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Abstract

Majorana fermions in condensed matter physics are emergent bound states at zero
energy. These states are predicted to occur at topological defects in superconductors
and their boundaries. Recent investigations suggest the existence of these states in
semiconductor nanowires with proximity induced superconductivity and a Zeeman
field. Although the experimentally observed zero bias tunneling peak and fractional
ac-Josephson effect can be taken as necessary signatures of a Majorana bound state,
there still exist alternative explanations to these observations. Thus, neither of them
constitutes a sufficient “smoking gun” experiment. In this research we will present
an experimental signature for the detection of Majorana bound states. We consider
a normal lead with an Aharonov-Bohm ring, tunnel coupled to a Majorana bound
state. We expect that decoherence effects will increase with temperature hence the
visibility should decrease with temperature. In striking contrast, we find that the
visibility for such a system with a Majorana bound state is a strictly increasing
function of temperature, which tends to zero at zero temperature. This behavior
is independent of the exact details of the coupling to the lead. In comparison we
show that for a low energy Andreev bound state the visibility can assume increasing,
decreasing, constant or non-monotonic behavior. We present an analytic proof for
these claims. To corroborate the results, we performed a numerical simulation of
an experimentally realizable system, and confirm that the visibility of a Majorana
bound state is indeed an increasing function of the temperature.
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1 Introduction

Majorana fermions are fermionic particles expected to be their own antiparticles
[1]. Although elementary particles of the Majorana type have not been identified
yet, quasi-particles with Majorana-like properties, born from interacting electrons in
the solid, have been predicted to exist. These excitations are expected to have zero
energy, meaning that they occur at the chemical potential. Specifically, the MFs will
be zero energy modes localized on the boundaries of topological superconductors,
and they will be called “Majorana bound states” (MBS) or alternatively “Majorana
zero modes”.

Let γ denote the operator corresponding to one of these Majorana bound states.
This object is its own antiparticle in the sense that γ = γ† and γ2 = 1. Unlike
an ordinary electronic state in a metal, there is no meaning to γ being occupied or
unoccupied. Rather, γ should be viewed as a fractionalized zero mode comprising
‘half’ of a fermion. More precisely, a pair of Majorana bound states must be com-
bined via f = γ1 + iγ2 to obtain a fermionic state with a well-defined occupation
number. This operator represents a conventional fermion, but remains nontrivial in
two respects. First, γ1 and γ2 may be localized arbitrarily far apart from one an-
other; consequently f encodes a highly non-local entanglement, allowing the use of
this state as a qubit which is resilient to decoherence. Second, one can empty or fill
the non-local state described by f with no energy cost, resulting in a ground-state
degeneracy. These two properties underpin by far the most interesting consequence
of Majorana fermions - the emergence of non-Abelian statistics.

Non-Abelian statistic is different and more complex than conventional anyons. The
adiabatic interchanging (braiding) of two Majorana bound states result not only in
a change of the phase of the quantum mechanical wave-function, but also in the
change of the internal states of the modes. Such braiding operations transform the
system non-commutatively between its degenerate ground states.

A braiding operation of the form above is called topological, because it is fully

5



Chapter 1

determined by the topology of the braiding path. This power to evolve simple
operations in physical space into complex motions in an exponentially large Hilbert
space is thought to provide qualitatively new and powerful methods for quantum
information processing. Thus the search for the Majorana fermions is fueled by the
potential for a major technological revolution in the field of quantum computation.

Majorana fermions have recently been proposed to exist in the topologically super-
conducting phase of a spin-orbit coupled semiconductor 2D thin film [2, 3], and a
1D nanowire [4, 5] with proximity induced s-wave superconductivity and Zeeman
splitting from a sufficiently large magnetic field.

One simple detection scheme proposed for the Majorana bound states is to measure
their unique tunneling signatures. The hallmark of the Majorana bound state is
the appearance of a quantized zero bias conduction peak of G = 2e2/h when the
system is in the topological phase [6, 7]. The quantized value is predicted at zero
temperature, while for finite temperatures we expect thermal smearing of the peak.
This peak is robust to any specific details of the system hosting the Majorana bound
states, or to the details of the coupling between the probe and the Majorana bound
state.

Following the proposal for the 1D semiconducting nanowire, a series of transport
experiments realizing this setup were conducted [8, 9, 10]. The experiments reported
the observation of a zero-bias conductance peak, with the peak emerging at a certain
critical magnetic field. The zero bias peak was found to be robust to further increases
in the magnetic field until a certain field in which it splits into two peaks. The peak
was also found to be robust to changes in the angle of the applied magnetic field
within certain boundaries. These findings are consistent with the presence of a
Majorana bound state appearing when the system is in the topological phase and
disappearing when the system returns to the topologically trivial state.

While these experiments are promising, several other mechanisms have been pro-
posed in which a zero bias peak appears. Some alternatives are an accidental An-
dreev bound state at zero bias, the Kondo effect [11] and weak anti-localization [12].
It is therefore important to have a physical signature beyond the zero bias peak that
can distinguish the Majorana bound state from the different scenarios.

In this Thesis, we present a robust signature for the detection of a Majorana bound
state. We propose using a normal lead with an Aharonov-Bohm flux ring as a probe,
and connect this lead to the Majorana bound state. Due to the Aharonov-Bohm ef-
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Introduction

fect the continuance through the ring oscillates with the application of flux through
the ring. The visibility, v, of the setup is defined as the ratio between the amplitude
of the oscillations and its mean value (See Eq. 3.16). In such a setup, we suggest to
measure the visibility of the zero bias conductance peak as a function of tempera-
ture. For a Majorana bound state, the visibility is a strictly increasing function of
temperature, with zero visibility at zero temperature. In contrast, we show that for
an Andreev bound state the visibility can assume increasing, decreasing, constant
or non-monotonic behavior. Thus by measuring the visibility of a conductance peak
as a function of temperature we can rule out the case of a Majorana bound state if
the visibility is not strictly increasing. This property is robust and does not depend
on the coupling constant or any other details of the model. These results will be
proven analytically and exemplified in this Thesis.

The analytic proof uses the fact that while the zero temperature conductance height
of the Majorana peak is robust, the width of the peak depends on the coupling
to the probe. By varying the flux through the Aharonov-Bohm ring, we change
the coupling strength to the Majorana bound state and change the width of the
peak. These two facts imply the suggested behavior. In a sense, the visibility at
finite temperature allows us to gain some knowledge as to the nature of the zero
temperature conductance.

To strengthen the analytic results, we performed a numerical simulation of an ex-
perimentally realizable system, and find that the visibility indeed acts as expected.
We consider a system used in recent experiments which consists of a 1D nanowire
with Rashba spin-orbit coupling and a Zeeman field, proximity coupled to an s-
wave superconductor (Fig. 1.1). First we tune the system so that it hosts a low
energy Andreev bound state and calculate the visibility as a function of tempera-
ture (Fig. 1.2a). The visibility of the Andreev bound state is a decreasing function
of temperature. We then tune the system to the topological phase performing the
same calculation (Fig. 1.2b), here we also fit the results with the theoretical predic-
tion for an ideal MBS. We see that the visibility of the Majorana bound state from
the numerical results agree with the analytic results.

The main text of the Thesis is divided into three main chapters. In Chapter 2 we
give a detailed description of the theoretical background and tools used in the The-
sis. We first give an overview on the subject of Majorana fermions in solid state
systems in Section 2.1. We present the Kitaev chain model followed by the practi-
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Chapter 1

Figure 1.1: Experimental setup. A semiconducting 1D nanowire proximity coupled
to an s-wave superconducting lead. A normal lead is connected to the left. The
normal lead and part of the wire form an Aharonov-Bohm flux ring. The param-
eters are taken in accordance to a recent experiment [8]. We take the spin orbit
energy to be Eso = 50µeV, the induced superconducting gap to be ∆0 = 250µeV,
and the spin orbit length to be lso = 200 nm. The length of the wire is taken to
be L = 2500 nm, with Ls = 1385 nm.
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(b) Majorana Bound State

Figure 1.2: Visibility as a function of temperature. (a) Visibility of the Andreev
bound state. Monotonically decreasing function of temperature. (b) Visibility of
the Majorana bound state with an analytic fit. For details of the the simulation
see main text (Section 4.2). This closely resembles the topological state with
a monotonically increasing function of temperature which tends to zero at zero
temperature. There is a good fit with the analytic expressions of visibility for an
ideal Majorana bound state.
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cal realization of Kitaev’s model with a 1D semiconducting nanowire. We review
several tunneling signatures for verifying the existence of Majorana fermions in an
experimental system together with recent experiments. In Section 2.2 we describe
the Landauer-Büttiker-Imry Formalism which is used to calculate the finite temper-
ature conductance of a coherent conductor in terms of the transmission probabilities
through the system. In Section 2.3 we review the relation between the Green’s func-
tion and the scattering matrix (S-Matrix). By computing the Green’s function of
a system it is possible to calculate the S-Matrix. The transmission probabilities
then correspond to elements of the S-Matrix. Hence, once the Green’s function of
a system is calculated the conductance through the system is known. In order to
calculate the Green’s function of continuum systems, we discretize the continuum.
The technical details of this method are explained in Section 2.4.

Chapters 3 and 4 mark the second part where we present our results. Chapter 3
presents the analytic results of the Thesis. Here we prove our main result that the
visibility of a Majorana bound state is a strictly increasing function of temperature,
which tends to zero at zero temperature. We also show that the visibility of a low
energy Andreev bound state can assume increasing, decreasing, constant or non-
monotonic behavior. This is done by writing an analytic expression for the visibility
of a general Breit-Wigner resonance, and examining how the parameters of the zero
temperature conductance determine the behavior of the visibility at any tempera-
ture, producing the different monotonic and non-monotonic behaviors. Two simple
analytic models are then presented, one for a system hosting a Majorana bound
state and another hosting an Andreev bound state. We calculate the conductance
of these models and show that the Majorana bound state falls under the category
in which the visibility is strictly increasing. For the Andreev bound state we show
the different behaviors by selecting different parameters of the model.

We conclude the Thesis with Chapter 4. In this chapter we will present numer-
ical simulations of a system consisting of a 1D semiconducting nanowire hosting
Majorana bound states. The wire is connected to a normal lead with an attached
Aharonov-Bohm flux ring. We will show that the wire can host a Majorana bound
state and an Andreev bound state which exhibit a zero bias conductance peak. We
will be able to distinguish between them by looking at the visibility as a function of
temperature, thus corroborating the analytic results.
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2 Theoretical Background

2.1 Majorana Fermions

In 1928 Dirac introduced his equation that describes quantum relativistic spin 1/2

particles. The solutions of this equation are in general complex, and the equation
supports the description of electrons and an anti-electron partner – the positron.
Ten years later, Ettore Majorana showed that Dirac’s equation also supports real
solutions, the so called Majorana fermions which are their own antiparticles. The
search for Majorana fermion particles has not been concluded, and it is not yet
known whether a Majorana particle exists in nature.

In condensed matter physics the term “Majorana fermion” (MF) has been borrowed
to describe an object that carries half of the properties of an electronic degree of
freedom. Given an electron creation operator c†, one can formally decompose the
operator into its real and imaginary part

c† = γ1 + iγ2

2 , (2.1)

γα = γ†α, (2.2)

{γα, γβ} = 2δαβ, (2.3)

where the γ operators are MF operators, in the sense that they are their own ‘anti-
particles’.

Contrary to the high energy MF, the condensed matter MF does not describe par-
ticles that behave according to Dirac’s equation. As we have seen above, condensed
matter MFs are obtained by a symmetric linear combination of creation and anni-
hilation operators of the same fermion. One may be under the impression that they
define a new fermionic particle, but this is not true since no vacuum state can be de-
fined for these operators. Furthermore, it is not possible to measure the occupation
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Chapter 2

number of the MFs, as their number operator γ†γ = γ2 = 1 is a c-number.

Hence, MFs in our context are not elementary particles but are nontrivial emergent
excitations. In the systems we will present in the following sections, MF states will
be defined relative to the superconducting ground state. Specifically, the MFs will
be zero energy modes localized on the boundaries of topological superconductors,
and they will be called “Majorana bound states” (MBS) or alternatively “Majorana
zero modes”.

