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Abstract

An array of quantum wires is a natural starting point to realize two-dimensional topological phases. We

study a system of weakly coupled quantum wires with Rashba spin-orbit coupling, proximity coupled

to a conventional s-wave superconductor. A variety of topological phases is found in this model. These

phases are characterized by �Strong� and �Weak� topological invariants, that capture the appearance of

mid-gap Majorana modes (either chiral or non-chiral) on the edges along and perpendicular to the wires.

In particular, a phase with a single chiral Majorana edge mode (analogous to a p+ ip superconductor)

can be realized. At special values of the magnetic �eld and chemical potential, this edge mode is almost

completely localized at the outmost wires. In addition, a phase with two co-propagating chiral edge

modes is observed. We also consider ways to distinguish experimentally between the di�erent phases

in tunneling experiments.
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Introduction

Topological insulators and superconductors have received much attention in the past few years

[1, 2, 3]. Such phases are characterized by a gap for bulk excitations, while the boundaries

support topologically protected gapless edge states. In addition, topological defects in these

phases may carry exotic zero energy excitations with unusual properties. For instance, defects in

topological superconductors (such as vortices in two-dimensional chiral p-wave superconductors

[4] or edges of one-dimensional spinless p-wave wires [5]) support localized states known as

Majorana zero modes. These zero modes have non Abelian properties, and have been proposed

as possible ingredients for a topological quantum computer[6].

Currently, the most promising experimental proposal for realizing Majorana zero modes in

solid state devices involves quasi-1D semiconductor nano wires with strong spin orbit coupling

such as InAs or InSb, proximity coupled to a s-wave superconductor [7, 8]. The main advantage

of this proposal is its simplicity: it does not require any exotic materials, but rather involves

only conventional semiconductors and superconductors. Recent experiments have detected

signatures for Majorana zero modes in heterostructures of semiconducting quantum wires and

superconductors [9, 10, 11, 12], and fractional Josephson e�ect [13].

In a two dimensional system of a spinless p-wave superconductor with pairing potential

∆(k) ∼ k a chiral p-wave with a gapless edge state can be formed [4]. Other possible realizations

of this phase are presented in Refs. [14, 15, 16]. A wider variety of phases is studied in Ref.

[17] using a toy model of spinless electrons in a two dimensional p-wave superconductors.

The topological phases can be classi�ed based on the symmetries (i.e., time-reversal, particle-

hole, and chiral symmetries), and the dimensionality of the system. The topological classi�ca-

tion is summarized in the �periodic table� studied in Refs. [18] and, [19]. The spinless p-wave

superconductor is in class D (particle-hole symmetric, but not time reversal symmetric), and

is characterized by a Z invariant counting the number of gapless chiral Majorana modes on the

boundary, and two Z2 invariants which count the parity of the number of boundary Majorana

modes in each direction. The Z number is de�ned as strong index and the Z2 numbers are de-

�ned as weak indices [20]. Here, we will be interested in identifying these phases in a physically

realizable model.

In this work, we demonstrate how quantum wires (or ribbons) can be used as a platform

to realize a rich variety of topological superconducting phases. An array of weakly coupled

wires, such as the one discussed above, is a natural starting point to realize a two-dimensional

phase, analogous to the chiral p-wave phase of Read and Green [4], which supports chiral

Majorana modes in its boundaries. (Similar systems were studied in Refs. [21, 22, 23].) A
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Fig. 1: Schematic view of the system. An array of semiconducting quantum wires proximity
coupled to an s-wave superconductor. The density of electrons in the wires is controlled
by nearby metallic gates. A magnetic �eld is applied perpendicular to the wires.

graphical illustration is presented in Fig. 1. We study how varying experimentally controllable

parameters, such as the magnetic �eld and chemical potential, allows to tune into these phases.

In particular, we show that there is a choice of parameters such that the counter-propagating

chiral edge states are almost completely localized on the two out most wires, allowing the

observation of the chiral phase even in an array with only a few wires. One also �nds a phase

with two co-propagating chiral modes localized at each edge. In the phase with a chiral edge

mode, an orbital magnetic �eld perpendicular to the plane of the wires induces vortices which

carry Majorana zero modes at their cores. We also show how the zero energy density of states

(DOS) changes as a function of the orbital �eld. We discuss experimental signatures that can

be used to identify these phases, through scanning tunneling microscopy into the out most

wires.

The thesis is organized as follows. In Sec 1 we review the topological phase arises in a one

dimensional spinless superconducting wire and its excitation and their meaning. In Sec. 2,

we brie�y review the topological superconducting phases that can arise in a two-dimensional

system with translational symmetry, through the model of spinless fermions that was introduced

in Ref. [17]. We then consider an array of weakly coupled semiconducting wires, of the type

studied in Refs. [8] and, [7]. In Sec. 3. We explore the phase diagram of the system as

a function of experimentally controllable parameters, and the structure of the edge states in

the chiral phases. In Sec. 4 we consider the e�ect of an orbital �eld. In Sec. 5 we study

the experimental signatures of the di�erent phases. Sec. 5 summarizes our main results and

conclusions.
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Part I. Overview

1 Topological phases of spinless fermions in a 1D Quantum wire.

Before discussing topological phases in two dimensional systems, we will �rst review the 1D

case.

The simplest realization of a 1D topological phase in the D symmetry class was introduced

by Kitaev [5]. The model describes a spinless p-wave superconductor on a chain with N sites.

The Hamiltonian of the system is given by:

H =
∑
−t(ψ†iψi+1 + ψ†i+1ψi)− µ(ψ†iψi −

1

2
) + dψ†iψ

†
i+1 + d∗ψi+1ψi, (1)

where ψi are the spinless fermion operators, µ is the chemical potential, t ≥ 0 is the nearest

neighbor hopping strength, and d = ∆eiθ, ∆ ≥ 0 is the p-wave pairing amplitude.

The Hamiltonian can be transformed to the Majorana basis:

χR,i = ψi + ψ†i χL,i = (ψi − ψ†i )
1

i
. (2)

Notice also that the phase of the order parameter θ can be conveniently absorbed into the de�ni-

tion of the Majorana operators by performing the transformation: χR,i = ψie
i θ
2 +ψ†i e

−i θ
2 , χL,i =

(ψie
i θ
2 −ψ†i e−i

θ
2 )1

i
. The Majorana operators satisfy the relations: χ†R/L,i = χR/L,i, {χs,i, χs′,j} =

2δss′ji (s, s′ = R,L).

The Hamiltonian in terms of the Majorana operators is:

H =
i

2

∑
(−µ
i

χR,iχLi + (t+ ∆)χL,iχR,i+1 + (−t+ ∆)χR,iχL,i+1). (3)

Two distinct cases can be obtained by changing the values of the parameters in the Hamil-

tonian:

1. The trivial case: t = ∆ = 0, µ < 0, H = − i
2

∑
i

µχR,iχLi. The Majorana operators are

only paired in the same site and there is a single ground state with occupation number 0.

2. The topological case: t = ∆ > 0, µ = 0, H =
∑
i

itχL,iχR,i+1. The Majorana operators are

coupled between di�erent sites. There are two unpaired Majorana modes localized in the

two ends of the wire, χL,1 and χR,N , and they do not appear in the Hamiltonian (there is

no coupling term between them, nor is there a term that couples them to other Majorana

operators). Hence, the ground state of the system is two-fold degenerate: there are two
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orthogonal states |ψ0〉 and |ψ1〉 that have di�erent fermion parity. (The fermion parity

operator is given by P =
∏
i

(
2ψ†iψi − 1

)
=
∏
i

− iχL,iχR,i.) P |ψ0〉 = −iχL,1χR,N |ψ0〉 =

|ψ0〉, and P |ψ1〉 = −iχL,1χR,N |ψ1〉 = −|ψ1〉 (when acting on the ground state the only

relevant term is −iχL,1χR,N ). Physically, this means that there is a non-local fermion

that can be formed from the two unpaired Majorana modes. The occupation of this

fermion determines the parity of the system.

The point in which the two unpaired Majorana modes are localized completely at the end

sites of the chain is called the �sweet point�.

