal expression for these rates are

ω⇒
10,01 =

2πν2

~

ˆ
dεFFD

(
ε− µL

) [
1− FFD

(
ε+ E1 − E2 − µR

)] ∣∣∣∣
tR1 t

L
2

ε− E2

− tR1 t
L
2

ε− E2 − U

∣∣∣∣
2

,

(B.14)

ω⇔
10,01 =

2πν2

~

ˆ
dεFFD

(
ε− µR

) [
1− FFD

(
ε+ E1 − E2 − µL

)] ∣∣∣∣
tL1 t

R
2

ε− E2

− tL1 t
R
2

ε− E2 − U

∣∣∣∣
2

,

(B.15)

ω�
10,01 =

2πν2

~

ˆ
dεFFD

(
ε− µR

) [
1− FFD

(
ε+ E1 − E2 − µR

)] ∣∣∣∣
tR1 t

R
2

ε− E2

− tR1 t
R
2

ε− E2 − U

∣∣∣∣
2

,

(B.16)

ω�
10,01 =

2πν2

~

ˆ
dεFFD

(
ε− µL

) [
1− FFD

(
ε+ E1 − E2 − µL

)] ∣∣∣∣
tL1 t

L
2

ε− E2

− tL1 t
L
2

ε− E2 − U

∣∣∣∣
2

.

(B.17)

To get these integrals we used the energy conservation: if the incoming elec-
tron (that enters level 2) has the energy ε, the outgoing electron (that leaves
level 1) must have the energy ε + E1 − E2. To get the rates: ω⇒

01,10, ω
⇔
01,10,

ω�
01,10 and ω�

01,10, we may write integrals like (B.14)-(B.17) and exchange

tL,R1 ↔ tL,R2 and E1 ↔ E2. Once again, the formal expressions (B.14)-(B.17)
need to be regularized in order to extract the input terms for the rate equa-
tions calculation (see Appendix C).

The last rates that we discuss are the inelastic |0, 0〉 ←→ |1, 1〉 processes'
rates. These processes are somewhat more complex than the other cotun-
neling processes as they have four possible intermediate states. We use the
notation ω⇒

00,11 (ω
⇔
00,11) and ω

⇒
11,00 (ω

⇔
11,00) for processes in which two electrons

enter or leave the two levels by tunneling to the right (left). We use the
notation ω↔00,11, ω

↔
11,00 for processes in which the two electrons enter or leave

the two levels by tunneling one to the right and the other to the left. The
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rates for the |0, 0〉 ←→ |1, 1〉 inelastic cotunneling processes are

ω⇒
00,11 =

2πν2

~

ˆ
dε

1

2
FFD

(
ε− µL

)
FFD

(
[−ε+ E1 + E2 + U ]− µL

)
×

∣∣∣∣
tL1 t

L
2

ε− E1

− tL1 t
L
2

ε− E1 − U
− tL1 t

L
2

ε− E2

+
tL1 t

L
2

ε− E2 − U

∣∣∣∣
2

, (B.18)

ω⇔
00,11 =

2πν2

~

ˆ
dε

1

2
FFD

(
ε− µR

)
FFD

(
[−ε+ E1 + E2 + U ]− µR

)
×

∣∣∣∣
tR1 t

R
2

ε− E1

− tR1 t
R
2

ε− E1 − U
− tR1 t

R
2

ε− E2

+
tR1 t

R
2

ε− E2 − U

∣∣∣∣
2

, (B.19)

ω↔00,11 =
2πν2

~

ˆ
dεFFD

(
ε− µL

)
FFD

(
[−ε+ E1 + E2 + U ]− µR

)
×

∣∣∣∣
tL1 t

R
2

ε− E1

− tL1 t
R
2

ε− E1 − U
− tR1 t

L
2

ε− E2

+
tR1 t

L
2

ε− E2 − U

∣∣∣∣
2

, (B.20)

ω⇒
11,00 =

2πν2

~

ˆ
dε

1

2
FFD

(
µL − ε

)
FFD

(
µL − [−ε+ E1 + E2 + U ]