These MBSs must always be paired to form a normal fermionic state with a well
defined occupation number. While the combined fermion obeys the usual anti-
commutation relations, it has two interesting properties. First, γ1 and γ2 may local-
ize far apart from each other resulting in a highly non-local entanglement. Second,
the combined fermion has zero energy, resulting in a ground state degeneracy.

In the next chapter we will present a simple example of a topological superconductor
which hosts MBSs.

2.1.1 Topological Majorana Fermions and Kitaev’s Chain

This section introduces a toy model for a topological 1D spinless p-wave supercon-
ductor that supports Majorana fermions. This model is named the “Kitaev Chain”,
and was introduced by A. Kitaev [13] in 2001. In this model the MBSs appear in a
simple and intuitive fashion. The Kitaev lattice Hamiltonian reads

H = −µ
N∑
i=1

c†ici −
1
2

N−1∑
i=1

(
tc†ici+1 + ∆cici+1 + h.c.

)
, (2.4)

where the c†i operators are creation operators for a fermion on site i of the chain, µ
is the chemical potential, t ≥ 0 is the nearest neighbor hopping strength, ∆ is the
superconducting pairing term and we have chosen ∆ = ∆∗. This Hamiltonian can
be rewritten in the MF basis by decomposing each spinless fermion into two MFs
which obey the canonical MF relations

ci = γ1,i + iγ2,i, (2.5)

γα,i = γ†α,i, (2.6)

{γα,i, γβ,j} = 2δαβδij. (2.7)

12



2.1 Majorana Fermions

In this basis H becomes

H = −µ2

N∑
i=1

(1 + iγ1,iγ2,i) (2.8)

− i4

N−1∑
i=1

[(∆ + t) γ1,iγ2,i+1 + (∆− t) γ2,iγ1,i+1] .

Let us choose µ = 0 and ∆ = t 6= 0, the Hamiltonian becomes

H = −i t2

N−1∑
i=1

γ1,iγ2,i+1. (2.9)

One could now define a new set of fermionic operators d†i ,di which couple MFs from
adjacent sites, and a non local operator a, and diagonalize the Hamiltonian. The
result is

H = t
N−1∑
i=1

(
d†idi −

1
2

)
+ 0 · a†a, (2.10)

with di = 1
2 (γ2,i+1 + iγ1,i) and a = 1

2 (γ2,1 + iγ1,N).

Notice that the ground state is doubly degenerate, as the states with na =
〈
a†a

〉
= 0

or 1 have the same energy. The two states have different parity. Assuming N is
odd, the vacuum |0〉 has even parity and includes an even number of a-fermions.
The second ground state |1〉 contains one a-fermion and has odd parity. This differs
from a conventional gapped superconductor, in which the ground state always has
even parity, so all electrons can form Cooper pairs.

The fermionic state a is quite interesting. It is a zero energy state that is a coherent
superposition of two MFs coming from the two edges of the 1D wire, at i = 1 and
i = N . Thus the a state forms a highly non-local fermion.

The appearance of localized zero-energy Majorana end-states and the ground state
degeneracy arise from the topological nature of the chain. The parameters chosen
above insert the wire in a topological phase, while the vacuum that borders the wire
is trivial. These two phases cannot be smoothly connected, hence the gap must close
at the wire boundaries.

Because the origin of the Majorana edge states is topological, their existence does
not rely on a particular fine tuned limit as shown above. Although, in a more
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general parameter choice with µ 6= 0 and t 6= ∆ while still in the topological phase,
the MBSs that compose the a-fermion no longer consist solely of γ2,1, γ1,N . The
a-fermion wavefunction now decays exponentially from both sides into the bulk of
the wire.

The overlap of the wavefunction now results in a lifting of the degeneracy of the
ground state, with finite splitting energy EM 6= 0. The |0〉 and |1〉 states now split
into two states with splitting energies that scale as EM ∼ e−L/ξ, where L is the
length of the wire and ξ is the coherence length. Usually it is assumed that L� ξ

and this splitting can be neglected (EM = 0). However, in the numerical simulations
we will later present, the energy splitting will be clearly present and will be directly
addressed.

This ever present splitting that appears in finite systems means that in an experiment
we cannot truly create the ideal a-fermion state. Nevertheless, looking at the correct
parameters we will be able to create and measure states that closely resemble it.

2.1.2 Semiconducting Nanowire Setup

There are two main problems in the practical realization of Kitaev’s chain: the
presence of a p-wave superconductor, and that a long range superconducting order
is assumed in a 1D system. In 2010 two similar works [4, 5] demonstrated how
to create a system that obeys the Kitaev Hamiltonian using ingredients that are
available in the lab: a quasi 1D semiconducting nanowire with strong spin-orbit
coupling, a s-wave superconductor tunnel coupled to the wire, and a strong magnetic
field.

The proximity of the wire to the superconductor turns the wire itself into a su-
perconductor via the proximity effect. This effect allows the wire to inherit long
range order cooper pairing from the superconductor. The magnetic field creates
time reversal symmetry breaking. These two effects together with spin-orbit cou-
pling converts the 1D system into a p-wave superconductor, with an effectively long
range order due to the absence of phase fluctuations in the bulk 3D superconductor.

To see this in more detail, we start with a general Hamiltonian [5] for a 1D wire
lying along the y axis, with spin orbit interaction u along the z axis, and a magnetic
field B along the x axis (Fig. 2.1). The wire is in contact with a superconductor,
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2.1 Majorana Fermions

Figure 2.1: The setup of the nanowire based proposal

with proximity strength ∆. The Hamiltonian of the system is

H =
ˆ

Ψ† (y)HΨ (y) dy, (2.11)

H =
[
p̂2/2m− µ (y)

]
τz + αp̂σzτz +B (y)σx + ∆ (y) τx, (2.12)

Ψ† =
(
ψ†↑, ψ

†
↓, ψ↓,−ψ↑

)
, (2.13)

where ψ↑,(↓) (y) annihilates spin up (down) electrons at position y, α gives the Rashba
spin-orbit coupling, B gives the Zeeman energy, ∆ the induced superconductivity
and µ the chemical potential. The Pauli matrices σ, τ operate in the spin and
particle-hole space, respectively.

To better understand the system, we write the Hamiltonian in k space

H =
∑
k

Ψ†kH (k) Ψk, (2.14)

H (k) =
[
p2/2m− µ

]
τz − αpσzτz +Bσx + ∆τx, (2.15)

Ψ†k =
(
ψ†k,↑, ψ

†
k,↓, ψ−k,↓,−ψ−k,↑

)
. (2.16)

We then solve the system with ∆ = 0. The Hamiltonian is easily diagonalized with
electron eigenvalues and eigenvectors

E± = p2/2m− µ±
√
B2 + α2p2, (2.17)

ψ†± ∼
(
−αp±

√
B2 + α2p2, B, 0, 0

)
. (2.18)
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The spin orbit coupling α splits the two degenerate spin bands into two distinct
parabolas, while the Zeeman energy B opens a gap between the two bands, removing
the degeneracy at p = 0. Additionally, in the limit of large Zeeman energy |B| �
ESO where ESO = mα2

2 , the electrons in a single band polarize and have the same
p-independent polarization. Therefore, if the chemical potential is set such that the
Fermi surface is inside the p = 0 gap, then the low energy effective Hamiltonian is
essentially spinless. In this limit, we indicate the lower band species as ψ−, and the
upper band species as ψ+.

We now include the effect of the superconducting s-wave pairing ∆ > 0 which is
induced by the proximity effect. The expressions for the zero momentum gap and
the Fermi momentum gap are

Eg,p=0 = 2
∣∣∣∣B −√∆2 + µ2

∣∣∣∣ , (2.19)

Eg,pF = 2
√

∆2mα2

B
. (2.20)

Here we assume a constant Zeeman energy B > 0, and that the chemical potential is
placed in the spinless regime mentioned above |B| > |µ|. For small ∆ the gap at p =
pF opens and the superconductor enters the topological phase with MBSs appearing.
With increasing ∆, the gap at p = 0 gradually closes. At |B| =

√
∆2 + µ2 the gap

completely closes, and for larger values of ∆ the gap reopens with the superconductor
now in the trivial phase. The criteria for topological superconductivity is thus

|B| >
√

∆2 + µ2. (2.21)

We will now show how the above Hamiltonian maps to the Kitaev chain model in the
topological superconductor phase [14]. For simplicity, we consider the large Zeeman
energy limit |B| � ESO, where the bands are approximately spinless

Hprox =
∑
k

∆
[
ψ†k,↑ψ

†
−k,↓ − ψ

†
k,↓ψ

†
−k,↑ + h.c.

]
. (2.22)

We express this Hamiltonian in terms of the new fields ψ± defined in Eq. 2.18 and
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2.1 Majorana Fermions

find

Hprox = −
∑
k

[
∆p

(
ψ†k,+ψ

†
−k,+ + ψ†k,−ψ

†
−k,−

)
+ ∆sψ

†
k,+ψ

†
−k,− + h.c.

]
, (2.23)

with

∆p = αp∆√
α2p2+B2

, ∆s = 2B∆√
α2p2+B2 . (2.24)

Therefore a p-wave intra-band pairing appears in the Hamiltonian. This analysis
provides a clear route towards a realization of the Kitaev model. In the spinless
limit, the band gap is large, this allows us to consider a single-band model and
ignore the higher band. Using this assumption one obtains the effective low band
Hamiltonian which is equivalent to the Kitaev Hamiltonian (Eq. 2.4)

H =
∑
k

Ψ†k,−
[
p2/2m− µ− |B|

]
Ψk,−

−∆eff
[
ψ†k,−ψ

†
−k,− + h.c.

]
, (2.25)

∆eff = αp∆√
α2p2 +B2 . (2.26)

We should note that as the Zeeman energy grows larger B �
√

∆2 + µ2 the gap
Eg,pF gradually closes, and the cross band s-wave superconducting term ∆s cannot
be ignored anymore. This initially causes a significant overlap of the MFs, increasing
the splitting energy EM, and eventually closes the superconducting gap.

Although this setup successfully realizes the Kitaev chain, there are a few caveats
related to it. First, the model assumes the simultaneous presence of superconductiv-
ity and a high magnetic field. Moreover, it is crucial to tune the chemical potential
to the middle of the gap. This demands a large Zeeman energy to induce a large gap
on the one hand, but on the other hand should not destroy the superconductivity.
This can be achieved by using a material with large g-factor. Finally, it is important
to have a large spin orbit coupling, since the gap at finite momentum is suppressed
by the magnetic field (Eq. 2.26). Suitable candidate materials are InAs and InSb
which have large g-factors and strong spin-orbit coupling.
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2.1.3 Experimental Signatures of Majorana Bound States

Verifying the existence of Majorana fermions in condensed matter systems is an
important topic in recent years, with many theoretical proposals which present dif-
ferent possible experimental signatures of MBSs. Following the scheme presented in
the last section for a practical realization of the Kitaev chain, several experiments
have also been conducted to experimentally realize the MBSs and measure them.

In this section we will focus on the tunneling signatures of the MBSs, both in theory
and in experiments. We will see that although the experimental signatures that
have been measured are promising, there are certain alternative theories that could
explain the observations. Thus further signatures are needed to convincingly argue
the case of the MBS, specifically ones which are easily measurable in the lab. Finding
such signatures has been the aim of this research work, where we have identified a
unique signature that is measurable in the lab (Chapter 3).

We start with the tunneling signature of the MBS [6, 7]. Assuming a wire config-
uration as presented in Subsection 2.1.2, we tunnel couple a single normal lead to
the edge of the wire. At zero bias, when the system is in the trivial phase and the
system possesses no subgap states, the zero temperature conductance from the lead
to the superconductor is zero G (E = 0) = 0.

In the topological phase the conductance behaves differently. In the case of an infi-
nite wire, the two MFs are infinitely separated with zero wavefunction overlap and
splitting energy EM = 0. In this case the MF induces a resonant Andreev reflection
from the lead to the grounded superconductor. This means that an incident elec-
tron from the lead is converted into a backscattered hole with probability of unity,
independent of the coupling strength, resulting in G (E = 0) = 2 e2

h
(Fig. 2.2a). The

width of the conductance peak however, does depend on the coupling strength. In
the case of a finite wire, the two MFs wavefunctions can overlap and a finite split-
ting arises EM > 0. In this case the conductance peak splits into two. The zero
bias conductance is close to zero G (E = 0) ∼ 0. At the splitting energy we have
a maximum of the conductance, which in our model is close to 2 e2

h
, but in general

G (E = ±EM) ≤ 2 e2
h
(Fig. 2.2b).