Notice that the properties of the bulk in these two cases are the same, i.e. the bulk spectrum

is E(k) = ±
√

(2tcos(k) + µ)2 + 4∆2sin(k)2 where −π ≤ k ≤ π. However, the excitations at

the boundaries are di�erent. Moreover, these two cases can be extended into two regions in the

parameters space: (a) the trivial region 2|t| < |µ|, and (b) the topological region 2|t| > |µ| and
∆ 6= 0. These two regions cannot be smoothly connected and the transition between them is

necessarily accompanied by a closure of the energy gap.

In the topological phase, the Majorana zero modes are exponentially localized near the ends.

In a �nite system of the length L, the overlap of the Majoranas' wave functions results in a

splitting of the degeneracy between |ψ0〉 and |ψ1〉. The splitting energy scales as e−L/ξ, where

ξ is the coherence length.

The phase of the system can be characterized by a Z2 topological invariant. An exact

de�nition of this invariant will be presented in the Sec. 2.

Two unpaired Majorana modes form a non-local two-level system, which is topologically

protected from decoherence due to coupling to the environment[5]. This makes them attractive

for applications in quantum information processing.

Hitherto, we explored the possible phases in a 1D system. In the reminder of this Thesis, we

will analyze the possible 2D topological phases and their excitations, and study the crossover

between 1D and 2D systems.

2 Topological superconducting phases of spinless fermions in a two

dimensions

In this section, for the purpose of illustration and to set up the framework, we will review the

analysis of a toy model of spinless fermions hopping on a square lattice with a p-wave pairing

potential. This model was introduced and analyzed in Ref. [17]. The tight binding Hamiltonian

is:
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Fig. 2: De�nition of the weak indices in the Brillouin zone [see Eq. (6)]. The signs sΓi = ±1 are
determine by the Pfa�ans of the Hamiltonian at the high symmetry points. The weak
indices νx/y,0/π are determined by the products of pairs of sΓi 's. Any topological phase
can be characterized by a pair of weak indices (one in each direction), and a strong
index, ν. The dashed ellipses highlight the two weak indices chosen to label the phases
in this work.

H =
∑∑

−txψ†i,jψi+1,j − tyψ†i,jψi,j+1 + µ(ψ†i,jψi,j −
1

2
) + dxψ

†
i,jψ

†
i+1,j + idyψ

†
i,jψ

†
i,j+1 + h.c.,

(4)

when tx and ty are the tunneling matrix elements in the x and y directions, dx, dy are the

pairing potential in adjacent sites in x and y respectively, µ is the chemical potential. ψi,j(ψ
†
i,j)

annihilates (creates) a fermion in the jth wire in site i.

The Bogoliubov-de Gennes (BdG) Hamiltonian in momentum space is written as H =
1
2

∑
k

Ψ†kh(k)Ψk up to a constant, where

h(k) =

(
ε(k) d (k)

d∗ (k) −ε(−k)

)
. (5)

Here, Ψ†k =
(
ψ†k ψ−k

)
, k = (kx, ky), ε(k) = −2tx cos(kx) − 2ty cos(ky) − µ, and d (k) =

dx sin(kx)− idy sin(ky). The distinct topological phases realized in this model, as a function of

the parameters tx, ty, dx, dy, and µ have been explored in Ref. [17]. For clarity and for later

use, we review this derivation here.
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The spectrum of h(k) in (5) is E (k) = ±
√
ε2(k) + |d (k)|2. Assuming that E (k) 6= 0 for

all k, i.e. the system is fully gapped, we can determine the topological phase of the system

by examining the high symmetry points that satisfy −Γi = Γi + G, where G is a reciprocal

lattice vectors. The properties of these points Γi will help in determining the weak and strong

topological indices that characterize the system.

The BdG Hamiltonian satis�es Ch (k)C−1 = −h (−k), where C is the particle hole operator

de�ned by C = τxK and K is complex conjugation and τx is Pauli matrix in the particle-hole

space. At the the high symmetry points, this reduces to τxh (Γi) τx = −hT (Γi). Using this

relation, we can show that the transformed Hamiltonian h̃ (Γi) = Uh (Γi)U
−1 where U = eiπτx/4

is antisymmetric, h̃ (Γi) = −h̃ (−Γi)
T = −h̃ (Γi + G)T = −h̃ (Γi)

T . One can therefore de�ne

the Pfa�ans of h̃ (Γi) and its sign, sΓi = sign
{
iPf
[
h̃ (Γi)

]}
. It is convenient to de�ne four

topological indices

(−1)νy,π = s(0,π)s(π,π)

(−1)νy,0 = s(0,0)s(π,0)

(−1)νx,π = s(π,0)s(π,π)

(−1)νx,0 = s(0,0)s(0,π), (6)

να,K (α = x, y, K = 0, π) is a topological invariants of an e�ective 1D system in class D [5]

with �xed kα = K. Fig. 2 illustrates the high symmetry points on the Brillouin Zone and the

relation between the topological weak indices.

In addition to the weak indices να,K , one can introduce the �strong index� (or Chern number)

ν given by [24]

ν =
1

π

∑
n

ˆ ˆ
dkxdkyIm〈∂kxψn|∂kyψn〉, (7)

where ψn are the eigenstates of the Hamiltonian (5), and the sum runs over the negative energy

bands. Practically, it can be calculated numerically, see Eq.(28) in Appendix B. The strong

index ν is related to the weak indices by [17]

νx,0 + νx,π = νy,0 + νy,π = ν mod(2). (8)

Therefore, the topological properties of the system are determined by a pair of weak indices,

one with an x label and another with a y label, plus the strong index. In this paper, we choose
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to label the di�erent phases by the three indices ν:νx,πνy,π, where ν ∈ Z and νx,π, νy,π ∈ Z2.

For the model (5), the Z2 invariants are easy to compute, since sΓi = sign [ε(Γi)]. The phase

diagram as a function of tx, ty appears in Fig. 3.

Fig. 3: Phase diagram of the model de�ned in Eq.(4) in the tx−ty plane. The chemical potential
was set to µ = 2. The topological phases are characterized by a strong index and two
weak indices ν:νx,πνy,π [see Eqs.(6), and (7)]. Along the phase boundaries the energy
gap closes. Strong topological phases (where ν 6= 0) are indicated in blue, weak phases
in pink, and the trivial phase appears in white.

It is well-known that the Chern number is equal to the number of edge modes at the edge

of the system, weighted by their chirality. These chiral edge modes are robust to any weak

perturbations, and do not rely on any particular symmetry. In this sense, a phase with a

non-zero Chern number is a strong topological superconducting phase, and the Chern number

is a strong topological index. The other indices that characterize the 2D system, νx,π and

νy,π, are only well de�ned in the presence of translational invariance in the x and y directions,

respectively, and will be referred to as weak topological indices. If at least one of the weak

indices is non-zero while the Chern number is zero, the system is in a weak topological phase.

The weak indices can be used to predict certain features of the energy spectrum of gapless
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(a) (b) (c)

Fig. 4: A schematic illustration of the energy spectra of a system with an edge parallel to x as
a function of kx in di�erent topological phases. (a) A phase with ν = 0, νx,0 = 1, and
νx,π = 1. A band of non-chiral edge state appears, and crosses zero energy at kx = 0, π.
Notice that for this phase the slopes at kx = 0 and kx = π are opposite (b) A phase
with ν = 1, νx,0 = 1, νx,π = 0. A chiral edge state exists, and crosses zero energy at
kx = 0. (c) A phase with ν = 2, νx,0 = 1, νx,π = 1. Two chiral edge modes with positive
slopes exist. One crosses zero energy at kx = 0 and the other at kx = π.

edge states that appear on boundaries in speci�c directions. For example, a straight boundary

parallel to the x axis that preserves translational invariance in the x direction will have νx,0

(νx,π) zero energy Majorana edge states at kx = 0 (kx = π), respectively. Using these properties,

it is easy to understand Eq.(8) which relates the weak and strong indices. For example, the two

systems whose spectra appear in Fig. 4a and 4c have the same Chern number parity, because

there are two edge modes, one at kx = 0 and the other at kx = π. Yet, in 4a the edge states

have opposite chirality (opposite sign to the slope of the edge state), hence the Chern number

is zero. On the other hand, in 4c the edge states have the same chirality. Therefore, the Chern

number is 2. Fig. 4b shows a case where there is only one edge state at kx = 0, hence the

parity of the number of edge states is 1 and the Chern number is 1.

