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Abstract

Two di�erent low dimension systems were studied in this work, being candidates for exhibiting topo-

logical superconductivity. The �rst was an experiment-oriented study of a scanning tunneling microscope

probe of a one dimensional (1D) system composed of a semiconducting InAs nanowire coated with su-

perconducting Al islands.

It was found that a ρ (E) model, in which the environment of the tunneling junction is described

by a constant capacitance due to signi�cant charging energy, describes the Coulomb blockade physics

appearing in the conductance measurements rather well. To obtain an agreement with additional �ne

features in the conductance measurements we re�ned the environment model to include the e�ects of

the interface between the island and the nanowire. The model we developed was also used to predict

the e�ect of both regular and topological superconductivity on conductance measurements, which in the

superconducting case was con�rmed by measurements.

The second topic of study was a two dimensional (2D) system based on a model for a Chern insulator,

but with introduced superconductivity. The precursor model was studied �rst as a baseline for the

more advanced model, characterizing its topological phase diagram using the Chern number topological

invariant of the system while laying down a general approach to calculate the topological invariant and the

phase boundaries. This approach was utilized in the full model, after superconductivity was introduced

in a simple intra-site form, to draw the phase diagram using the Chern number. The concept of weak

topological phases was then introduced into our model, introducing two indices νx,π, νy,π which together

with ν fully characterize the topological phases and their corresponding edge mode structure. A complete

topological phase diagram and a detailed account of the edge mode structure of the existing phases was

then constructed. Finally, the conclusions were generalized to the case of additional, e.g. inter-site, weak

superconducting pairings.
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1 Table of Abbreviations

• SC - Superconductor\Superconductivity

• W.r.t. - With respect to

• STM - Scanning Tunneling Microscope

• DoS - Density of States

• DBTJ - Double-barrier Tunnel Junction

• nD - n-Dimensional

• BZ - 1st Brillouin Zone

• BHZ - Bernevig-Hughes-Zhang

• BdG - Bogoliubov-de Gennes
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2 Introduction

Topological phases of matter, speci�cally topological insulators and topological superconductors, have gar-

nered much attention in the past few years [1, 2, 3]. These phases of condensed matter systems are character-

ized by a band structure with a gap for bulk excitations and boundaries supporting topologically protected

(robust against local perturbations) gapless edge states. In addition, topological defects in these phases may

carry exotic zero-energy excitations with a similar topological protection. In topological superconductors,

these defects usually come in the form of vortices in 2D superconductors with chiral symmetry and p-wave

superconducting (SC) pairing [4] or edges of 1D spinless p-wave superconducting wires [5], and support

localized states known as Majorana zero modes. Due to the non-Abelian exchange statistics of these zero

modes, they have been proposed as possible ingredients for a topological quantum computer [6, 7], which

makes them highly sought-after. This makes designing and studying realistic systems where Majorana zero

modes appear an important theoretical issue. Most of the theoretical proposals for such systems exhibiting

Majorana fermions are based on the above two low-dimensional models (1D spinless p-wave and 2D chiral

p-wave superconductors) [8], and two speci�c ones will be at the focus of this thesis.

The �rst and currently the most promising and feasible experimental proposal for realizing Majorana zero

modes devices is the quasi-1D semiconducting nanowire with strong spin-orbit coupling such as InAs or InSb,

proximity coupled to an s-wave superconductor [9, 10]. Majorana zero mode signatures have been detected in

recent experiments in heterostructures of such semiconducting wires and superconductors [11, 12]. A major

barrier to advance such systems to handle dedicated quantum computation applications, however, is dubbed

�quasiparticle poisoning" - processes that disturb the computation by changing the number of electrons in

the system, since the ground state parity must be conserved for the topological protection to hold. A possible

remedy to this problem is a suggested system design based on weakly coupled "Majorana islands", where

the electrostatic charging energy EC , which sets the energy scale for electron transport through the island,

is large enough to prevent such transport and therefore �xes the total number of electrons in the system

[13, 14]. In this realization, it is evident that the electronic properties of the buried interface between the

semiconducting nanowire and superconducting islands must also be well understood before a device can be

realized.