The resonant Andreev reflection through a MBS is different from the the usual An-
dreev reflection through an Andreev bound state (ABS), in which the conductance
depends on the strength of the coupling. In Section 3.3 we will present an analytic
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Figure 2.2: Zero temperature conductance through a single MBS in units of e2
h
as a

function of bias in units of width Γ. (a) Infinite wire configuration with zero MBS
overlap and zero energy splitting EM = 0. The conductance peak is a Lorentzian
of height 2 e2

h
and width Γ (b) Finite wire with MBS wavefunction overlap and

splitting energy EM = Γ. The zero energy conductance is close to zero, while the
conductance at the splitting energy is close to 2 e2

h
in our model.

model of the conductance through a MBS and an Andreev bound state and see a
concrete example of this.

We now turn our attention to recent experiments in the field, aimed at experimen-
tally measuring the MF. As mentioned earlier, following the proposal of the semi-
conducting nanowire setup described in the previous section, a series of transport
experiments realizing this setup were conducted [8, 9, 10]. These experiments re-
ported the observation of a zero-bias conductance peak (ZBCP) (Fig. 2.3). With the
ZBCP emerging at a certain critical magnetic field. The ZBCP is robust to further
increases in the magnetic field until a certain field in which it splits into two peaks.
The observation is consistent with the presence of a MBS at finite temperature, see
for example the results our numerical simulation in Fig. 4.2.

While these experiments are promising, several other mechanisms have been pro-
posed in which a ZBCP appears. Some alternatives are an accidental Andreev bound
state at zero bias, the Kondo effect [11] and weak anti-localization [12]. It is there-
fore important to have a physical signature beyond the ZBCP that can distinguish
the MBS from the different scenarios.

In this Thesis, we will present the signature of the MBS in the visibility of the
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Figure 2.3: Conductance G versus bias potential VSD. The estimated electron
temperature in the wire was T = 30 mK. The measurement was performed for
different values of the magnetic field from 0 mT to 100 mT in steps of 2 mT. At
B ∼ 30 mT a zero bias peak appears, and remains robust until B ∼ 70 mT. Figure
adapted from [10].

ZBCP as a function of temperature. In Chapter 3 we will show that the visibility of
a MBS is strictly increasing, with zero visibility at zero temperature, while an ABS
can assume many different behaviors.

2.2 Landauer-Büttiker-Imry Formalism

One of the most important measurements that characterizes a conducting material
is it’s conductance G. Since we are interested in coherent conductors, the frame-
work used to describe the transport through these systems is called the Landauer-
Büttiker-Imry Formalism. In this section we will describe the formalism, and see
how the conductance can be described in terms of the transmission probabilities
through the system. A detailed review of the the subject can be found in Ref. [15].

The standard setup for the theory (Fig. 2.4) assumes two contacts with an infinite
number of conducting modes, connected to a conductor that has only a few conduct-
ing modes. The contacts are assumed to be reflectionless, this means that electrons
enter from the conductor to the contacts with no reflection. The leads themselves

20
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Figure 2.4: Typical setup for measuring the conductance G of a mesoscopic device.
Two contacts with bias ∆V are connected to a conductor via leads. Tn (E) denotes
the transmission coefficient through the conductor for electrons in channel n at
energy E.

are assumed to be ideal, without scattering.

We start with the case of a 2 probe device at zero temperature and low voltages. The
conductance can be expressed in terms of the single electron transmission probabili-
ties Tn, where Tn is the probability of an electron in mode n to transmit through the
conductor. The result is known as the Landauer formula, in the spin independent
case it is reduced to

G = 2e2

h

∑
n

Tn (EF) , (2.27)

where the prefactor 2 in Eq. 2.27 accounts for the spin degrees of freedom, and the
transmission probabilities are calculated at the Fermi energy. To explicitly account
for the spins, in the event that the two spin channels have different transmission
probabilities, we will sum them as different channels

G = e2

h

∑
n,σ

Tn,σ (EF) , (2.28)

where σ ∈ {↑, ↓}.
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The extension of this formula to the multi-terminal case is straightforward

Gpq = e2

h
T̄p←q (EF) , (2.29)

T̄p←q (EF) =
∑
m∈p

∑
n∈q
Tm←n (EF) , (2.30)

where the transmission probability Tm←n is equal to the probability of an electron
to transmit from mode n in lead p to mode m in lead q. T̄p←q represents the total
transmission from terminal q to terminal p. Here the spins are considered to be
different modes of each lead.

2.2.1 Finite Temperature

Our expression for the Landauer-Büttiker-Imry formula (Eq.2.29) was simplified by
the assumption of zero temperature. At zero temperature the current is carried by
a single channel around the Fermi energy. In general, transport takes place through
multiple channels in the range

µ1 + kBT > E > µ2 − kBT, (2.31)

where each channel can have a different transmission T̄ .

Assuming linear response, and assuming that the transmission function T̄ is ap-
proximately constant over the energy range where transport occurs, we can write

I = G (E, T ) µ1 − µ2

e
, (2.32)

where the conductance is given by

G (E, T ) = e2

h

ˆ
T̄ (E)

(
−∂f0

∂ε

)
ε=E−EF

dE, (2.33)

∂f0

∂ε
= − d

dε

(
1

exp (ε/kBT) + 1

)

= 1
4kBT

sech2
(

ε

2kBT

)
. (2.34)
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We can also formally rewrite this formula in a form that will be useful later

G (E, T ) =
ˆ
G (E + EF, T = 0)

(
−∂f0

∂E

)
dE, (2.35)

G (E, T = 0) = e2

h
T̄ (E) . (2.36)

Next chapter we will see how to compute the transmission probabilities of a general
conductor using the Green’s functions formalism.

2.3 Green’s Function and the Scattering Matrix

The Green’s function is a mathematical tool used to solve differential equations [15].
This method is widely used in physics in general and specifically in condensed matter
physics. In this chapter we will use this tool in order to calculate the transmission
coefficients through a coherent conductor. The Green’s function of a conductor gives
us the response at any point of the conductor due to an excitation at any other point.

We start with a definition of the scattering matrix, and show how the transmission
function can be expressed with elements of the S-matrix. We then define the Green’s
function, and show how it is related to the scattering matrix.

2.3.1 Scattering Matrix and the Transmission function

In Section 2.2 we have seen how the current can be expressed in terms of the trans-
mission function (Eq. 2.27). In this section we will define the S-matrix, and show
the relationship between it and the transmission function for coherent conductors.
A coherent conductor is defined here as a conductor who’s size is smaller than the
phase relaxation length.

The S-matrix relates the outgoing current amplitudes to the incoming current am-
plitudes at the different leads. As an example, if there are two leads, each one with
one propagating mode, we can write the S-matrix as follows b1

b2

 =
 s11 s12

s21 s22

 a1

a2

 , (2.37)
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where the outgoing current amplitudes are denoted by b, and the incoming current
amplitudes are denoted by a. Generally, if there are MT number of propagating
modes in all the leads, then the scattering matrix will be of size MT ×MT. The
scattering matrix can be calculated for specific structures through the use of the
Green’s function. In the next section we will see how the two are related.

The transmission probability Tnm is obtained by taking the squared magnitude of
the corresponding S-matrix element

Tm←n = |sm←n|2 . (2.38)

In the multi-terminal multi-channel case we are interested in the transmission func-
tion T̄pq (Eq. 2.29). This quantity is obtained by use of Eq. 2.30.

One important property of the S-matrix is that it must be unitary. This is a
direct consequence of the definition of the S-matrix as connecting current amplitudes
between modes, combined with current conservation. This can be written in terms
of the S-matrix itself

S†S = I = SS†, (2.39)

and in terms of the S-matrix elements

MT∑
m=1
|smn|2 = 1 =

MT∑
n=1
|smn|2 . (2.40)

2.3.2 Single-particle Green’s function and the Scattering matrix

In quantum mechanics, one is interested in solving the time-independent Schrödinger
equation

[E −H]ψ (r) = 0, (2.41)

where H is the Hamiltonian describing the system. We define the Green’s function
as the response of the system to a point like excitation as defined by the following
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differential equation

[E −H]G (r, r′, E) = δ (r− r′) , (2.42)

[E −H]G (E) = I. (2.43)

If E is not an eigenvalue of H, then the formal solution for this equation is given by

G (E) = [E −H]−1 , (2.44)

G (r, r′, E) = 〈r|G (E) |r′〉 . (2.45)

However, the inverse of a differential operator is not uniquely specified until we spec-
ify the boundary conditions. As a simple example, we consider a one-dimensional
wire with a constant potential. Solving Eq. 2.42 gives rise to two solutions. One
solution gives rise to outgoing waves originating at r = r′, this solution is referred
to as the retarded Green’s function (GR). The other solution gives rise to incoming
waves that originate in infinity and disappear at the point of excitation, this solution
is referred to as the advanced Green’s function (GA). Both these solutions satisfy
the same equation, but they correspond to different boundary conditions.

One common way to include the boundary conditions inside the equation itself is
by adding a small imaginary term to the energy

[E ± iη −H]GR/A (E) = I. (2.46)

The definition of the retarded and advanced Green’s function operators are now
given by

GR (E) = lim
η→0+

[E + iη −H]−1 , (2.47)

GA (E) = lim
η→0+

[E − iη −H]−1 . (2.48)

Notice that the retarded (advanced) Green’s function is analytic in the upper (lower)
half of the complex plane. This definition holds for all energies. In the following
sections only the retarded Green’s function GR will be used. To simplify the notation
we will drop the subscript R, so that G stands for the retarded Green’s function.
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Using the Green’s function, we can calculate the density of states (DOS), and the
local tunneling density of states (LDOS) of a system

N (E) = − 1
π
Im [Tr [G (r, r′, E)]] , (2.49)

ρ (r, E) = − 1
π
Im [G (r, r, E)] . (2.50)

We now turn our attention to the actual calculation of the Green’s function. Calcu-
lating the Green’s function for an arbitrary continuous Hamiltonian of a conductor
can be an extremely difficult task. To this end, a tight binding approximation is
used to approximate the continuous Hamiltonian with a discrete lattice Hamiltonian.
Using a finite discrete Hamiltonian to model the conductor, allows us to compute
the Green’s function using Eq. 2.47 by a simple matrix inversion. We will further
discuss the tight binding model in Section 2.4.

Computing the Green’s function of a conductor connected to semi-infinite leads
is a more difficult task. While we can model any finite sized conductor using a
tight binding model, trying the same method with a semi-infinite lead is impossible
because the resulting matrix is infinite dimensional. The method we will use in this
case is to compute the Green’s function in several steps.

We can partition the overall Green’s function into sub-matrices separating the leads
from the conductor as follows (Eq. 2.43)

 (E + iη) I −Hp Vp

V †p (E + iη) I −HC

 Gp GpC

GCp GC

 ≡ 1, (2.51)

where GC is the conductors Green’s function, Gp is Green’s function for lead p, and
Vp is the coupling potential between the conductor and lead p. Hp is the Hamiltonian
for the isolated lead p and HC is the Hamiltonian for the isolated conductor. The
coupling potential Vp connects modes in lead p with sites on the conductor.

From Eq. 2.51 we can find an expression for GC

GC =
[
(E + iη) I −HC −W †

p

gp
ν0
Wp

]−1
, (2.52)

Wp = √
ν0Vp, (2.53)
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where Wp is the coupling matrix and gp is the retarded Green’s function for the
isolated lead p

gp = [(E + iη) I −Hp]−1 . (2.54)

The lead’s Green’s function gp can often be calculated analytically. In this Thesis
we will use normal leads and superconducting leads

gN = −iπν0I, (2.55)

gSC = −iπν0


ε 0 0 ∆
0 ε −∆ 0
0 −∆? ε 0

∆? 0 0 ε





−1√
ε2−|∆|2

ε < − |∆|
−i√
|∆|2−ε2

|ε| < |∆|
1√

ε2−|∆|2
|∆| < ε

, (2.56)

where the lead’s Green’s function are 4×4 matrices divided into particle-hole sectors,
and further subdivided into spin up-spin down sectors.