Part II. Results

3 Array of quantum wires coupled to a superconducting substrate

In this section, we will discuss a more realistic model that gives rise to the phases described in

Sec. 2. The �rst subsection (3.1) will be devoted to a description of the setup, and the second

subsection (3.2) to the analysis of the distinct phases arise in the model as a function of the

model parameters.
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3.1 Setup and model

We envision an array of N parallel quantum wires with strong spin-orbit coupling, proximity

coupled to a superconductor (Fig. 1). Each wire has a single (spin-unresolved) mode, a large

g-factor and strong Rashba spin orbit coupling (this can be achieved, e.g., in InAs or InSb wires

[10, 9, 25]). The superconducting substrate induces a proximity gap in the wires. It also allows

electrons to tunnel relatively easily from one wire to the next. The system is described by the

following Hamiltonian:

H = H‖ +H⊥. (9)

Here, H‖, and H⊥ describe the intra-wire and inter-wire Hamiltonian respectively.

The intra-wire Hamiltonian, H‖ is given by

H‖ =
N∑
j=1

Hj,

Hj =

ˆ
dkx[εj(kx)ψ

†
kx,j

ψkx,j+α sin(kx)ψ
†
kx,j

σyψkx,j−Vzψ
†
kx,j

σzψkx,j+∆ψ†kx,j(iσy)ψ
†
−kx,j+h.c.].

(10)

Hj is the Hamiltonian of the jth wire, where εj(kx) = −2tx cos(kx)− µ is the dispersion of the

wire (x is chosen to be along the wires, see Fig. 1), tx is the hopping matrix element along the

wire, µ is the chemical potential, α is a Rashba spin-orbit coupling term originating from an

electric �eld perpendicular to the wires (which we de�ne as the ẑ direction), and Vz is a

Zeeman �eld along ẑ. The Pauli matrices ~σ acts in spin space. We have assumed that there is

a periodic lattice along the wires, and ∆ is the pairing potential induced by the s-wave

superconductor. For now, we ignore the orbital e�ect of the magnetic �eld; we will consider it

in Sec. 5.

The inter-wire Hamiltonian H⊥ is given by:

H⊥ =
N−1∑
j=1

ˆ
dkx[−tyψ†kx,jψkx,j+1 − iβψ†kx,jσxψkx,j+1 + ∆yψ

†
kx,j

(iσy)ψ
†
−kx,j+1 + h.c.], (11)
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where ty is the inter-wire hopping matrix element, ∆y is the pairing potential associated with

a process where a Cooper pair in the superconductor dissociate into one electron in the jth

wire and another in the (j + 1)th wire, and β is the coe�cient of a spin-orbit interaction that

originates from inter-wire hopping.

Let us brie�y discuss the typical magnitudes of the parameters in Eqs.(10) and, (11). The

hopping matrix element tx is a quarter of the bandwidth of the conduction band in the quantum

wires, and is therefore of the order of a few electron-volts. In experimental setups similar to

those of Refs. [10, 11, 9], the parameters |∆| , |Vz|, |α|, and |µ+ 2tx| (the chemical potential

measured relative to the bottom of the conduction band) are all of the order of a 0.1-1meV.

Therefore, in such setups, tx is much larger than all the other parameters in the Hamiltonian.

One can also imagine suppressing tx and creating a super lattice. The super-lattice can be

achieved for example by applying a periodically modulated potential along the wires, which

would allow the ratio of tx to the other parameters to be of order unity.

The inter-wire hopping occurs through the superconducting substrate. In order to get a

signi�cant inter-wire coupling, the distance between the wires must be at most of order ξ,

the coherence length in the s-wave superconductor. The inter-wire spin orbit coupling term β

depends mostly on the properties of the material creating the coupling; in the case of nearly

touching wires or ribbons this term will depend mostly on the semiconducting material of the

wire, such as InAs or InSb. However, when there is a signi�cant distance between the wires, β

depends mostly on properties of the superconductor; therefore, if the superconductor is made

of a light element (such as Al), β might be negligible. To get large values of β, one would have

to use a superconductor made of a heavy element, e.g. Pb. As we will show below, the physics

depends crucially on β; if β = 0, one can not obtain gaped chiral superconducting phases.

3.2 Phase diagram

We now turn to analyze the phase diagram of the model of Eq.(9). In the limit of decoupled

wires, ty = ∆y = β = 0, this is precisely the model studied in Refs. [7] and, [8]. The

phase diagram of each wire consists of two phases, a trivial phase which is realized when

Vz <
√

∆2 + (µ+ 2tx)2, and a topological phase for Vz >
√

∆2 + (µ+ 2tx)2. The topological

phase is characterized by a zero energy Majorana mode at the two ends of each wire [7, 8]. In

terms of the two-dimensional topological indices described above, the trivial phase corresponds

to ν = 0:νx,π = 0, νy,π = 0, while the non-trivial phase is a weak topological superconducting

phase labeled as ν = 0:νx,π = 0, νy,π = 1.

Next, let us consider the e�ect of inter-wire coupling. We will study the phase diagram as



3 Array of quantum wires coupled to a superconducting substrate 14

a function of the chemical potential µ and the Zeeman �eld Vz for a �xed value of ∆. Imagine

starting deep in either the 0:00 or the 0:01 phase, and turning on a small inter-wire coupling.

Clearly, the inter-wire coupling cannot induce a phase transition as long as it is small compared

to the gap. In the vicinity of the phase transition between the 0:00 and 0:01 phases, however,

the inter-wire coupling can give rise to new phases.

Fig. 5 shows the phase diagram of the model (9) as a function of µ and Vz for �xed values

of ∆, tx, ty, α and β. The phase boundaries were obtained by diagonalizing the Hamiltonian

and locating points in the (µ, Vz) plane were the gap closes. The spectrum of the system is

given by

E2 = V 2
z + ∆2

eff + ξ(k)2 + |γ(k)|2 ± 2
√

(Vz∆eff)2 + (V 2
z + |γ(k)|2)ξ(k)2, (12)

where ∆eff = ∆ + ∆ycos(ky) , ξ(k) = −µ − 2tycos(ky) − 2txcos(kx) and γ(k) = αsin(kx)i +

βsin(ky).

The di�erent phases are then identi�ed by using the topological indices of Eqs.(6) and, (7).

an explicit calculation of these number is given in Appendix B. Slivers of phases with non-zero

Chern numbers appear between the 0:00 and 0:01 phases. For example, examining Fig. 5

we note that upon increasing Vz from zero at a �xed negative value of µ between −2 to −3

(measured in units of tx), the gap �rst closes at k = (0, 0) and then reopens, and a 1:00 phase is

stabilized. This phase is an anisotropic realization of a chiral p+ ip superconductor, and has a

chiral Majorana edge mode at its boundary. Upon increasing Vz further, the gap at k = (0, π)

closes and reopens, and the system enters the 0:01 phase. The point in k- space, in which the

gap is close, can be extracted by looking at the values of sΓi in the points Γi in the Brillouin

Zone and searching for changes in sign in one of the Γi points between one phase to the other

as shown in table 1.

As discussed earlier, the experimentally accessible regime in setups similar to those of Refs.

[9, 11, 10] is de�ned by tx � {|∆| , |Vz| , |α| , |µ+ 2tx|}. We highlight the accessible region

by a dashed box in Fig. 5. In order to access all the possible phases in Fig. 5, one needs

to suppress tx, for example by applying a periodically modulated potential along the wires,

creating a super-lattice.

The spectrum of a system with a �nite number of wires in the 1:00 phase is presented in Fig.

6a, as a function of momentum along the wires. As expected, there are two counter-propagating

edge modes within the bulk gap. These modes are localized on the opposite sides of the system.
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Fig. 5: Phase diagram of a system of weakly coupled wires in proximity to an s-wave super-
conductor, as a function of the Zeeman �eld Vz and the chemical potential µ. The
topological phases are labeled by a strong index and two weak indices, ν:νx,πνy,π [see
Eqs.(6), and (7)]. The white regions are topologically trivial, the pink regions are the
weak topological phases, the blue regions are the strong topological phases with a strong
index ν = 1, and the yellow regions are the strong topological phases with a strong index
ν = 2. The dashed box highlights the region accessible in experiments using electron
doped quantum wires, in which the chemical potential is near the bottom of the conduc-
tion band. This region is de�ned by tx � {|∆| , |Vz| , |α| , |µ+ 2tx|} [these parameters
are de�ned in Eqs.(9), (10), and (11)]. The parameters used in this calculation are
tx = 1, ty = 0.3, ∆ = 0.6, β = 0.3, and α = 1.