)
×

∣∣∣∣
tL1 t

L
2

ε− E1

− tL1 t
L
2

ε− E1 − U
− tL1 t

L
2

ε− E2

+
tL1 t

L
2

ε− E2 − U

∣∣∣∣
2

, (B.21)

ω⇔
11,00 =

2πν2

~

ˆ
dε

1

2
FFD

(
µR − ε

)
FFD

(
µR − [−ε+ E1 + E2 + U ]

)
×

∣∣∣∣
tR1 t

R
2

ε− E1

− tR1 t
R
2

ε− E1 − U
− tR1 t

R
2

ε− E2

+
tR1 t

R
2

ε− E2 − U

∣∣∣∣
2

, (B.22)

ω↔11,00 =
2πν2

~

ˆ
dεFFD

(
µL − ε

)
FFD

(
µR − [−ε+ E1 + E2 + U ]

)
×

∣∣∣∣
tL1 t

R
2

ε− E1

− tL1 t
R
2

ε− E1 − U
− tR1 t

L
2

ε− E2

+
tR1 t

L
2

ε− E2 − U

∣∣∣∣
2

. (B.23)

The factor 1/2 that appears in Eqs. (B.18), (B.19), (B.21) and (B.22) is due
to the double counting of processes: by integrating over ε we sum both ε = ε′

and ε = −ε′+E1 +E2 +U , however these two processes are identical since in
both cases when the two levels are empty the two electrons are in the same
lead with energies ε′ and −ε′+E1 +E2 +U . Hence, as we double count each
process we insert a factor of 1/2. Notice also that for ω⇒

00,11, ω
⇔
00,11, ω

⇒
11,00

and ω⇔
11,00, by including the point ε = E1+E2+U

2
in the integral, we include

an impossible process, as the two electrons in the lead have the same energy
(E1+E2+U

2
). Nevertheless, this point contribute zero to the integrals, and

therefore we have no problems with the formal expressions (B.18), (B.19),
(B.21) and (B.22). The integrals in (B.18)-(B.23) need a regularization in
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order to extract the rates that we use in the rate equations, the regularization
scheme appears in Appendix C.
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Appendix C

Regularization scheme

In this appendix we summarize the regularization procedure for the cotun-
neling rates [120, 121]. All the cotunneling rates that appear in Appendix B,
excluding the |0, 0〉 ←→ |1, 1〉 rates, can be brought to the form

I(A,B,Ea, Eb, µ1, µ2) =
2πν2

~

ˆ
dεFFD(ε−µ1) [1− FFD(ε− µ2)]

∣∣∣∣
A

ε− Ea
+

B

ε− Eb

∣∣∣∣
2

,

(C.1)

where the amplitudes A,B are multiplications of two tunneling coe�cients,
and one might need to use the relation FFD(−ε) = 1 − FFD(ε) in order to
bring the expression of a speci�c cotunneling rate to this form. The integral
(C.1) diverges due to the �nite widths of the energy levels [120, 121]. We
�rst add by hand a width to the levels

I(A,B,Ea, Eb, µ1, µ2) =
2πν2

~
× (C.2)

ˆ
dεFFD(ε− µ1) [1− FFD(ε− µ2)]

∣∣∣∣
A

ε− Ea + iγ
+

B

ε− Eb + iγ

∣∣∣∣
2

.

Next, we solve the integral (C.2) and write the solution as a power series in
γ. We extract the cotunneling rate by subtracting the 1/γ term and taking
the limit γ → 0. We should emphasize that in general each level has its own
width and the sign ±iγ depends on the process; we associate di�erent signs
for incoming and outgoing electrons. If one adds the widths properly, the
divergent term (1/γ) has a physical meaning, and one can read the sequential
tunneling rates from it. Nevertheless, these details are not important for the
regularization procedure, and the �nite values of the cotunneling rates are
independent of the details of the regulator γ. We can write (C.2) as