The term W †
p
gp
ν0
Wp is called the retarded self energy term ΣR

p for lead p. The self
energy term arises from the interaction between the conductor and the leads, and it
modifies the conductor Hamiltonian. When multiple independent leads are attached
to the conductor, the self energies are added together

GC =
[
(E + iη) I −HC −

∑
p

ΣR
p

]−1

, (2.57)

ΣR
p = W †

p

gp
ν0
Wp. (2.58)

Finally, we will use a known result to write the S-matrix in terms of the conductors
Green’s function GC. This result is called the Weidenmüller formula

S = I − 2πiWGCW
†. (2.59)

TheWeidenmüller formula together with the result for the Green’s function (Eq.2.52)
will allow us to numerically calculate the transmission function for an arbitrary fi-
nite conductor connected to semi-infinite leads. We will further elaborate on the
tight binding method in Section 2.4.
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2.4 Tight Binding Model and Simulation (the
method of finite differences)

For the purpose of evaluating the Green’s function of an arbitrarily shaped conduc-
tor, it would be useful to have a method that allows us to numerically evaluate it in
a general fashion. In this chapter we will develop the method of finite differences,
that aims to fulfill such requirements.

The method of finite differences is a technique to discretize the Hamiltonian of a
continuous system. This is obtained by discretizing the Hamiltonian on a lattice.
The lattice spacing is chosen such that it is smaller than the relevant physical pa-
rameters of the system, e.g. the Fermi wavelength. The lattice sites themselves
do not necessarily correspond to an atom, but describe a region of the system in a
coarse graining sense.

As we will later on see, the discretized Hamiltonians obtained using this method
are similar to the tight-binding Hamiltonians widely used to model electronic trans-
fer in molecules and condensed matter. Because of this similarity, the discretized
Hamiltonians are commonly referred to as tight binding Hamiltonians and models.
Although a misnomer, we will continue using this notation throughout the Thesis.

The method of tight binding is widely used today, and is a very useful tool in
the calculation of physical quantities such as the transmission coefficients of the
Landauer-Büttiker-Imry formulas. In this Thesis we will use this method in order
to compute the visibility of a 1D semiconducting wire connected to an Aharonov-
Bohm (AB) flux ring.

2.4.1 Semiconducting Nanowire Hamiltonian

We start with an extended version of the continuous 1D semiconducting wire Hamil-
tonian (Eq. 2.12), which includes here a Zeeman field in a general direction, and an
additional electromagnetic vector potential A. The Hamiltonian describes a spinful
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electron in a 1D system moving along the y direction

H =
ˆ
dyΨ† (y)HΨ (y) , (2.60)

H = 1
2m?

(−i~∇+ eA)2 τz − i~α∂yσzτz + B · σ + ∆ (y) τx − µ (y) τz,(2.61)

Ψ† =
(
ψ†↑, ψ

†
↓, ψ↓,−ψ↑

)
, (2.62)

where m? and −e are the effective mass and charge of the electron, ψ↑,(↓) (y) annihi-
lates spin up (down) electrons at position y, α gives the Rashba spin-orbit coupling,
B gives the Zeeman energy, ∆ the induced superconductivity and µ the chemical
potential. The Pauli matrices σ, τ operate in the spin and particle-hole space, re-
spectively. In a strictly 1D system the vector potential term in the kinetic energy
can be ignored.

The scheme for discretizing the Hamiltonian is as follows. First, a lattice is intro-
duced with a lattice parameter a, this defines the points in the lattice y = na where
n = 1, . . . , N . Each lattice creation operator is related to the continuous case by

Ψσ (y = na) −→ 1√
a
cnσ. (2.63)

The method of finite differences is used to approximate the derivative operators

∂xf (x) −→ 1
2a [f (x+ a)− f (x− a)] , (2.64)

∂xxf (x) −→ 1
a2 [f (x+ a)− 2f (x) + f (x− a)] . (2.65)

To finish the procedure, all integrals are converted into sums

ˆ
dy −→ a

∑
y = na

n = 1, . . . , N

. (2.66)

One can show that the Hamiltonian in Eq. 2.61 can be mapped onto a nearest
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neighbor tight-binding Hamiltonian

H =
∑
nss′

c†nsεnss′cns′ +
[
c†nstnss′cn+1,s′ + h.c.

]
+
∑
n

[
∆nc

†
n↑cn↓ + h.c.

]
, (2.67)

εnss′ = (2t− µn) δss′ + B · σ, (2.68)

tnss′ = −tδss′ − iuσzss′ , (2.69)

where t ≡ ~2

2ma2 , u ≡ α~
2a . The quantity tnss′ gives the hopping amplitude between

the sites of the wire, with the −tδss′ term originating from the kinetic term, and
−iuσzss′ originating from the Rashba spin-orbit coupling term. The Rashba term
adds an additional complex phase when hopping between sites.

2.4.2 Aharonov-Bohm Ring Hamiltonian

In an Aharonov-Bohm (AB) ring setup we have a 2D ring penetrated by a magnetic
flux Φ. When describing a ring with a tight binding model, it is possible to use
the previous formulation for a 1D model, but with an additional hopping term that
connects the first site to the last site

HT = t0,ss′c†N,sc1,s′ + h.c., (2.70)

where t0,ss′ is given by Eq. 2.69.

The vector potential A now plays an important role in the Hamiltonian. The vector
potential A along the wire is related to the AB flux Φ by

Φ =
˛

dl A (l) , (2.71)

where the integral is taken around the ring of the circumference L. If we choose a
gauge in which the vector potential is uniform around the ring, then

A (l) = Φ
L
. (2.72)

Withing the chosen gauge, the hopping amplitude is modified using the Peierls
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substitution [16]

tnss′ −→ tnss′ exp
(
i e~

ˆ −→
A · d

−→
l

)

= tnss′ exp
(
i
2π
N

Φ
Φ0

)
, (2.73)

where Φ0 = h/e

Notice that when considering 1D systems, we can always chose a gauge in which
−→
A is perpendicular to the wire, hence the magnetic field is gauged out. But when
considering an AB flux ring, the geometry is no longer strictly 1D and we cannot
ignore this term.

An alternative gauge exists, in which only one hopping term acquires a phase while
all other terms remain unchanged

cn −→ cne−i(n−
1/2) 2π

N
Φ
Φ0 , (2.74)

t′ −→ t′ exp
(

2πi Φ
Φ0

)
. (2.75)

This was the gauge of choice in this Thesis.

2.4.3 Proximity Coupling to a SC

When including the effects of superconductivity in a conductor Hamiltonian, the
simplest method is to directly insert a superconducting pairing term into the tight
binding Hamiltonian of the system H ∼ ∆c†n↑cn↓. This approach is useful when
performing analytic calculations, as we will see later on in the thesis.

In our numerical simulations we will utilize a slightly different approach that is more
precise. The system will be taken as a normal system that is tunnel coupled to SC
leads [17]. In this case the pairing potential enters through the self energy term
of the Green’s function. In order to correctly model the effect of the proximity
coupling of the SC we connect a different SC lead to each point. This gives each site
a superconducting pairing term, without producing further unwanted interactions
between sites. This also adds a small correction factor to the eigenenergies of the
system. The self energy is obtained using Eq. 2.56, Eq. 2.58. The following self
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energy term is created per site

ΣSC = −πνsc |ts|2
εI −∆σyτy√
|∆|2 − ε2

 , (2.76)

with each site represented by a 4× 4 matrix divided into particle-hole sectors, and
further subdivided into spin up-spin down sectors. The Pauli matrices σ, τ operate
in the spin and particle-hole space, respectively. Furthermore, νsc corresponds to the
density of states of the bulk superconductor near the Fermi surface when ∆ = 0, and
ts is the hopping parameter between the wire and each SC lead. This term contains
a correction to the energy levels of the system, and an additional SC pairing term
which is energy dependent.

2.4.4 Modeling Experimental Systems

We wish to model a real experimental system using the above tight binding Hamil-
tonians. To do so we must perform a number of steps described here.

2.4.4.1 Tight Binding Parameters

We first relate the tight-binding parameters t, u, N to the physical parameters used
in experiments. The spin-orbit coupling energy and the spin-orbit length are given
respectively by

ESO = u2

t
, (2.77)

lSO = a
t

u
, (2.78)

where the lattice spacing is given by a = L
N
, L is the length of the wire and N is the

number of sites. Given ESO, L and either m? or lSO we can compute all the tight
binding parameters.

In order for the tight binding model to accurately describe its continuous counter-
part, we require the bandwidth 4t to be larger than all other energy scales in the
system. We first choose 4t � ESO,∆. After choosing t, all other parameters a, N ,
u can be computed using the above equations.
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As to the SC ∆ind term, we have two options. If we directly inserted a ∆ term into
the conductors Hamiltonian, then ∆ = ∆ind. If we assumed the system is normal
and is proximity coupled to SC leads, then assuming a hopping parameter ts, and
assuming small energies ε� ∆ind we have (Eq. 2.76)

πνsc |ts|2 ≈ |∆ind| , (2.79)

where ∆ind is the induced SC pair potential.

2.4.4.2 Symmetrizing the Hamiltonian

The second step is to symmetrize the tight binding Hamiltonians in particle hole
space by using the anticommutation relations and discarding the constant terms

c†nscms′ = 1
2
(
c†nscms′ − cms′c†ns

)
+ const. (2.80)

2.4.4.3 Writing the Hamiltonian in Matrix Form and Solving

The third step we write the Hamiltonians in matrix form using the Bogoliubov-De
Gennes (BdG) formalism that includes particle-hole and spin up-down degrees of
freedom

H =
4N∑

n,m=1
Ψ†mHBdG

mn Ψn, (2.81)

Ψ† =
(
c†1↑, c†1↓, . . . c†N↑, c†N↓, c1↑, c1↓, . . . cN↑, cN↓

)
. (2.82)

The coupling matrix W from the Scattering matrix formula (Eq. 2.59) is a 4L× 4N
matrix, where L is the number of leads and each lead hosts 4 propagating channels:
electron-hole, up-down. Each row represents a different channel in the lead, and each
column represents a different creation operator on the different sites. Generally the
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coupling Hamiltonian and coupling matrix are written as

HT =
∑
n,k,s

c†nstnksaks + h.c.

=
∑
n,s

ˆ
dE ν (E) c†nstns (E) as (E) + h.c.

=
ˆ
dEΨ†W (E)φ (E) , (2.83)

φ† (E) =
(
a†1↑ (E) , a†1↓ (E) , . . . a†L↑ (E) , a†L↓ (E) ,

a1↑ (E) , a1↓ (E) , . . . aL↑ (E) , aL↓ (E)
)
, (2.84)

Wns (E) =
√
ν (E)tns (E) , (2.85)

where ν (E) is the density of states. The φ (E) matrix contains 4 channels for
each lead at energy E, e.g. the terms

√
ν (E)

(
a†1↑ a†1↓ a1↑ a1↓

)
represent the

electron-hole up-down channels of the first lead at energy E.

Finally, we use theH andW (E) matrices to obtain the scattering matrix S (Eq.2.59)
and compute the conductance and LDOS.
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3 Analytic Calculations

In this chapter we will explore the theory behind the experimental setup proposed in
Chapter 4. In the experiment we propose to measure the temperature dependence of
the visibility v (T ) of an ABS and MBS. The visibility v (T ) at finite temperatures
averages on processes of conductance including at zero energy and finite energy.
Thus by measuring v (T ) we can gain an insight towards the zero energy conductance
of a state, even at finite temperatures. In our calculations we concentrate on the
effects of thermal smearing. We do not include de-phasing effects due to the increase
of the thermal noise of the environment with temperature, we assume these effects
are small.

We will demonstrate that the visibility of a MBS is a strictly increasing function
of temperature, which tends to zero at zero temperature. While the visibility of an
ABS can assume increasing, decreasing, constant or non-monotonic behavior. To
prove this, we first start with an analytic expression for the temperature dependence
of the zero bias conductance of a general Lorentzian conductance curve, which is
known as a Breit-Wigner resonance. We use this expression to explore the visibility
of such a state using a simple two valued model which assumes the maximal and
minimal conductance toggles between two possible values.

We then write two simple analytic models, one for an isolated MBS and one for
a zero bias ABS. Both models give a Breit-Wigner resonance. This will allow us
to use the analytic expressions for conductance and visibility found for a general
Breit-Wigner resonance, to prove the results for the ABS and MBS.