3.2.1 A phase with a strong index ν = 2

It is interesting to note that the phase diagram (Fig. 5) contains a 2:11 phase, with a Chern

number ν = 2 and two co-propagating chiral edge modes. This phase appears around µ = 0

for large Zeeman �elds (Vz ≈ 2tx). One can understand qualitatively the emergence of this

phase as follows. Focusing in Fig. 5 on the region in which −2tx < µ < −2ty, as the Zeeman

�eld is increased from Vz = 0, the gap closes at k = (0, π) and reopens, stabilizing a −1:01

phase. This phase is characterized by a chiral edge mode, which appears around kx = 0 in a

system with a boundary parallel to the x axis. Similarly, for the particle-hole conjugated path

at 2ty < µ < 2tx, the gap closes and reopens at k = (π, 0) upon increasing Vz from zero, and

one �nds a −1:10 phase with a chiral edge mode around kx = π at a boundary along the x

axis. Near µ = 0, these two gap closings coincide, and we �nd a phase that has both a chiral

edge modes at kx = 0 and at kx = π (see Fig. 6b). We analyze the appearance of this ν = 2
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phase in detail in Appendix C.
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Fig. 6: Energy spectra of an array of coupled wires in proximity to an s-wave superconductor, as
function of the momentum along the wires, kx. The parameters used in the calculation
are tx = 1, ty = 0.3, ∆ = 0.6, β = 0.3, α = 1. The system is composed of 101 wires,
with open boundary conditions in the y direction. By varying µ and Vz, we can tune
the system into di�erent phases: (a) For µ = −1.4 and Vz = 0.6

√
2, the 1:00 phase is

realized. This phase has one chiral mode at each edge, located at kx = 0. The inset
illustrates the edge modes in real space, using the frame of coordinates de�ned in Fig.
1. The +x (−x) moving edge mode is colored in red (blue), respectively. (b) For µ = 0
and Vz = 2.088, the phase 2:11 emerges (see Sec. 3.2.1). Two chiral edge modes appear
at each edge, one at kx = 0 and the other at kx = π.

3.2.2 �Sweet point� with perfectly localized edge states

Interestingly, upon tuning the Zeeman �eld Vz, there is a special �sweet point� at the center

of the 1:00 phase (as well as in the other chiral phases) in which the chiral edge states at an

edge parallel to the x axis are almost entirely localized on the outmost wires. (Notice that the
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localization lengths of edge states at edges along the x and y axes are generically di�erent from

each other, due to the anisotropy of our system.) At this point, the edge states on the two

opposite edges do not mix even in systems with a small number of wires, making it attractive

from the point of view of experimental realizability. This point in parameters space is analogous

to the special point in the Kitaev's one-dimensional chain model [5], in which the Majorana

end states are localized on the last site. In our two-dimensional setup, we will show how one

can access this point by tuning the magnetic �eld.

We now derive a criterion for realizing the �sweet point�, and give a simple picture for its

emergence. First, let us consider a system without coupling between the wires. The Hamilto-

nian of the jth wire Eq.(10) can be written as Hj = 1
2

∑
kx

Ψ†kx,jhj(kx)Ψkx,j, where

hj(kx) = εj(kx)τz − Vzσz + α sin(kx)τzσy + ∆τx. (13)

Here, Ψ†kx,j =
(
ψ†↑,kx,j, ψ

†
↓,kx,jψ↓,−kx,j,−ψ↑,−kx,j

)
, and ~τ are Pauli matrices acting in Nambu

(particle-hole) space.

The strategy in constructing the �sweet point� is as follows. We �rst tune the parameters of

the single wire Hamiltonian Eq.(13) to the critical point at the transition from the trivial to the

topological phase. At this point, the low-energy theory is described by two counter-propagating

Majorana modes. Turning on the inter-wire coupling induces backscattering between these

modes. At the sweet point, the inter-wire coupling takes a special form such that the right

moving Majorana mode of one wire couples only to the left moving Majorana mode of the

adjacent wire (see Fig. 7). This coupling gaps this pair of modes out, leaving only the two out

most counter-propagating modes gapless. This is similar to the approach of Refs. [26, 27, 28,

29, 30, 31] for constructing quantum Hall phases starting from weakly coupled wires.

Let us demonstrate this by focusing on the single-wire critical point at

µ = −2tx +
√
V 2
z −∆2, (14)

in which the gap closes at kx = 0. We diagonalize the Hamiltonian by a Bugoluibov transfor-

mation of the form

Ψkx,j = WkxΨ̃kx,j, (15)

where Ψ̃†kx,j =
(
ψ†2,kx,j, ψ

†
1,kx,j

, ψ1,kx,j,−ψ2,kx,j

)
, and the matrix Wkx is given by:
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Fig. 7: Schematic illustration of the physics leading to the �sweet point� (Sec. 3.2.2). At low
energies, each wire has two counter-propagating Majorana modes. When the condition
in Eq.(19) is satis�ed, the inter-wire coupling takes a special form such that the right
moving Majorana mode of each wire couples only to the left moving Majorana mode of
the adjacent wire. As a result, this pair of Majorana mode is gapped out, leaving only
the two outmost counter-propagating modes gapless.

W †
kx=0 =

√
|∆|

2Vzs


s 0 1 0

−1 0 s 0

0 s 0 1

0 −1 0 s

 . (16)

Here, s ≡ −2tx−µ+Vz
∆

. At the critical point, ψ1,kx,j is gapless and disperses linearly, while ψ2,kx,j

remains gapped. Expanding near kx = 0, the Hamiltonian takes the form

H‖ =
∑
kx,j

[
vkxψ

†
1,kx,j

ψ1,kx,j + Vzψ
†
2,kx,j

ψ2kx,j +O(k2
x)
]
, (17)

where v = ∆α
Vz
. Inserting Eq.(15) into Eq.(11), and using the explicit form of Wkx given in

Eq.(16), the inter-wire coupling Hamiltonian projected onto the low-energy (ψ1) sector becomes

H⊥ =
∑
kx,j

[(
ty(s

2 − 1)− 2∆ys
)
ψ†1,kx,jψ1,kx,j+1 (18)

+ i2sβψ†1,kx,jψ
†
1,kx,j+1 + h.c.

]
,
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At kx = 0, the Hamiltonian is identical to Kitaev's one-dimensional chain model [5] with zero

chemical potential. This model simpli�es greatly for a special choice of parameters such that

|ty(s2 − 1)− 2∆ys| = |2sβ|. In terms of the physical parameters, this condition is written as∣∣∣∣ty 2tx + µ

∆
+ ∆y

∣∣∣∣ = |β| . (19)

For these parameters, the kx = 0 Hamiltonian is easily diagonalized by introducing Majorana

�elds

χR,j = ψ1,je
iφ + ψ†1,je

−iφ

χL,j = −iψ1,je
iφ + iψ†1,je

−iφ. (20)

Here, φ = 1
2
Arg

(
i2sβ

ty(s2−1)−2∆ys

)
=1

2
Arg

(
−iβ

ty(2tx+µ)

∆
+∆y

)
. In terms of these �elds, the Hamiltonian

takes the form

H⊥ = i
∑
j

|2sβ|χL,jχR,j+1. (21)

The resulting phase has two chiral edge modes on the two opposite edges, which are com-

pletely localized on the out most wires, up to corrections of the order of ty
Vz

due to virtual

excitation to the gapped mode ψ2,kx . If the condition in Eq.(19) is not satis�ed exactly, the

edge states become more spread out in the direction perpendicular to the wires, but remain

localized near the boundary as long as the bulk gap does not close.
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Fig. 8: Wave functions of the two Majorana edge modes in a system of 43 wires tuned to the
�sweet point� [Eq.(19)]. We plot the probability distributions of the lowest energy states
at kx = 0, as a function of the wire index along y. The two zero energy states are
almost fully localized at the �rst wire (blue) and on the last wire (red). The following
parameters were used: tx = 0.5, ty = 0.1, ∆ = 0.6, ∆y = 0, µ = −1.4, Vz = 0.6

√
2,

β = 0.1, and α = 1.