I(A,B,Ea, Eb, µ1, µ2) =
2πν2

~
×

[I1(A,Ea, µ1, µ2) + I1(B,Eb, µ1, µ2) + I2(A,B,Ea, Eb, µ1, µ2)] ,
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where

I1(A,Ea, µ1, µ2) =

ˆ
dεFFD(ε− µ1) [1− FFD(ε− µ2)]

∣∣∣∣
A

ε− Ea + iγ

∣∣∣∣
2

,

I2(A,B,Ea, Eb, µ1, µ2) =

ˆ
dεFFD(ε− µ1) [1− FFD(ε− µ2)]×

2Re

{
A

ε− Ea + iγ

B

ε− Eb − iγ

}
.

The solutions of I1 and I2 can be written using digamma functions with
complex variables (ψ(z)). I1 contains a divergent part

I1(A,Ea, µ1, µ2) =
|A|2NB(µ2 − µ1)

γ
× (C.3)

Im

{
ψ

[
1

2
+
βγ

2π
+
iβ

2π
(µ2 − Ea)

]
− ψ

[
1

2
+
βγ

2π
+
iβ

2π
(µ1 − Ea)

]}
,

where β = 1/(KBT ) and NB(µ2− µ1) = [eβ(µ2−µ1)− 1]−1. After the subtrac-
tion of the 1/γ term and taking the limit γ → 0:

I1(A,Ea, µ1, µ2) = |A|2NB(µ2 − µ1)
β

2π
× (C.4)

Im

{
ψ′
[

1

2
+
iβ

2π
(µ2 − Ea)

]
− ψ′

[
1

2
+
iβ

2π
(µ1 − Ea)

]}
.

There is no divergence in I2, therefore we simply solve it and take the limit
γ → 0

I2(A,B,Ea, Eb, µ1, µ2) = AB
NB(µ2 − µ1)

Ea − Eb
Re

{
ψ

[
1

2
+
iβ

2π
(Ea − µ2)

]
(C.5)

−ψ
[

1

2
+
iβ

2π
(Eb − µ2)

]
− ψ

[
1

2
+
iβ

2π
(Ea − µ1)

]
+ ψ

[
1

2
+
iβ

2π
(Eb − µ1)

]}
.

We can use the solution of (C.1) to solve the rates of the processes
|0, 0〉 ←→ |1, 1〉. Notice that the formal expressions for these rates [Eqs. (B.18)-
(B.23)] contain four terms inside the absolute value. We may use the trivial
identity

|a+ b+ c+ d|2 = |a+ b|2 + |a+ c|2 − |a− d|2 − |b− c|2 + |b+ d|2 + |c+ d|2 ,

to write Eqs. (B.18)-(B.23) as sums of six terms of the form of (C.1).



Appendix D

Coulomb peaks structure of the con-

ductivity at �nite temperature

Figs. 3.1(a) and 3.1(c) plot the Coulomb peaks structures of the conductivity
of the SU(2) and SU(3) systems. Contrary to naive expectations, at �nite
temperature the outer peaks are not centered around εF , εF −U , in the N=2
case, or around εF , εF − 2U in the N=3 case (εF = 0 in the plots). Focusing
on the right most peak, the conductivity through a dot α is proportional to:

Gα ∼ [P0(εg) + Pα(εg)]f(εg)[1− f(εg)], (D.1)

where P0 =
(
1 +Ne−εg/T

)−1
is the probability of �nding all the dots empty,

Pα = (1 − P0)/N is the probability of �nding an electron in the dot α (for
T � U) and f(ε) is the Fermi Dirac distribution function of electrons in the
edges. The term [P0(εg) + Pα(εg)] does not have a particle hole symmetry
at �nite temperature, therefore the peak is shifted from εF , in this case by
T ln(N)/2. In the SU(3) system the point εg = εF −U is a half-�lling point;
the three dots are occupied on average by 3/2 electrons. Due to particle hole
symmetry, the Coulomb peaks structure is symmetric around εg = εF − U
and the central peak is pinned at this half-�lling point.
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