The results of this chapter will by used to interpret the results of the numerical
simulation employed in Chapter 4.
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3.1 Temperature Dependence of the Conductance

We start the analytic calculations by first developing an analytic formula for the
temperature dependence of a conducting state. We will assume a general Breit-
Wigner resonance, and see how it is affected by temperature. For this derivation,
we use the temperature dependent Landauer-Büttiker-Imry formula (Eq. 2.35)

G (E, T ) =
ˆ +∞

−∞
G (ε+ E, T = 0)

(
−∂f0

∂ε

)
dε, (3.1)

G(E, T = 0) = G0
Γ2

E2 + Γ2 . (3.2)

This type of integral has a general solution [18]. If the integral can be expressed in
the form

g (T ) =
ˆ +∞

−∞
g (ε)

(
−∂f0

∂ε

)
dε, (3.3)

g (ε) = c+
∑
i

ri
ε− zi

, (3.4)

then g (T ) equals

g (T ) = c−
∑
i

risi
2πikT ψ

(1)
(1

2 + sizi
2πikT

)
, (3.5)

with si = sign (Im (zi)) and ψ(m) the polygamma function of order m.

The Lorentzian function (Eq. 3.2) can be expressed in the required form

G(ε+ E, T = 0) = G0

2

(
iΓ

ε− (−E − iΓ) −
iΓ

ε− (−E + iΓ)

)
. (3.6)

Which gives the result

G(E, T ) = G0

2
Γ

2πkT

(
ψ(1)

(
1
2 + E + iΓ

2πikT

)
+ ψ(1)

(
1
2 + −E + iΓ

2πikT

))
. (3.7)

Looking at the zero bias conductance and defining x = Γ
2πkT , the equation assumes
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3.1 Temperature Dependence of the Conductance
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Figure 3.1: Plot of the zero bias conductance G(E = 0, x = Γ
2πkT ) (Eq. 3.8) of a

Breit-Wigner resonance with width Γ and zero temperature conductance G0.

a simpler form

G(E = 0, x) = G0 xψ
(1)
(1

2 + x
)
. (3.8)

G(E = 0, x) is a strictly increasing function of x (Fig. 3.1). Expanding Eq. 3.8 for
high temperatures Γ� kT → x� 1 we find

G(E = 0, x→ 0) = G0

π
4

Γ
kT
− 7ζ (3)

2π2

(
Γ
kT

)2
+O

[
x3
]
, (3.9)

where ζ (z) is the Riemann Zeta function.

In the low temperature limit Γ� kT → x� 1 we have

G(E = 0, x→∞) = G0

1− 1
3π

2
(
kT

Γ

)2
+O

[ 1
x3

]
. (3.10)

We can deduce from the monotonicity in x some straightforward statements. The
first is that given constant zero temperature conductance (G0 = const) and constant
temperature (T = const), greater width results in larger conductance

Γ1 > Γ2 ⇒ G (E = 0, G0,Γ1, T ) > G (E = 0, G0,Γ2, T ) . (3.11)

The second is that given constant zero temperature conductance (G0 = const) and
constant width (Γ = const), greater temperature results in smaller conductance

T1 > T2 ⇒ G (E = 0, G0,Γ, T1) < G (E = 0, G0,Γ, T2) . (3.12)
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From the linear dependence in the zero temperature conductance G(E = 0, x) ∝
G0, we deduce that given constant temperature (T = const) and constant width
(Γ = const), greater zero temperature conductance results in larger conductance at
all temperatures

G0,1 > G0,2 ⇒ G (E = 0, G0,1,Γ, T ) > G (E = 0, G0,2,Γ, T ) . (3.13)

Finally, combining the linear dependence in the zero temperature conductance and
the monotonicity in x, we deduce that given constant temperature (T = const),
greater width and greater or equal zero temperature conductance results in larger
conductance at all temperatures

Γ1 > Γ2, G0,1 ≥ G0,2 ⇒ G (E = 0, G0,1,Γ1, T ) > G (E = 0, G0,2,Γ2, T ) . (3.14)

3.2 Temperature Dependence of the Visibility

In the AB experiment which we propose, we are interested in measuring the visibility
of different conductance peaks as a function of temperature, denoted v(T ). In this
section we will describe the different possible behaviors of v(T ).

In order to define the visibility, we assume that there is a physical parameter Φ
that can be changed and will induce a periodic oscillation in the conductance as a
function of that parameter.

G(Φ) = G(L+ Φ), (3.15)

where L is the period of oscillation. In the case of an AB experiment, this parameter
is the magnetic flux passing through the ring section of the conductor. The visibility
is defined by the maximal and minimal conductance Gmax, Gmin measured in one
oscillation period. In the previous section we have seen that the conductance changes
as a function of temperature, this in turn causes a change in the visibility as a
function of temperature

v(T ) = Gmax(T )−Gmin(T )
Gmax(T ) +Gmin(T ) . (3.16)

The visibility here is measured at E = 0, but can generally be measured at arbitrary
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3.2 Temperature Dependence of the Visibility

energy.

In order to better understand v(T ), we will explore the behavior of the visibility of
a Breit-Wigner resonance. This will be useful later on when discussing the visibility
of the MBS and ABS, because in the idealized case their conductance assumes a
Breit-Wigner form.

3.2.1 Visibility of a Breit-Wigner Resonance

From Section 3.1, we know how a Breit-Wigner resonance is affected by temperature.
For simplicity, we will assume that Φ keeps the shape of the Lorentzian intact, only
changing Γ and G0.

G(T,Φ) = G0(Φ) Γ(Φ)
2πkT ψ

(1)
(

1
2 + Γ(Φ)

2πkT

)
. (3.17)

In general, Γ(Φ) and G0 (Φ) can behave in any periodic fashion. For every temper-
ature, we have Φmin (T ), Φmax (T ) that determine Gmax(T ), Gmin(T ). We empha-
size that even though Γ(Φ), G0 (Φ) do not depend on temperature, Φmin (T ) and
Φmax (T ) generally do depend on temperature and are determined by the exact na-
ture of Γ(Φ), G0 (Φ). For simplicity, we will explore the behavior of v(T ) assuming
Γ(Φ) and G0 (Φ) only toggle between two values

(Γ(Φ), G0 (Φ)) ∈ {(Γ1, G0,1) , (Γ2, G0,2)} . (3.18)

Any visibility function in which Gmax, Gmin do not depend on temperature is a
subset of this model. We will see that this is the case for a MBS, which falls
under Subsection 3.2.3. For an ABS, Gmax(T ), Gmin(T ) can assume a much more
complicated behavior. But for the sake of demonstrating that an ABS can assume
any different visibility behavior, the two value model will suffice. It is possible to
engineer an ABS that falls into any of the following categories.
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Figure 3.2: Examples of the different types of visibility behaviors for a simple
two value (Γ1, G0,1), (Γ2, G0,2) model. (a) Constant visibility Γ1 = 3, G0,1 = 1,
Γ2 = 1, G0,2 = 1. (b) Increasing visibility Γ1 = 2, G0,1 = 2, Γ2 = 1, G0,2 = 1.
(c) Decreasing visibility Γ1 = 1, G0,1 = 3, Γ2 = 4, G0,2 = 1. (d) Non-monotonic
visibility Γ1 = 1, G0,1 = 3, Γ2 = 2, G0,2 = 1.
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3.2 Temperature Dependence of the Visibility

3.2.2 Constant Visibility Γ1 = Γ2, G0,1 ≥ G0,2

From Eq. 3.13 we deduce that Gmax = G (Γ1, G0,1), Gmin = G (Γ2, G0,2) ,

v(T ) = G0,1 −G0,2

G0,1 +G0,2
= const. (3.19)

The visibility is constant (Fig. 3.2a).

3.2.3 Increasing Visibility Γ1 > Γ2, G0,1 ≥ G0,2

From Eq. 3.14 we deduce that Gmax = G (Γ1, G0,1), Gmin = G (Γ2, G0,2)

v (T ) =
Γ1G0,1

(
ψ(1)

(
Γ1

2πkT + 1
2

))
− Γ2G0,2

(
ψ(1)

(
Γ2

2πkT + 1
2

))
Γ1G0,1

(
ψ(1)

(
Γ1

2πkT + 1
2

))
+ Γ2G0,2

(
ψ(1)

(
Γ2

2πkT + 1
2

)) . (3.20)

In the low temperature limit Γ1,Γ2 � kT :

v (T ) ≈ G0,1 −G0,2

G0,1 +G0,2
+ 2π2

3
G0,1G0,2

(G0,1 +G0,2)2

(
1
Γ2

2
− 1

Γ2
1

)
(kT )2 . (3.21)

In the high temperature limit Γ1,Γ2 � kT :

v (T ) ≈ G0,1Γ1 −G0,2Γ2

G0,1Γ1 +G0,2Γ2
− 28ζ (3)

π3
G0,1Γ1G0,2Γ2 (Γ1 − Γ2)

(G0,1Γ1 +G0,2Γ2)2
1
kT

, (3.22)

where ζ (z) is the Riemann Zeta function. From these limits it is easy to see that

v (T → 0) < v (T →∞) . (3.23)

Overall the visibility is a strictly increasing function of T (Fig. 3.2b).

3.2.4 Decreasing and Non-Monotonic Visibility Γ1 > Γ2,
G0,1 < G0,2

Figuring which points determine Gmax (T ), Gmin (T ) depends on the parameters
of the problem. This determines the visibility, which can be decreasing or non-
monotonic.
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In the low temperature limit, Γ1,Γ2 � kT , the minimal and maximal conductance
Gmin, Gmax are easily determined by using Eq. 3.10

Gmin = G (T,Γ1, G0,1)→ G0,1, (3.24)

Gmax = G (T,Γ2, G0,2)→ G0,2. (3.25)

The visibility in the low temperature limit is given by

v (T ) ≈ G0,2 −G0,1

G0,2 +G0,1
− 2π2

3
G0,1G0,2

(G0,1 +G0,2)2

(
1
Γ2

2
− 1

Γ2
1

)
(kT )2 . (3.26)

In the high temperature limit, Γ1,Γ2 � kT , we use Eq. 3.9 and get an expression
for the conductance

G (T,Γ1, G0,1) ≈ π

4 Γ1G0,1
1
kT

, (3.27)

G (T,Γ2, G0,2) ≈ π

4 Γ2G0,2
1
kT

. (3.28)

The behavior of the visibility function is split into two cases. In the case that
Γ1G0,1 ≤ Γ2G0,2, we have

Gmin = G (T,Γ1, G0,1) , (3.29)

Gmax = G (T,Γ2, G0,2) , (3.30)

with the visibility in the high temperature limit given by

v (T ) ≈ G0,2Γ2 −G0,1Γ1

G0,2Γ2 +G0,1Γ1
+ 28ζ (3)

π3
G0,1Γ1G0,2Γ2 (Γ1 − Γ2)

(G0,1Γ1 +G0,2Γ2)2
1
kT

. (3.31)

It is easy to see that

v (T → 0) > v (T →∞) , (3.32)

and deduce that the visibility is a strictly decreasing function of T (Fig. 3.2c).
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3.3 Simple Analytic Model

In the case that Γ1G0,1 > Γ2G0,2, we have

Gmin = G (T,Γ2, G0,2) , (3.33)

Gmax = G (T,Γ1, G0,1) , (3.34)

with the visibility in the high temperature limit given by

v (T ) ≈ G0,1Γ1 −G0,2Γ2

G0,1Γ1 +G0,2Γ2
− 28ζ (3)

π3
G0,1Γ1G0,2Γ2 (Γ1 − Γ2)

(G0,1Γ1 +G0,2Γ2)2
1
kT

. (3.35)

In this case the visibility is non-monotonic (Fig. 3.2d). InitiallyGmin = G (T,Γ1, G0,1),
Gmax = G (T,Γ2, G0,2) and the visibility decreases. From a certain point the two
points exchange roles Gmin = G (T,Γ2, G0,2), Gmax = G (T,Γ1, G0,1) and the visibil-
ity increases. This case is interesting because it shows an example of non-monotonic
visibility and non constant Φmin (T ), Φmax (T ) for a relatively simple model.

3.3 Simple Analytic Model

The aim of this section is to gain a basic understanding of the theory behind the
experimental setup and the numerical simulations detailed in Chapter 4. In the
simulation we will explore the visibility as a function of temperature for the pro-
posed setup. We will achieve an understanding of the system by deriving analytic
expressions for the temperature dependence of the visibility of a ZBCP in systems
hosting a MBS or an ABS. We will demonstrate that the visibility of a MBS is a
strictly increasing function of temperature, while the visibility of an ABS can assume
increasing, decreasing, constant or non-monotonic behavior.