One can tune into the �sweet point� by setting Vz and µ such that both Eqs.(14) and (19) are

satis�ed. The required parameters are Vz = ±
√

∆2 + (µ+ 2tx)2 and µ = −2tx− |∆|ty (|∆y|±|β|).
We tested the �sweet point� numerically, by diagonalizing the Hamiltonian (9) for a system

with a �nite number of wires. In Fig. 8, we present the wave functions of the lowest energy

states as a function of position perpendicular to the wires. As expected, the wave functions of

these states is almost localized on the out most wires.

3.2.3 In-plane Zeeman magnetic �eld

Applying an in-plane magnetic (Zeeman) �eld provides an additional experimentally accessible

knob to tune the system between di�erent phases. We now consider its e�ect on the phase

diagram. Note that in our system, a perpendicular magnetic �eld is essential in order to realize

the strong topological phase (this is di�erent from the case considered in Ref. [14], due to the

di�erent form of the spin-orbit coupling). The in-plane magnetic �eld generally destroys the

topological phases, leading to a gapless phase instead.

In the presence of an in-plane Zeeman �eld applied parallel to the wires, we should add the
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term −Vxψ†kx,jσxψ
†
kx,j

to Eq.(10). Then, the spectrum is given by

E2(k) = V 2
tot + ∆2

eff + ξ(k)2 + |γ(k)|2

± 2
√
V 2

tot∆2

eff
+ (V 2

tot + |γ(k)|2)ξ(k)2 + (Vxsin(ky)β)2, (22)

where Vtot =
√
V 2
z + V 2

x . The condition for a closer of the gap:

V 2
z + V 2

x = (µ∓ 2tx ∓ 2ty)
2 + ∆2. (23)

Fig. 9 shows the phase diagram as a function of µ and Vx, �xing Vz =
√

2∆. The line Vx = 0

corresponds to a line of �xed Vz of the phase diagram shown in Fig. 5. Upon raising Vx, a

gapless (metallic) region is formed. The gap closes because of the destruction of the proximity

e�ect by the in-plane �eld, due to the Zeeman shift of the normal state energy at k relative to

−k. The e�ect of an in-plane �eld perpendicular to the wires (Vy) is qualitatively similar, but

the �bubbles� of the 0:01 phase do not appear, and are replaced by gapless regions. (Notice that

the response for a Zeeman �eld in the x and y directions is di�erent because of the anisotropy

of our system.)

One can also show that the �sweet point� within the strong topological phases survives in

the presence of an in-plane �eld. The sweet point condition is given by Eqs.(19) and, (23).

4 The orbital e�ect of the magnetic �eld in a 2D p-wave

superconductor

So far, we have neglected the orbital e�ect of the magnetic �eld, treating only the Zeeman

e�ect. This assumption is justi�ed in the limit of large g-factor g. In this section, we will

consider the orbital e�ects of the magnetic �eld.

We will now discuss the condition for the appearance of vortices in our system. We assume

that the s-wave superconductor is a narrow strip, whose width d is small compared to its length

and to the bulk penetration length. Under these conditions, the critical �eld for creating

a single vortex in the superconductor is [32] Hc1 ∼ Φ0/d
2, where Φ0 = h/2e. This gives

Hc1 ∼ 2mT (1µm/d)2 .

To get a feel for the value of this critical �eld in realistic setups, let us consider a system

with N wires made of InAs, similar to those of Ref. [10]. Assuming that the distance between

the wires is of order ξ (ensuring a reasonable inter-wire coupling).If we take ξ ≈ 40nm (as in

Pb) and N = 25, we get d ≈ Nξ ≈ 1µm and the critical magnetic �eld for creating a single
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Fig. 9: The phase diagram and the energy gap as a function of an in plane Zeeman �eld Vx and
chemical potential µ, at a �xed Vz. The light green line marks the phase boundaries,
along which the gap closes. Notice that the Vx = 0 line corresponds to a constant Vz cut
in Fig. 5. The parameters used in this calculation are: tx = 1, ty = 0.3, ∆ = 0.6, β =
0.3, Vz = 0.6

√
2and α = 1.

vortex is B ≈ 2mT . In order to be in the topological phase the Zeeman �eld must satisfy

Vz = gµBB
2

>
√

∆2
ind + (µ+ 2tx)2 (where ∆ind is the induced superconducting gap in the wire).

In InAs, g ≈ 20 and ∆ind can be of the order of 50µeV [10]. This gives that the required

magnetic �eld to be in the topological phase is B > 30mT , and thus vortices are present in

the strip. As we decrease the size of the system, the critical �eld increases. For a system

with N = 5 and d ≈ 0.2µ, for example, the critical �eld is B ≈ 50mT , and one can realize a

vortex-free topological phase.

Below, we discuss features of the quasi-particle spectrum in the presence of an orbital �eld

that can be used as a signature of topological phase in the system.

4.1 Majorana zero modes in vortex cores

The chiral phase is characterized by the presence of a Majorana zero mode in each vortex core

[4]. For an applied �eld slightly above Hc1, the ground state contains vortices along the strip,

with a Majorana zero mode at each core. In addition, (when the number of vortices is odd)

the chiral Majorana mode on the edge has a mid-gap state. In general, the Majorana states

in the vortex core can leak into the edge mode. However, if we choose parameters such that
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the system is near the sweet point described above, such that the e�ective coherence length

transverse to the wires is essentially one inter-wire spacing, the mixing between the vortex core

states and the chiral edge modes can be made negligibly small (assuming that the wires are

su�ciently long) as can be seen in Fig. 11. One can show that the sweet point condition,

Eq.(19), remains unmodi�ed when projecting to the lower energy bands in the presence of an

orbital magnetic �eld (see Appendix E).

4.2 Doppler shifted chiral edge states

In addition to inducing vortices, the orbital �eld induces circulating orbital currents in the

sample. These orbital currents modify the low-energy density of states (DOS) due to a �Doppler

shift� of the quasi-particles at the edge. In a chiral superconductor, the Doppler shift either

enhances or suppresses the DOS at the edge, depending on whether the orbital supercurrent

is parallel or anti-parallel to the propagation direction of the chiral edge state [33]. Using the

London gauge near the edge, such that ∇φ = 0 (where φ is the phase of the order parameter),

the external orbital current is proportional to the vector potential ~A. Consider a system de�ned

on the half-plane y > 0, with an edge at y = 0. To linear order in kx and Ax, The low-energy

quasi-particle spectrum is given by

E(kx) = kx(vx + Axδx). (24)

The velocity vx and the coe�cient δx can be calculated using �rst and second order perturbation

theory in kx and Ax. (Notice that since we set the lattice spacing ax = 1, δ−1
x has units of mass.)

In the model described in Sec. 3, the perturbative calculation gives vx = ∆α
Vz
, and δx = tx. See

Appendix D for an explicit derivation of this result. Since the local DOS is proportional to the

inverse of dE/dk(k = 0), Eq.(24) shows that the zero-energy DOS depends linearly on Ax [33].

Fig. 10a shows how the slope of the chiral edge state changes when the orbital magnetic �eld is

not negligible. Similarly, one can calculate the spectrum of the edge mode at an edge parallel

to y. For such an edge, vy = ∆β
Vz

and δy = ty.

Surprisingly, the linear dependence of the local DOS at the edge on the supercurrent is

not limited to the strong (chiral) topological phases, but exists also in the weak phases. E.g.,

consider a system in the 0:01 phase with a straight edge parallel to y. There are low-energy

edge modes both near ky = 0 and at ky = π, whose dispersions have opposite slopes. The

dispersion of the edge mode near ky = π is given by E(π + δky) = −δky(vy + Ayδy), to linear

order in δky. Therefore, if we apply a supercurrent near the edge such that the slope of the

edge mode at ky = 0 increases in magnitude, the slope of the mode at ky = π increases as well,
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Fig. 10: The e�ect of an orbital magnetic �eld on the energy spectrum in the 1:00 strong phase
(a) and the 0:01 weak phase (b). The dashed red lines are the spectra of the edge states
in the presence of an orbital �eld, as a function of the momentum along the edge. The
solid blue lines are the corresponding spectra without an orbital magnetic �eld. The
orbital �eld induces supercurrents in the superconductor. As a result, the velocity of
the edge modes changes. The parameters used in the calculations are tx = 1, ty = 0.3,
∆ = 0.6, β = 0.3, Vz = 0.6

√
2, Vx = 0, and α = 1. The chemical potentials are (a)

µ = −1.4, and (b) µ = −2.

and the total DOS at the edge decreases linearly with the current, as can be seen in Fig. 10b

the slope of the edge state changes when the orbital magnetic �eld is not negligible in the weak

phase.