3.3.1 Conductance of a MBS

Assume a general low-energy model of a normal lead coupled to a MBS [19]. The
most general Hamiltonian describing such a system is

H = HL +HMBS +HT, (3.36)
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where HL is the normal lead Hamiltonian, HMBS is the MBS Hamiltonian and HT

couples between the lead and the MBS. The lead Hamiltonian is given by

HL =
∑
k,s

εkψ
†
ksψks, (3.37)

where ψ†ks, ψks are the creation and annihilation operators of an electron in a lead
mode with momentum k, spin s and energy εk.

The Hamiltonian HMBS is assumed to consists of two spatially separated zero energy
MBS, and a superconducting energy gap. The distance between the MBS needs to
be large enough so that there is no overlap between the two. An overlap will cause an
unwanted splitting of energies from zero to a finite value. Given these assumptions
and the restriction to low energies, we discard any excitations above the gap, leaving
only the two spatially separated zero energy MBS γ1,γ2. The Hamiltonian is reduced
to

HMBS = 0. (3.38)

By assumption, the coupling Hamiltonian connects the states in the lead to one of
the MBS, which we will generally denote as γ. The coupling Hamiltonian is given
by

HT =
∑
k,s

(
(its)γ†ψk,s + h.c.

)
= iγ

∑
k,s

(tsψk,s + h.c.) . (3.39)

We now write the scattering matrix of the system. We are interested only in the
low energy dynamics that occur below the superconducting gap, in this case only
reflection processes are allowed [20]. This allows us to write only the S-matrix of
the reflection into the normal lead, and infer from it the observables of interest. The
scattering matrix is given by (Eq. 2.59)

S =
 ree reh

rhe rhh

 = I − 2πiW †
(
E · I +HMBS + iπWW †

)−1
W, (3.40)

with W = i
√
ν0
(
t↑, t↓, t

∗
↑, t
∗
↓

)
, and ν0 being the density of states in the normal lead.
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This gives

reess′ = δss′ + 2πν0t
∗
sts′

iE − Γ , (3.41)

rhess′ = 2πν0tsts′

iE − Γ , (3.42)

Γ = 2πν0
(
|t↑|2 + |t↓|2

)
. (3.43)

By applying the particle hole symmetry operator Ξ = τx ⊗ I2×2 ·K (τ operates on
the particle hole space, I2×2 on spin space, K is the complex conjugation operator)
on the scattering matrix we see that rhh (E) = [ree (−E)]∗, reh (E) =

[
rhe (−E)

]∗
.

Using this symmetry we can write the conductance as [21]

G (E) = 2e2

h
Tr
[
I − ree (ree)† + rhe

(
rhe
)†]

, (3.44)

GMBS (E) = 2e2

h

Γ2

E2 + Γ2 . (3.45)

From this simple expression we see that GMBS (E = 0) always equals 2e2
h
. This is a

general attribute of conductance through a MBS in an infinite system. The width
is 2Γ and depends on the details of the problem.

3.3.2 Visibility of a MBS

We now add the effect of an Aharonov-Bohm ring (Subsection 2.4.2) between the
lead and the MBS. For simplicity, we only include the leading order Φ

Φ0
effect of

a particle passing once through the upper loop or once through the lower loop.
Higher order N Φ

Φ0
(N ≥ 2) effects that include further windings around the loop

are ignored. We also assume that thermal smearing and de-phasing along the ring
arm are negligible. This gives a simple modification of the original conductance
expressions (Eq. 3.43, Eq. 3.45)

t↑ → t↑1 + t↑2e2πi Φ
Φ0 , (3.46)

t↓ → t↓1 + t↓2e2πi Φ
Φ0 , (3.47)

Γ = 2πν0

(∣∣∣∣t↑1 + t↑2e2πi Φ
Φ0

∣∣∣∣2 +
∣∣∣∣t↓1 + t↓2e2πi Φ

Φ0

∣∣∣∣2
)
. (3.48)
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Figure 3.3: Example of the MBS visibility function, which is a monotonically
increasing function of temperature, that equals zero at zero temperature. t↑1 = 1,
t↑2 = 2, t↓1 = 1, t↓2 = 1.

The zero temperature conductance of a MBS is a Lorentzian curve. Changing the
magnetic flux keeps the zero bias conductance G0 constant, while changing the width
of the curve. We expect that if the AB ring has any effect on the system, the width
of the conductance will change with Φ, giving a maximal and minimal width Γmax,
Γmin.

In Section 3.2 we have analyzed the temperature dependence of the visibility of
such a state. The MBS falls into the category described in Subsection 3.2.3. This
means that the visibility of the MBS in our setup is a strictly increasing function of
temperature

vMBS (T ) =
Γmaxψ

1
(

Γmax
2πkT + 1

2

)
− Γminψ

1
(

Γmin
2πkT + 1

2

)
Γmaxψ1

(
Γmax
2πkT + 1

2

)
+ Γminψ1

(
Γmin
2πkT + 1

2

) . (3.49)

Furthermore, because Gmax = Gmin then v (T → 0) = 0 (Fig. 3.3).

In the high temperature limit Γmax,Γmin � kT ,

vMBS (T ) ≈ Γmax − Γmin

Γmax + Γmin
− 28ζ (3)

π3
ΓmaxΓmin (Γmax − Γmin)

(Γmax + Γmin)2
1
kT

. (3.50)

In the low temperature limit Γmax,Γmin � kT ,

vMBS (T ) ≈ π2

6

(
1

Γ2
min
− 1

Γ2
max

)
(kT )2 . (3.51)
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The model developed above does not depend on the details of the particular system
hosting the MBS, the AB ring, or the nature of the coupling between the lead and
system. As long as the system hosts two infinitely separated zero bias Majorana
bound states and an energy gap, the results obtained above should hold.

3.3.3 Conductance of a Zero Bias ABS

In this section we consider an accidental zero energy ABS. We want to show that
in this case the visibility can assume many different behaviors, namely: constant,
increasing, decreasing or non-monotonic behavior. In order to show this, we will
confine ourselves to a simple model which conserves spin in the z direction. This
will be enough to obtain a tunable Breit-Wigner resonance and will allow us to
demonstrate the basic behaviors of visibility discussed in Subsection 3.2.1. More
elaborate models can exhibit more complicated behaviors, but this is not needed for
our needs.

The model consists of a single level quantum dot with a Zeeman field, coupled
to a superconducting lead and a normal lead [19]. As in the MBS case, we deal
only with energies smaller than the superconducting gap, allowing us to write only
the S-matrix of the normal lead. The superconducting degrees of freedom will be
integrated out by absorbing the superconducting lead self energy term into the dot
Hamiltonian. We are interested in a low energy theory, thus excitations above the
superconducting gap (Bogoliubov quasiparticles) will be ignored.

These considerations lead to the following effective low energy Hamiltonian

H = HL +HD +HT, (3.52)

HL =
∑
k,s

εkψ
†
ksψks, (3.53)

HD =
∑
ss′

(ε0δss′ +Bσzss′) d†sds′ +
(
∆̄d†↑d

†
↓ + h.c.

)
, (3.54)

HT =
∑
ks

wsψ
†
ksds + h.c., (3.55)

where HL is the lead Hamiltonian, HD is the dot Hamiltonian and HT is the coupling
Hamiltonian. The operators ψ†ks, ψks are the creation and annihilation operators of
an electron in a lead mode with momentum k and spin s, d†s and ds create and
annihilate a spin s electron on the dot, ε0 is the energy level of an isolated quantum
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dot, B is the Zeeman field, and ∆̄ is the effective induced pair potential in the dot.
In order to conserve σz, the Zeeman field B points towards the z axis. We assume
that we can ignore any Coulomb blockade effects i.e. that the charging energy is
much smaller than ∆̄. Diagonalizing HD gives

HD =
(√

ε20 + ∆̄2 −B
)
a†a+

(√
ε20 + ∆̄2 +B

)
b†b+ const, (3.56)

a = sin (α) d†↑ − cos (α) d↓, (3.57)

b = cos (α) d↑ + sin (α) d†↓, (3.58)

cos (2α) = ε0√
ε20 + ∆̄2

. (3.59)

Tuning the Zeeman energy B to the value B =
√
ε20 + ∆̄2 leads to the formation of

an ABS with zero energy.

The dot Hamiltonian, HD, is now composed of two components. A zero energy a†

excitation, and a high energy b† excitation. Projecting our Hamiltonian into the low
energy subspace results in

HD = 0, (3.60)

HT =
∑
ks

a
(
w∗↑ sin (α)ψk↑ + w↓ cos (α)ψ†k↓

)
+ h.c. (3.61)

=
∑
ks

a
(
t̃↑ψk↑ + t̃∗↓ψ

†
k↓

)
+ h.c., (3.62)

with t̃↑ = w∗↑ sin (α), t̃∗↓ = w↓ cos (α). Writing the scattering matrix using Eq. 2.59
and the coupling matrix

W = √ν0

 t̃↑ 0 0 t̃∗↓

0 t̃↓ t̃∗↑ 0

 , (3.63)
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allows us to obtain the reflection matrices

reess′ = iE

iE − Γ̃/2
δss′ +

(Γ̃↑−Γ̃↓)/2

iE − Γ̃/2
σzss′ , (3.64)

rhess′ = 2πν0t̃↑t̃↓

iE − Γ̃/2
σxss′ , (3.65)

Γ̃↑/↓ = 2πν0

∣∣∣t̃↑/↓∣∣∣2 , (3.66)

Γ̃ = Γ̃↓ + Γ̃↑. (3.67)

Using Eq. 3.44 we find the conductance

GABS = G0,ABS

(
Γ̃/2
)2

E2 +
(

Γ̃/2
)2 , (3.68)

which at E = 0 gives

G0,ABS = 4e2

h

Γ̃↓Γ̃↑(
Γ̃/2
)2 ≤

4e2

h
. (3.69)

From this expression we see that the conductance is a Lorentzian curve where both
GABS (E = 0) and the width depend on the details of the model parameters.

3.3.4 Visibility of a Zero Bias ABS

As in Subsection 3.3.2, we add to the conductance (Eq. 3.68) the effect of an AB
ring (Eq. 3.46, Eq. 3.47)

Γ̃ = 2πν0

(∣∣∣∣t̃↑1 + t̃↑2e2πi Φ
Φ0

∣∣∣∣2 +
∣∣∣∣t̃↓1 + t̃↓2e2πi Φ

Φ0

∣∣∣∣2
)

(3.70)

G0,ABS = 4e2

h

2
∣∣∣∣t̃↑1 + t̃↑2e2πi Φ

Φ0

∣∣∣∣2 ∣∣∣∣t̃↓1 + t̃↓2e2πi Φ
Φ0

∣∣∣∣2(∣∣∣∣t̃↑1 + t̃↑2e2πi Φ
Φ0

∣∣∣∣2 +
∣∣∣∣t̃↓1 + t̃↓2e2πi Φ

Φ0

∣∣∣∣2
) (3.71)

As discussed in the beginning of the chapter, we wish to demonstrate that the
visibility of a zero bias ABS can assume many different behaviors. This can be
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Figure 3.4: Examples of the different types of visibility behaviors for a simple
zero bias ABS model where σz is conserved. (a) Constant visibility t̃↑1 = −1,
t̃↑2 = 0.5, t̃↓1 = 1, t̃↓2 = 0.5. (b) Increasing visibility t̃↑1 = 1, t̃↑2 = 0.5, t̃↓1 = 1,
t̃↓2 = 0.2. (c) Decreasing visibility t̃↑1 = 0.05, t̃↑2 = −0.25, t̃↓1 = 0.5, t̃↓2 = 1. (d)
Non-monotonic visibility t̃↑1 = 0.2, t̃↑2 = −0.6, t̃↓1 = 1.25, t̃↓2 = 1.45.

shown by plotting the visibility using different t̃↑1, t̃↑2, t̃↓1, t̃↓2 parameters. The
different cases here are:

a) Constant visibility t̃↑1 = −1, t̃↑2 = 0.5, t̃↓1 = 1, t̃↓2 = 0.5 (Fig. 3.4a).

b) Increasing visibility t̃↑1 = 1, t̃↑2 = 0.5, t̃↓1 = 1, t̃↓2 = 0.2 (Fig. 3.4b).

c) Decreasing visibility t̃↑1 = 0.05, t̃↑2 = −0.25, t̃↓1 = 0.5, t̃↓2 = 1 (Fig. 3.4c).

d) Non-monotonic visibility t̃↑1 = 0.2, t̃↑2 = −0.6, t̃↓1 = 1.25, t̃↓2 = 1.45 (Fig. 3.4d).
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3.4 Conclusion

In this chapter we have proven a necessary but not sufficient condition for experi-
mentally identifying MBSs. In an experiment we should connect an AB ring to our
wire and measure the visibility of the conducting state as a function of temperature.
We have seen that we can classify conductance peaks by their visibility. A MBS
necessarily has visibility that increases with the temperature, while an ABS can as-
sume several different behaviors. This allows us to exclude the existence of a MBS
if the visibility of the conducting state exhibits any behavior that is not strictly
increasing. In case of a MBS, the increasing visibility is a robust character of the
system and should not depend on details such as additional disorder or coupling
strength.
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4 Numerical Calculations and Results

Following the analytical results of Chapter 3, we now have a simple experimental
tool that can help us determine if a system hosts a MBS. The idea is to connect a
wire that has a MBS at its ends to a normal lead that has an AB ring attached to
it, and to measure the zero bias visibility as a function of temperature. In a system
that hosts well separated MBSs, we expect the visibility to be a strictly increasing
function of temperature, which tends to zero at zero temperature. If the visibility
does not exhibit this behavior, we can rule out the possibility of well separated
MBSs.

To strengthen the analytic results, we will now report on a numerical simulation
of an experimentally realizable system, and see that the visibility indeed acts as
expected. We consider a system used in recent experiments which consists of a 1D
nanowire with Rashba spin-orbit coupling and a Zeeman field, proximity coupled to
an s-wave superconductor [8, 9, 10, 22]. In these experiments, emphasis was made
on measuring a ZBCP, which is consistent with the presence of a MBS. While this
indication might seem unique, other mechanisms have been proposed that mimic
this behavior in the absence of a MBS [11, 12, 17, 23, 24, 25]. Thus it is crucial to
posses further indications for the presence of a MBS.

In this chapter we will present a tight binding simulation of a system (Fig. 4.1)
consisting of a 1D nanowire with properties mentioned above. The wire is connected
to a normal lead with an attached AB flux ring. We will show that the wire can
host several different states which exhibit a ZBCP, but not all corresponding to a
topological state with a MBS. We will be able to distinguish between them using
the dependence of the visibility on the temperature.
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Figure 4.1: Experimental setup. A semiconducting 1D nanowire proximity coupled
to an s-wave superconducting lead. The system can be tuned to host Majorana
bound states (MBS) at its ends in the topological phase. In the non-topological
phase the system can be tuned to host a zero energy Andreev bound state (ABS).
A normal lead is connected to the left. The normal lead and part of the wire
form an Aharonov-Bohm flux ring. We measure the visibility as a function of
temperature. In the topological phase, when the system hosts well separated
MBSs, we expect the visibility to be a strictly increasing function of temperature,
which tends to zero at zero temperature. While for a low energy non-topological
Andreev bound state the visibility can assume increasing, decreasing, constant or
non-monotonic behavior.
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4.1 Tight Binding Simulation

We present a tight binding simulation (Section 2.4) of a 1D nanowire with Rashba
spin-orbit coupling and a Zeeman field, proximity coupled to an s-wave supercon-
ductor (Fig. 4.1). The wire is tunnel coupled from the left to a normal lead through
an AB ring. To correctly simulate the effects of proximity coupling, we connect a
SC lead (Subsection 2.4.3) to the mid section of the wire between yb ≤ y ≤ ye.
Since the Fermi wavelength in the superconductor is much shorter than the one in
the semiconductor (that we simulate as a set of discrete sites) we may neglect cross
Andreev reflections between adjacent sites of the tight binding model.

The Hamiltonian for the system is H = Hnw + HL,N + HL,SC + HT,N + HT,SC with
HL,N, HL,SC the Hamiltonians of the normal and SC leads, Hnw the Hamiltonian of
the nanowire

H =
ˆ
dyΨ† (y)HΨ (y) , (4.1)

Hnw = 1
2m?

(−i~∇+ eA (y))2 τz − i~α∂yσzτz + B · σ − µ (y) τz, (4.2)

Ψ† (y) =
(
ψ†↑ (y) , ψ†↓ (y) , ψ↓ (y) ,−ψ↑ (y)

)
, (4.3)

where Ψ† (y) contains electron creation and annihilation operators in the wire, m?

is the effective electron mass, α describes the spin-orbit coupling, B is the Zeeman
field, and µ (y) is the chemical potential.

The Hamiltonian HT,N describes the coupling of the nanowire to the normal lead.
In the tight binding model HT,N will connect modes in the normal lead to two points
in the nanowire n1, n2

HT,N =
∑
k

tNc
†
n1saks + tNc

†
n2saks + h.c., (4.4)

with aks describing the lead modes with momentum k and spin s, and c†n1s, c
†
n2s the

creation operators for sites n1, n2 in the wire.

The Hamiltonian HT,SC describes the coupling of the SC lead to the nanowire. To
model the coupling to the SC correctly, we use the method described in Subsection 2.4.3.
When describing the system using a tight binding model, this method prescribes cou-
pling each point on the nanowire between yb and ye to an infinite superconductor,
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Parameter Symbol Value
Wire Length L 2500 nm

# Sites N 90
TB Lattice parameter a 27.7 nm
TB Hopping Term t 2590µeV

TB SO Term u 360µeV
SC Lead Length LS 1385 nm
SC Lead - Begin yb 554 nm
SC Lead - End ye 1939 nm
Effective Mass m? 0.019me

SO Energy Eso 50µeV
SO Length lso 200 nm

Induced SC Gap ∆0 250µeV
Chemical Potential µ 125µeV
Wire-SC coupling πν0t

2
SC 250µeV

Wire-N coupling πν0t
2
N 98µeV

N Lead Coupling Site n1 1
N Lead Coupling Site n2 10

Table 4.1: Tight binding parameters used in the simulation. The parameters cor-
respond to a recent experiment [8]. The configuration is intended to be realistic
and exhibits appreciable overlap between MBS.

producing a self energy term as described in Eq. 2.76.

The AB ring is formed in part by the normal lead, and by a section of the nanowire.
To include the effect of the AB flux Φ, we choose the gauge described in Subsection 2.4.2.
When writing the tight binding model of the system we will modify one of the hop-
ping terms between two sites on the nanowire that are part of the ring, as described
in Eq. 2.75. This allows us to modify only the Hamiltonian of the nanowire at one
point, leaving the normal lead Hamiltonian and the Hamiltonian of the rest of the
wire unaffected by the flux.

Using the above ingredients, we follow Section 2.4 and build a tight binding rep-
resentation of the wire and leads. This representation allows us to calculate the
conductance, visibility and local tunneling density of states of the system with dif-
ferent parameters supporting ABS, MBS or crossover states between them.

We will now present the configuration of the experimental setup. The parameters
of the systems are taken to correspond to a recent experiment [8] (Table 4.1). The
configuration parameters are taken to mimic a realistic system which exhibits an
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appreciable overlap between the MBS.

Using the tight binding simulation we will show that the system exhibits zero bias
peaks. At finite temperature, the system exhibits zero-energy ABS, zero-energy
MBS, and zero-energy crossover MBS depending on the value of B. For every zero-
energy state we will calculate the visibility of the conductance defined by changing
the AB flux Φ.

Following the analytical results of Chapter 3, the visibility will be plotted as a
function of temperature. For each state we will asses if the visibility can help us
exclude the existence of well separated MBS. We will demonstrate that in some
cases this measure is very useful in classifying the different states even at relatively
high temperatures.

4.2 Wire Configuration

Using the parameters that appear in Table 4.1 we simulate the wire configuration. In
Fig. 4.2a we present the differential conductance d ˆ〈I〉/V in units of e2/h as a function of
the bias voltage V and Zeeman energy B, for temperature T = 30 mK. We apply the
magnetic field B at an angle of 60◦ from the z axis in the yz plane. The dashed white
line signifies the critical Zeeman energy for this system at Bc =

√
µ2 + ∆2

0 = 279µeV
(Eq.2.21) above which the system is in the topological phase in the thermodynamic
limit (infinite wire length, L).

The ZBCPs we will focus on are listed in Table 4.2. Below the critical field Bc,
where the system is in the topologically trivial phase, we observe a ZBCP ABS at
BABS = 93.5µeV. Above Bc we observe a MBS at BMBS = 365µeV with splitting
energy EM = 0.006µeV. At higher magnetic fields we observe an oscillation in the

Type B [µeV ] EM [µeV ]
ABS 93.5 −
MBS 365 0.006

Crossover MBS 546 0.18
Crossover MBS 643 0.23

Table 4.2: Zero bias conductance peaks which we present. Detailed are the type
of peak, Zeeman energy, and for the MBS at finite width we add energy splitting
EM.
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(a) Conductance overview T = 30 mK

(b) Conductance MBS region T = 0 mK

Figure 4.2: Numerical simulation of the conductance as a function of bias V and
Zeeman energy B for the configuration depicted in Fig. 4.1. The parameters cor-
respond to a recent experiment [8], namely, we take the spin orbit energy to be
Eso = 50µeV, the induced superconducting gap to be ∆0 = 250µeV, and the spin
orbit length to be lso = 200 nm. We take the length of the wire to be L = 2.5µm
with LS = 1385 nm. The full set of parameters is listed in Table 4.1. We apply
the magnetic field B at an angle of 60◦ from the z axis in the yz plane. (a)
Wide overview of the conductance at temperature T = 30 mK (b) Focus on the
conductance of the MBS region T = 0 mK.

58



4.2 Wire Configuration

conductance due to the overlap between the two MBSs at the ends of the wire, we will
refer to this as a crossover MBS. As a representative of the crossover MBSs we will
focus on two states, one at BcMBS = 546µeV with splitting energy EM = 0.18µeV
and another at BcMBS = 643µeV with splitting energy EM = 0.23µeV.

We find the splitting EM by setting a small tn and measuring half the distance
between the conductance peaks. For the MBS, each Zeeman energy B was chosen
to locally minimize the splitting energy EM. We differentiate between a MBS and
crossover MBS by requiring the conductance to tend to G = 2e2/h, and assuring
that the size of the splitting energy is small compared to other energy scales in the
problem (such as the coupling to the normal lead πν0t

2
N).

To understand the splitting in the topological phase seen in Fig. 4.2b, we can model
our system as two MBS with a finite energy splitting. The normal lead is assumed to
be strongly coupled to one of the MBS and weakly coupled to the other. This model
was considered in Subsection 2.1.3. Under these assumptions, at zero temperature,
T = 0, the zero bias conductance should tend to zero G (E = 0) ∼ 0, and at the
splitting energy E = ±EM we expect a maximum of the conductance, which is close
to G (E = ±EM) ∼ 2e2/h. If we add a small temperature, we expect the peaks at
E = EM to smear, and in this case we should measure a finite zero bias conductance.
This is a unique signature of the MBS which can be seen in Fig. 4.2.

In Fig. 4.3a,b we show the zero-energy differential conductance as a function of the
Zeeman energy for T = 0 mK, T = 30 mK respectively. In the third plot Fig. 4.3c we
present the zero temperature conductance for E = 0.94µeV. The plots depict two
different conductance lines, the conductance at zero flux G (Φ = 0), and the maximal
conductance when changing the flux between Φ = 0 and Φ = Φ0, we denote this
max [G (Φ)]. Note that changing Φ does not change EM, only the width of the
conductance peaks Γ. The four black circles represent the four Zeeman energies we
chose to focus on, i.e. the ABS, the MBS and two crossover MBS.

We observe that at zero temperature and zero bias (Fig. 4.3a) there is zero con-
ductance above Bc, except for a single accidental non-topological subgap state at
B = 317µeV which we choose to ignore. If we add finite temperature (Fig. 4.3b) or
a small finite bias (Fig. 4.3c) we now observe a finite conductance.