In general, a linear dependence of the DOS on the supercurrent is possible if time-reversal

symmetry is broken. In our system, time-reversal is broken by the external magnetic �eld,

which is present both in the weak and the strong topological phases. In the weak phases,

the edge modes do not carry current; nevertheless, a supercurrent couples to the edge modes

through the phase of the condensate.

In the presence of vortices, the orbital e�ect leads to an interesting variation of the low-

energy local DOS at the edge. Each vortex produces circulating supercurrent. Therefore,

the super�uid velocity at the edge varies as a function of position; it is either enhanced or

suppressed in regions of the edge which are close to a vortex core, depending on the chirality of

the vortex relative to that of the superconductor. (In our system, the relative chirality of the

vortices and the superconductor depends on the signs of the spin-orbit coupling terms α and

β, and is not easy to control externally.) Therefore, according to Eq.(24), the local DOS at the

edge shows either a dip or a peak in the vicinity of a vortex in the bulk.

We tested this e�ect numerically for a �nite system with a single vortex. Fig. 11 shows

the probability distribution of the two lowest energy states in the system. We used two sets



4 The orbital e�ect of the magnetic �eld in a 2D p-wave superconductor 25

(a) (b)

(c) (d)

Fig. 11: The probability distribution of the Majorana zero modes in a system in the strong (1:00)
phase, with a vortex at the center of the system (for a precise de�nition of these zero
modes, see discussion at the end of Sec. 4.2). The coordinate along the wire is denoted
by x, and the wire index by y. Panels (a) and (c) show the probability distribution
of the zero mode at the vortex core; panels (b) and (d) show the distribution of the
zero mode localized on the edge. In (a) and (b), the chiralities of the vortex and
the superconductor are identical, whereas in (c) and (d) the chiralities are opposite.
Notice the change in the distribution of the edge zero mode near the vortex (at x = 0,
y = ±50): in panel (b) the probability has a dip near the vortex, whereas in (d) it has
a peak. This is because of the e�ect of the supercurrents around the vortex on the edge
states. In case (a,b) the velocity of the edge mode increases in the vicinity of the vortex.
Due to probability conservation, the probability current (given by the velocity times the
probability) is divergence free. In order to compensate for the increase in velocity, the
probability near the vortex must decreases. Following the same reasoning, in the case
(c,d) (of opposite chirality), there is a peak in the probability distribution of the edge
state near the vortex. In these calculations, we use the following parameterstx = 1,
ty = 0.3, ∆ = 0.6, ∆y = 0, µ = −1.4, Vz = 0.6

√
2, β = 0.3, and α = 1 [for which the

�sweet point� conditions, Eq.(19), are ful�lled].
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of parameters, one in which the vortex has the same chirality, as shown in Fig. 11a, and the

other in which it has opposite chirality Fig. 11b, relative to the superconductor. The low-

energy states are superpositions of a localized zero mode at the vortex core, and a propagating

mode localized on the edge. The variations of the probability distribution of the edge mode

are proportional to the variations of the local DOS on the edge. As expected, the local DOS

is either enhanced (second row Fig. 11c and Fig. 11d) or suppressed (�rst row Fig. 11a,

and Fig. 11b) in the region of the edges close to the vortex. The vortex is incorporated in

our model by multiplying the order parameter by a spatially dependent phase factor such that

∆(r) = ∆eiΦ(r), where eiΦ(r) = x+iy√
x2+y2

. The vector potential was taken to be ~A = 1
2
B(xŷ−yx̂).1

The Doppler shift e�ect is a signature of all the topological phases, by measuring the

tunneling current into the edge in the presence of a supercurrent Js along the wire direction.

Since, in the London gauge, Js ∝ Ax, According to Eq.(24) the DOS depends linearly on the

current. This can be used to measure the velocity (amplitude and direction ) of the chiral edge

state.

5 Distinguishing between the di�erent phases experimentally

In this part, we discuss ways to distinguish experimentally between the di�erent phases shown in

Fig. 5, the results are summarized in Table 1. These phases can be divided into two groups: the

strong topological phases characterized by ν 6= 0, and the weak topological phases characterized

by ν = 0. Each of these phases is characterized by the appearance of Majorana modes at speci�c

momenta along the edge. The topological phase can be determined by measuring the tunneling

conductance from a metallic lead into the edges.

The strong phases are characterized by the presence of chiral edge states along any edge,

regardless of its direction. The weak phases, on the other hand, may have low-energy edge

states on a boundary along x, y, or both, depending on the values of the weak indices. Scanning

tunneling spectroscopy (STS) experiments, in which electrons tunnel from a point-like tip into

the sample, will detect a �nite tunneling conductance at low energy on all boundaries in the

strong phase. Finding a �nite conductance on a boundary along x but zero conductance on a

boundary along y (or vise versa) is a signature of a weak phase. In all cases, the bulk of the

system is fully gapped.

1 We expect the splitting between the two eigenenergies closest to zero to scale as exp(−Ly/ξy), where Ly
is the size of the system in the y direction and ξy is the corresponding coherence length. (We assume that
Lx � ξx.) The corresponding eigenstates are linear combinations of the localized Majorana state at the vortex
core and a Majorana mode bound to the edge. The next lowest energy scales as ∝ 1

Lx
, due to the �nite size in

the x direction.
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Phases with di�erent weak indices can be distinguished in momentum-resolved tunneling

experiments. One can imagine tunneling from an extended wire into the boundary of the sys-

tem, so that the momentum along the boundary is approximately conserved. A perpendicular

magnetic �eld can be used to control the momentum transfer in the tunneling process [34].This

way, one can isolate the contributions to the tunneling density of states from the vicinity of

k = 0 and k = π along the boundary. The tunneling in speci�c momentum corresponds to

the multiplication of two values of sΓi with the same momentum in certain direction, which

corresponds to the accordant weak number [Eq.(6)]. For example, tunneling from a wire in

ky = π corresponds to multiplication of s(0,π)s(π,π), which is the measurement of νy,π.

Table 1 summarizes the di�erent possible phases and their signatures in STS experiments,

as well as momentum-resolved tunneling experiments at momentum k = 0 or π along the

boundary. By combining these experiments, many of the phases can be distinguished from

each other. However, the 0:11, and 2:11 phases have identical weak indices (see Table 1), hence

tunneling experiments can not distinguish between them. In order to resolve them, one would

need additional experiments (e.g. a measurement of the thermal Hall conductance [4]). Notice,

however, that neither the 0:11 nor the 2:11 phases occur naturally in our coupled-wire setup

(see dashed region in Fig. 5). As discussed in subsection 3.2.1 the 2:11 phase can be realized

in a super-lattice structure, and appendix A describes a possible realization of the 0:11 phase.
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ν:νx,πνy,π s(0,π) s(π,π)
s(0,0) s(π,0)

Edge states (non-chiral

Majorana modes)

Tunneling

DOS from a

local tip

x y

T
ri
v
ia
l

0:00
+ +
+ +

None 0 0

w
ea
k
p
h
a
se
s 0:01

− +
− +

Along the edge ‖ y 0 Finite

0:10
+ +
− − Along the edge ‖ x Finite 0

0:11
− +
+ − Along the edges ‖ x and y Finite Finite

ν:νx,πνy,π s(0,π) s(π,π)
s(0,0) s(π,0)

Chiral Edge states along the

edges ‖ x and y, located near

kx = kx,0 and

ky = ky,0, respectively

Tunneling DOS from a wire

ky = 0
kx =

0
ky =

π

kx =

π

S
tr
o
n
g
p
h
a
se
s

1:00
+ +
− +

kx,0 = 0, ky,0 = 0 Finite Finite 0 0

1:01
− +
+ +

kx,0 = 0, ky,0 = π Finite 0 0 Finite

1:10
+ +
+ − kx,0 = π, ky,0 = 0 0 Finite Finite 0

1:11
+ −
+ +

kx,0 = π, ky,0 = π 0 0 Finite Finite

2:11*
− +
+ −

Two edge modes at kx,0 = 0,

ky,0 = 0

and kx,0 = π, ky,0 = π

Finite Finite Finite Finite

Tab. 1: Summary of the di�erent phases, their edge properties, and their experimental signatures. The di�erent

phases are labeled by the three indices ν:νx,πνy,π, where ν ∈ Z and νx,π, νy,π ∈ Z2. The strong index ν

is given by Eq.(7), and the weak indices, νx,π and νy,π, are de�ned by the product of a pair of sΓi
's [see

Eq.(6)]. The values of sΓi
in each phase are listed in the second column. The third column describes

the edge states. The edge properties can be determined from the sΓi 's. For example, a low-energy

state appears along the edge parallel to x near momentum kx = 0 if s(0,0)s(0,π) = −1, and so forth.

In the upper table, the �rst line is the trivial phase. Lines 2-4 describe the weak topological phases,

which can be distinguished by measuring the local tunneling density of states at low energy on the

edges perpendicular and parallel to the wires.

The lower table lists the strong topological phases. These phases cannot be distinguished from each

other using a local tunneling probe, since they all have low-energy chiral modes on all edges. The

phases di�er in the position of the edge states in momentum space (see Fig. 4). Hence, they can be

distinguished in a tunneling experiment from an extended wire, such that the momentum along the

edge is conserved in the tunneling process (as in the experiments of Ref. [34]). The momentum probed

in the tunneling experiment can be tuned by varying the �ux between the wire and the edge of the

system[34].

(*) The 0:11 and 2:11 phases have identical weak indices. Therefore, they cannot be distinguished

by tunneling experiments. In order to resolve them, one would need additional experiments (e.g., a

measurement of the thermal Hall conductance[4]).
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Conclusions

In this work, we studied an array of weakly coupled superconducting wires with spin orbit cou-

pling. This system can be used to realize a rich variety of two-dimensional topological phases,

either of the �weak� or �strong� kind. One can tune between di�erent phases using experimen-

tally accessible parameters, such as the chemical potential and the magnetic �eld. The strong

phases are anisotropic analogous to the chiral p + ip phase, and have chiral (Majorana) edge

modes at their boundaries.

In particular, there is a choice of parameters, such that the chiral edge states are almost

completely localized on the two out most wires. At this �sweet point�, the edge states on the

two opposite edges do not mix even in a system with few wires. Similarly, at this point in

parameters space, the Majorana zero mode at a vortex core is tightly localized in the direction

perpendicular to the wires, and resides only on one or two wires.

Each one of the topological phases has a unique signature in its edge spectrum. The di�erent

phases can be distinguished in tunneling experiments into the edge. Moreover, density of states

of the Majorana edge modes is predicted to vary linearly with an applied supercurrent in the

wires.
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Appendices

A The topological phase 0:11

The topological phase 0:11 does not appear in the physical system of coupled wires, or in the

simpli�ed model described in Sec. 2. One can imagine a di�erent setup that realizes this phase,

such as the one presented in Fig. 12. Consider two layers of weakly coupled parallel wires,

rotated by 90o relative to each other. Initially, suppose that there is no coupling between the

two layers. One of the layers is in the 0:01 phase (i.e., adiabatically connected to a phase of

decoupled 1D topological superconductors oriented along the x direction), and the other is in

the 0:10 phase. If we turn on a weak coupling between the two layers, we get a single two-

dimensional system whose indices are the sums of the indices of the two constituents (modulo

2). The entire system is therefore in the 0:11 phase.

The 0:11 phase is characterized by having non-chiral Majorana edge modes at low energy

on edges along the x or y directions. More generally, on an edge directed along an angle θ such

that tan θ = p/q (where p, q are integers), there is a low energy Majorana mode if p+ q is odd.

This can be seen from fact that such an edge preserves translational invariance along (p, q). If

we turn o� the coupling between all the wires (both within each layer and between the layers),

every unit cell of the edge contains p + q Majorana zero modes. Upon turning on inter-wire

coupling, we get an edge mode that crosses zero energy at momenta 0 and π parallel to the

edge if the number of Majorana zero modes per primitive unit cell is odd. Otherwise, we can

pair the Majorana zero modes within each unit cell and gap them out.

It is interesting to consider the case of an edge such that tan θ is irrational. In this case,

the edge breaks translational symmetry, so we cannot de�ne the number of Majorana modes

in a unit cell in the decoupled limit. On physical grounds, we expect to get a gapless mode in

this case, since we can approximate tan θ by p/q arbitrarily well, with p+ q =odd.

B Computation of the topological invariants in an array of coupled

quantum wires

The Hamiltonian Eq.(9) in momentum space is given byH = 1
2

∑
ψ†kh(k)ψk, where k = (kx, ky),

and

h(k) = ξkτz + αsin(kx)τzσy + Vzσz + [∆ + ∆ycos(ky)] τx + βsin(ky)τzσx. (25)
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Fig. 12: Two layers of the model presented in Sec. 2, when one is rotated in 90o, in this
con�guration the phase 0:11 can be reach.

Here, ξk = −2txcos(kx) − 2tycos(ky) − µ. According to Eqs.(6), the topological indices only

depend on the Hamiltonian at the high symmetry points Γi. At these points, it is convenient

to transform to the Majorana basis: ψΓi = V γΓi , where γ
T
Γi

=
(
χ1 χ2 χ3 χ4

)
(χ1...4 are

Majorana operators) and

V =
1

2


1 0 i 0

0 1 0 i

0 1 0 −i
−1 0 i 0

 . (26)
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In this basis, the Hamiltonians at the high symmetry points are given by

BΓi = V †HΓiV =
1

2
τy(ξΓi + Vzσz − i∆σy) =

i

2


0 0 ξΓi + Vz −∆

0 0 ∆ ξΓi − Vz
−(ξΓi + Vz) −∆ 0 0

∆ −(ξΓi − Vz) 0 0

 . (27)

The Pfa�ans of BΓi can be computed using the relation

Pf


0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0

 = af − be+ dc.

In our case, c = −∆, d = ∆, a = 0, d = ξΓi + Vz, and e = ξΓi − Vz. This gives sΓi =

sign {i [Pf(BΓi)]} = sign
(
ξ2
Γi
− V 2

z + ∆2
)
. From this, the Z2 indices can be computed using

Eq.(6). It also enables us to produce the phase diagram as depicted in Fig. 5 up to the parity

of the Chern number using Eq.(8). We have calculated the Chern number numerically and

veri�ed these conclusions. The calculation was done with periodic boundary conditions in both

directions, using the formula[3]:

ν =
1

π

∑
k∈BZ

∑
αβ∈x,y

εαβTr(P (k)∂αP (k)∂βP (k)), (28)

where P (k) is a projection operator on the negative energy bands, de�ned as P (k) =
∑

{En<0}
|ψn〉〈ψn|.

Substituting P (k) into Eq.(28), we arrive at Eq.(7). In Appendix C we give an analytical ex-

planation for the existence of the strong index ν = 2 in the phase diagram.

C Explanation for the existence of ν = 2 in the phase diagram

In order to understand the appearance of a phase with a strong index ν = 2 in the model

described in Sec. 3, we analyzes the changes in the Chern number along a trajectory in the

parameters space Vz − µ. Along the line µ = 0 and −∞ < Vz < ∞, the gap closes at

Vz = ±
√

∆2
eff + (2tx ± 2ty)2 [see Eq.(12)]. At each of these points in the parameters space,

the closure of the gap occurs simultaneously at two points in the Brillouin zone. E.g., at
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Vz =
√

∆2
eff + (2tx + 2ty)2 = V c+

z , the gap is closes at k = (0, 0) and (π, π), whereas at

Vz =
√

∆2
eff + (2tx − 2ty)2 ≡ V c−

z , the gap closes at k = (π, 0) and (0, π). Near these points,

the low-energy part of the spectrum is linear (Dirac-like). Tuning Vz away from V c±
z , Dirac

mass terms appear. The vicinity of each Dirac point in the Brillouin zone contributes sign(m)/2

to the total Chern number, where m is the Dirac mass. Thus, a sign change in the mass term

corresponds to a change in the total Chern number by ±1. Below, we derive the form of the

linearized Dirac Hamiltonians at Vz = V c+
z and the mass terms, which arise away from these

points, and shows that the Chern number changes by ±2 as Vz is swept through V
c+
z .