Following Fig. 4.2b which shows the conductance at T = 0 in the MBS region (Bc <

B < Bmax), we see that the splitting of the MBS and the maximal conductance
changes per Zeeman energy B. This data is presented in Fig. 4.3d. We see from this
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(d) MBS conductance and energy splitting
T = 0 mK

Figure 4.3: Numerical simulation for the configuration depicted in Fig. 4.1. The
parameters correspond to a recent experiment [8], namely Eso = 50µeV, ∆0 =
250µeV, and lso = 200 nm. We take the length of the wire to be L = 2.5µm with
LS = 1385 nm. The full set of parameters is listed in Table 4.1. We mark the four
near zero states that we are interested in at Zeeman energies BABS = 93.5 [µeV],
BMBS = 365 [µeV], BcMBS = 546 [µeV], BcMBS = 643 [µeV] with black circles.
(a)(b) Zero bias conductance as a function of Zeeman energy B for T = 0 mK,
T = 30 mK respectively. These correspond to Fig. 4.2a,b. The green line shows
the conductance at Φ = 0, while the blue line shows the maximal conductance
over a flux quanta max [G(Φ)]. (c) Conductance as a function of Zeeman energy
B for E = 0.94µeV and T = 0. This corresponds to Fig. 4.2b. (d) Maximal
conductance of the MBS and energy splitting EM as a function of Zeeman energy
B at T = 0 mK. This corresponds to Fig. 4.2b. The splittings for both the MBS
and the crossover MBS are relatively small, but the conductance for the MBS is
close to 2e2/h, while for the crossover MBS it is appreciably less than 2e2/h.
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N
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=
0
)
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ABS

(a) Local tunneling density of state E = 0,
BABS = 93.5µeV

N
(y
,E

=
0
)

0 yb L/2 ye L

MBS

(b) Local tunneling density of state E = 0,
BMBS = 365µeV

Figure 4.4: Local tunneling density of state at zero energy for the ABS at BABS =
93.5µeV and the MBS at BMBS = 365 [µeV]. In both cases the density of states is
significant only near the ends of the wire. The ABS decays exponentially inside the
SC section, while the MBS decays exponentially with an oscillating component.
For the MBS we see that the two MBS wavefunctions slightly overlap each other,
causing a small energy splitting.

figure that BMBS = 365µeV is the only Zeeman energy for which the conductance
is close to G = 2e2/h and the energy splitting EM is small. The Zeeman energy
B = 317µeV was excluded because it hosts a non-topological subgap state which
has a conductance larger than 2e2/h. Other Zeeman energies have small energy
splitting, but the conductance is appreciably smaller than 2e2/h, hence we call
these states crossover MBS.

In Fig. 4.4a,b we present the local tunneling density of states at zero-energyN (y, E =
0) for the ABS and MBS respectively. We note that in both cases the LDOS is
peaked in the normal sections of the wire. The ABS decays exponentially inside the
SC section, while the MBS decays exponentially with an oscillating component. For
the MBS we see that the two MBS wavefunctions slightly overlap each other, this
causes a small energy splitting EM. Both LDOS profiles are qualitatively similar to
each other, making it difficult to distinguish between the ABS and the MBS using
a scanning tunneling microscope measurement.

We now show that the visibility as a function of temperature (Fig. 4.5) can dif-
ferentiate between the MBS and the ABS even at finite temperatures. We will
specifically examine if it is possible to establish the trend of the visibility function
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(c) MBS E = 0.17µeV, B = 365µeV
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(d) MBS E = 0.17µeV, B = 365µeV

Figure 4.5: Visibility as a function of temperature. (a) Visibility for the ABS
at BABS = 93.5µeV. Monotonically decreasing function of temperature. This
allows us to rule out the case of a MBS. (b) Visibility for the MBS at BMBS =
365µeV for E = 0. At high temperatures this is a monotonically increasing
function of temperature. At low temperatures the dip in the conductance curve
becomes apparent and the function decreases. If we want to measure a behavior
consistent with the theory, we must measure the visibility close to the peak of the
conductance which is at the splitting energy EM. (c)(d) Visibility for the MBS at
BMBS = 365µeV for E = 0.17µeV with an analytic fit. We fit the MBS visibility
using the analytic expression for the visibility of an ideal MBS (Eq. 3.49) using
two parameters Γmax, Γmin taken from Fig. 4.6. The measured visibility closely
resembles the ideal MBS with a monotonically increasing function of temperature
which tends to zero at zero temperature, and there is a qualitative agreement
between the two.
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Figure 4.6: Zero temperature conductance as a function of bias V and AB flux
Φ
Φ0

for the MBS at BMBS = 365µeV. This allows us to examine the width of the
MBS peak with Φ. We measure the maximal and minimal width to be Γmax =
12.27 [µeV], Γmin = 1.64 [µeV].

by only sampling experimentally realizable temperatures between 20 mK and 50 mK.
We present the plots for the ABS at BABS = 93.5 [µeV] in Fig. 4.5a. The MBS at
BMBS = 365 [µeV] is presented with zero bias in Fig. 4.5b, and with a small bias in
Fig. 4.5c,d. The crossover MBS at BcMBS = 546µeV, BcMBS = 643µeV are presented
with zero bias in Fig. 4.7a,c and with a small bias in Fig. 4.7b,d.

In the case of the MBS at zero bias (Fig. 4.5b) the visibility is non-monotonic. At
high temperatures the system resembles the topological MBS state, with the visibil-
ity being a monotonically increasing function of temperature. At low temperatures
however, the non topological dip in the conductance curve is apparent, and the
the function decreases. This is an immutable property of a finite system. A finite
system will always have a finite energy splitting EM, which causes a dip in conduc-
tance at zero bias. But the temperature at which the splitting is resolved decreases
exponentially with the size of the system.

In the case of the MBS with a small finite bias (Fig. 4.5c,d) the visibility tends to
zero at zero temperature and is a strictly increasing function of temperature. We
see that when we look far from the dip in the conductance, the topological nature of
the system persists even at small temperatures. The data agrees with the results of
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Subsection 3.3.2. In the experimentally realizable temperatures region, we see that
it is possible to establish a monotonically increasing trend for the visibility.

Using Eq. 3.49 we fit the MBS visibility using two parameters Γmax, Γmin. These
parameters were taken from the zero temperature conductance of the MBS as a
function of Φ (Fig. 4.6). The widths were found to be Γmax = 12.27 [µeV], Γmin =
1.64 [µeV]. When we use the analytic expression to plot graphs of the visibility we
find that they are qualitatively similar to the graphs of the numerical simulations.
A comparison between the analytic expression and the numerical results is shown
in Fig. 4.5c,d.

In the case of the ABS we have a monotonically decreasing visibility function
(Fig. 4.5a). In the experimentally realizable temperatures region it possible to es-
tablish a monotonically decreasing trend, this allows us to rule out the existence of
a MBS.

The crossover MBS however behaves qualitatively similar to the MBS (Fig. 4.7). For
zero bias we have a non-monotonic visibility function (Fig. 4.7a,c). Specifically in
this case we see that in the realizable temperatures region the visibility is monoton-
ically increasing similar to the MBS. For a finite bias (Fig. 4.7b,d), the visibility is
a strictly increasing function, but at zero temperature the function tends to a finite
value instead of zero. However, this tendency is probably impossible to measure in
a real experiment.

4.3 Conclusion

In conclusion we saw that the visibility of a MBS state increases with temperature.
For a finite wire with small splitting energy the behavior is more complex and we
have analyzed and understood the behavior in different situations. We note that the
success of this method highly depends on the details of the problem, as explained
in the conclusions to the analytic calculations (Section 3.4). It can only be used to
rule out well separated MBS, and in no way can it confirm it. In our simulation we
were only able to rule out the ABS, with the crossover MBS behaving qualitatively
similar to the MBS.
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(a) Crossover MBS E = 0, B = 546µeV
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(b) Crossover MBS E = 0.35µeV, B = 546µeV
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(c) Crossover MBS E = 0, B = 643µeV
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(d) Crossover MBS E = 0.45µeV, B = 546µeV

Figure 4.7: Visibility as a function of temperature for the crossover MBSs. (a)(c)
For E = 0, we see that at high temperatures they are monotonically increasing
functions of temperature. At low temperatures the dip in the conductance curve
becomes apparent and the functions decrease. (b)(d) For finite bias, the functions
are monotonically increasing with temperature, but they do not tend to zero at
zero temperature as expected of an ideal MBS. This is in contrast to the behavior
of the visibility of the MBS at B = 365µeV which is shown in Fig. 4.5c,d.
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5 Discussion

In recent years the semiconducting Majorana wire has attracted considerable atten-
tion as a result of the recently reported experimental evidence for both the ZBCP
and the fractional AC Josephson effect in the form of doubled Shapiro steps. Al-
though the experimentally observed signatures can be taken as necessary indica-
tions of a Majorana bound state, there still exist alternative explanations to these
observations. The fractional Josephson effect in semiconductor Majorana wires is
susceptible to the quasiparticle poisoning effect, as well as to non-adiabaticity ef-
fects. While for the ZBCP, other sources of low-energy states localized at the wire
boundary may produce similar zero-bias peaks. Thus, neither of them constitutes a
sufficient “smoking gun” experiment.

Finding a single measurement which is immune to any sort of imitation is an ex-
tremely difficult task. It is clear that the definitive confirmation of the MBS will
be a direct probe of its non-Abelian nature. Such a measurement is a complicated
technological feat, and it is unclear how much time will pass until experimentalists
achieve this goal. Until this ultimate confirmation will occur, it is important to
strengthen the case of the Majorana by observing as many different experimental
signatures as possible. With this idea in mind, we started the research for this The-
sis. Our aim was to find an experimental signature of the MBS that is simple to
measure in the lab.

We proposed using a normal lead with an Aharonov-Bohm flux ring as a probe, and
connecting this lead to the Majorana bound state. In such a setup, we suggested
measuring the visibility of the zero bias conductance peak as a function of tem-
perature. Usually decoherence effects increase with temperature, hence we expect
that the visibility will decrease with the temperature. In striking contrast, we find
that for Majorana bound states with zero splitting energy EM = 0, the visibility is
a strictly increasing function of temperature, with zero visibility at zero tempera-
ture. While for a low energy Andreev bound state we showed that the visibility can
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assume increasing, decreasing, constant or non-monotonic behavior.

In the numerical simulation of the Majorana wire we saw that the MBSs exhibit
energy splitting EM > 0, which is caused by the finite nature of the wire. The
zero bias conductance for such a state is close to zero, while the conductance at
the splitting energy is close to 2e2/h in our model (generally it is less than 2e2/h).
For modes in which the splitting is small and the conductance is close to 2e2/h we
still use the name MBSs. While for modes in which the conductance is appreciably
less than 2e2/h, or the splitting is large, we use the name crossover MBSs. In
the simulation we saw the Majorana zero bias peak appear at the predicted critical
field. For larger magnetic fields the MBSs split into two modes and become crossover
MBSs.

We further saw that the zero bias visibility of a MBS acts as expected for large
temperatures. But for small enough temperatures the splitting becomes apparent
and the visibility decreases as a function of temperature. In this case, if we want
to measure a behavior consistent with the theory, we must measure the visibility at
the peak of the conductance which is at the splitting energy EM. For the Andreev
state the visibility was a decreasing function of temperature. This allowed us to rule
out the case of a Majorana bound state. In principle, the Andreev state could have
also been an increasing function of temperature, in which case we could not have
used our criteria. However, in contrast to the robustness of the Majorana state, we
expect that the behavior of the visibility of the Andreev state will be more sensitive
to changes in the parameters of the system.

As for future research directions, it would be interesting to extend the work in sev-
eral way. First, we only considered a low energy ABS as an alternative theory to
the MBS. In order to increase the predictive power of the method, it would be im-
perative to calculate the visibility as a function of temperature of more alternative
explanations such as the Kondo effect and weak anti-localization. If the visibilities
of other theories also behave in the same way as a MBS, this would detract from the
usefulness of the method. Second, in this Thesis we only considered setups which
include grounded superconductors when constructing the Majorana states. This
corresponds to a non-interacting picture leading to the resonant Andreev reflection
scenario. If we consider a floating superconductor, then Coulomb interactions be-
come important and they profoundly change this picture. It would be interesting to
see if the visibility behaves differently with the inclusion of Coulomb interactions.
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Nomenclature

AB ring Aharonov-Bohm ring

ABS Andreev bound state

DOS Density of states

LDOS Local tunneling density of states

MBS Majorana bound state

MF Majorana fermion

ZBCP Zero bias conductance peak
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