First, we project the Hamiltonian Eq.(25) to the two bands closest to zero energy. At the

critical point Vz = V c+
z , the zero-energy eigenstates are vT1,Γi = ( −1 0

ξΓi+Vz

∆
0 ), vT2,Γi =(

0
ξΓi+Vz

∆
0 1

)
where Γ1 = (0, 0) and Γ2 = (π, π), and ξk = −µ−2tx cos(kx)−2ty cos(ky).

The e�ective 2×2 Hamiltonians in the vicinity of Γ1,2 and near the critical point V c+
z are given

by H2×2(Γi) =

(
v†1,Γi
v†2,Γi

)
H
(
v1,Γi v2,Γi

)
(where i = 1, 2). Explicitly,

H2×2(Γ1) =
V 2
z − V 2

z,c+

2Vz
σz −

α∆

Vz
δkxσy −

β∆

Vz
δkyσx,

H2×2(Γ2) =
V 2
z − V 2

z,c+

2Vz
σz +

α∆

Vz
δkxσy +

β∆

Vz
δkyσx.

Here, δk = k− Γi.

At su�ciently large Vz, the strong index is ν = 0. Crossing through Vz = V c+
z , the

contributions to the Chern number from Γi is given by

νΓ1 = νΓ2 =
1

2
sign(

V 2
z − V 2

z,c+

2Vz
)sign(

∆2

V 2
z

αβ). (29)

Therefore, the change in the Chern number from Vz > V c+
z to Vz < V c+

z is ∆ν = ∆νΓ1 +

∆νΓ2 = −2. In the same way, tuning Vz through V
c−
z from above changes the Chern number

by ∆ν = 2.
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D Quasi-particle spectrum in the presence of orbital magnetic �eld

In this appendix, we will show that the density of states of the edge modes in the presence of an

orbital magnetic �eld (or a supercurrent parallel to the edge) is linear in the vector potential.

We consider a BdG Hamiltonian of the form H = 1
2

∑
k

Ψ†kh(k,A)Ψk, using the Nambu notation:

Ψ†k =
(
ψ†↑,k, ψ

†
↓,kψ↓,−k,−ψ↑,−k

)
, and

h(k,A) =

(
H0(k,A) ∆k

∆†k −σyH∗0 (k,−A)σy

)
. (30)

Here, H0(k,A) is the normal (non-superconducting) Hamiltonian, and ∆k is the pairing matrix.

We note that the particle-hole symmetry is expressed in this basis as follows: C = τyσyK. This

implies h(k,A) = −Ch(k,A)C. Hence, the spectrum should satisfy

E(k,A) = −E(−k,A) (31)

.

We now consider a semi-in�nite system with periodic boundary conditions in the x direc-

tion and half-in�nite in the y direction. The equations for the eigenstates acquire the form:

h(kx,A)|ψm(kx,A)〉 = Em(kx,A)|ψm(kx,A)〉, where h(kx,A) is a matrix whose indices are the

wire labels, and m runs over all the eigenstates.

Let us assume that there is a single Majorana edge mode at kx = 0 and that A = Axx̂.

Expanding the edge mode energy, E0(kx, Ax), near kx = 0 and Ax = 0, we get

E0(kx, Ax) = E0(0, 0) + kx∂kxE0|kx,Ax=0 + Ax∂AxE0|kx,Ax=0 + kxAx∂kx∂AxE0|kx,Ax=0 + · · · .

Particle-hole symmetry [see Eq.(31)] requires that E0(0, 0) = 0 and ∂AxE0|kx,Ax=0 = 0. We

denote vx = ∂kxE0|kx,Ax=0, δx = ∂kx∂AxE0|kx,Ax=0. The coe�cients vx and δx can be calculated

using:

vx = 〈ϕ0|∂kxh|ϕ0〉, (32)

δx = ∂Ax〈ϕ0|∂kxh|ϕ0〉 = (〈ϕ0|∂Ax∂kxh|ϕ0〉+ 〈∂Axϕ0|∂kxh|ϕ0〉+ c.c.) . (33)
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Substituting |∂Axϕ0〉 =
∑
m 6=0

|ϕm〉〈ϕm|∂Axh|ϕ0〉
Em−E0

, we can arrive to the following formula:

〈∂Axϕ0|∂kxh|ϕ0〉 =
∑
m6=0

〈ϕ0|∂kxh|ϕm〉〈ϕm|∂Axh|ϕ0〉
Em − E0

. (34)

In Eqs.(32), (33), and (34), |ϕm〉 is evaluated at kx = Ax = 0.

For the model described in Sec. 3, ∆k = I2×2∆ and H0 has the following form near kx = 0:

H0(k, A) = tx(kx − Ax)2 − 2ty cos(ky)− µ− 2tx + αkxσy + βkyσx + Vzσz.

In the sweet point, discussed in 3.2.2, the edge state at kx = 0 is completely localized on the

out most wire. In the limit Vz � ty, β, we can evaluate Eqs.(32), (33), and (34) perturbatively

in ty/Vz and β/Vz. To zeroth order, we can replace the wave-functions |ϕm〉 (m 6= 0) with the

eigenstates of the decoupled wires (ty = β = 0). Using the explicit form of the single wire

eigenstates, ψ1,kx,j, ψ2,kx,j and their particle-hole partners [given in Eqs.(16) and (15)], we get

vx = α〈ψ1|τzσy|ψ1〉 =
∆α

Vz
, (35)

δx = tx.

E The e�ect of the orbital �eld on the �sweet point�

Here, we demonstrate that the �sweet point� condition [Eq.(19)] is not modi�ed in the presence

of a small orbital magnetic �eld.

Let us consider a system with a uniform orbital �eld. The single-wire part of the Hamiltonian

is given by:

Hj =

ˆ
dkxεj(kx, φ)ψ†kx,jψkx,j − αsin (kx − 2πφj)ψ†kx,jσyψkx,j (36)

+Vzψ
†
kx,j

σzψkx,j + ∆ψ†kx,j(iσy)ψ
†
−kx,j + h.c..

Here, 2πφ is the �ux per unit cell, and εj(kx, φ) = −2txcos(kx − 2πφj)− µ. We have used the

Landau gauge, such that Ax = By = 2πφj.
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Applying the same procedure as in Sec. 3, the Hamiltonian matrix at kx = 0 is given by:

hj(kx = 0, φ) = εj(0, φ)τz + Vzσz + αsin(2πφj)σy + ∆τx. (37)

For a su�ciently small orbital �eld such that αeBLy � ∆, Vz
2 (where Ly is the width of the

system), we can treat the orbital �eld perturbatively. To zeroth order in φ, the single wire

Hamiltonian at the critical point [Eq.(14)] is diagonalized by a Bogoliubov transformation Wkx

speci�ed in Eq.(16). In terms of the eigenstates ψ1,kx,j and ψ2,kx,j, the vector potential term is

−α2πφjψ†kx,jσyψkx,j + h.c. = iα
∆2(1 + s2)

(Vzs)2
2πφjψ†2,kx,jψ

†
1,kx,j

+ h.c.. (38)

Here, s ≡ −2tx−µ+Vz
∆

. Upon projecting the Hamiltonian onto the low-energy (ψ1,kx,j) sector,

this term is zero as it couples ψ1,kx,j and ψ2,kx,j. Therefore, to �rst order in φ, the inter-wire

Hamiltonian projected to the low-energy subspace retains the form of Eq. (18). I.e., to �rst

order in φ, the �sweet point� condition [Eq.(19)] is una�ected.

2 Taking α = ∆SOλSO/~ where λSO is the a typical spin orbit coupling length and ∆SO is a typical spin
orbit energy. Since Vz = gB~e

2me
, the factor B in the inequality condition cancels and we �nd the condition

∆SO � g~2

2meλSOLy
. For λSO = 100nm, Ly = 1µm the requirement is ∆SO � 0.01g[K]. In the experiments

[10, 9] this condition is only marginally satis�ed.
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