The second proposal involves reaching a realization of a spinless, chiral p-wave superconductor phase

with a gapless edge state which is a chiral Majorana zero mode. A plethora of such possible realizations

have been presented and studied, from a 2D spinless �p+ip�-pairing superconductor [4] to an array of weakly

coupled p-wave superconductor nanowires [15], as well as many others [8, 16, 17]. Using a simple spinless

model, an even more general analysis of the �topological class� of 2D chiral superconductors was performed,

revealing a rich phase diagram as well as pointing out the role di�erent types of topological invariants

have in protecting the Majorana zero modes [18]. The �topological class� of a system refers to its place in

the complete classi�cation of topological phases based on its symmetries (time reversal, particle-hole, and

chiral symmetries) and its dimensionality, and the di�erent topological classi�cations are readily summarized

in a type of �periodic table� [19, 20]. The spinless p-wave superconductor belongs to class D (particle-hole

symmetric but not time reversal symmetric) and is characterized by a Z (integer) topological invariant which

counts the number of gapless chiral Majorana modes on the system's boundary and di�erentiates between

phases. When translational symmetry is also present, two additional Z2 topological invariants which count

the parity of the number of chiral Majorana modes propagating in each direction can be de�ned. The Z
invariant is referred to as a strong index, and the Z2 invariants as weak indices [21]. These a�ord a more
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comprehensive description of the topological phases of the system and the existing edge modes.

This work set out to further push the boundary on both the study of realizable topological superconduc-

tors from a more experimental approach and the study of new theoretical models for possible rich and novel

realizations of a topological superconducting phase with Majorana zero modes and Majorana edge modes.

The thesis outline is as follows: in Chapter 3, a theoretical study of an experimental scanning tunneling

microscope (STM) probe of the �Majorana island� realization detailed above is brought forth, done in col-

laboration with experimentalist Dr. Jonathan Reiner (who performed the experiment and collaborated on

the analysis) of Dr. Haim Beidenkopf's group. The experimental setup is described and then the suggested

theoretical treatment of the system and its implications is detailed, closely following each step by supporting

evidence - numerical simulation of the theoretical model �tted to the experimental measurements. We start

by attempting to understand the system when no superconductivity is present, and �nish by tackling super-

conductivity, speci�cally seeking to pinpoint the signature of topological superconductivity (if it exists) in

such a system.

In Chapter 4, we suggest a new topological class D model which is based on a Chern insulator, a class A

(no symmetries) topological insulator, with introduced superconductivity. We �rst study the phase diagram

of the Chern insulator, proceed to introduce superconductivity in the simplest possible form, continue on to

build the topological phase diagram and characterize the system's strong and weak topological phases and

edge modes, and �nish by discussing the most general manner in which superconductivity can be introduced

to the system.

Finally, in Chapter 5 we conclude and propose interesting future directions for research.
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3 Topological Superconductivity Signature in a 1D System: An

STM probe of Al-coated InAs Nanowires

3.1 The Experimental Setup and the Scanning Tunneling Microscope

The experimental approach was a low-temperature scanning tunneling microscopy (STM) probe of a material

system of the type described in the introduction - InAs (semiconductor) nanowires epitaxially coated with

Al (a superconductor with a bulk critical temperature TC = 1.2 K) islands, as can be seen in Figure (1).

Figure 1: (A-B) Scanning Electron Microscope image of an InAs nanowire covered with epitaxially grown
Al islands. (C) False-color STM topography of a nanowire (blue) on a gold substrate (yellow) covered
with Al islands (gray). The e�ective shape of the tip apex smears the islands so that the Al cover appears
continuous. The arrow label denotes the InAs crystallographic axis.

An STM measurement is based on an atomically sharp conducting tip positioned a very short distance

from the surface of a sample, forming a tunnel junction - a system comprised of two conducting materials we

label �electrodes� (in this case the STM tip and the sample), separated by a potential barrier (the vacuum\air

between the two), where the electrons from an electrode can only move to the other electrode via quantum

tunneling through the barrier. Using a semiclassical model of single-electron stochastic tunneling [22], the

tunneling rate of electrons from electrode a through the junction to electrode b is then given by a Fermi

Golden Rule calculation [23, 24] (assuming that the quantum probabilities for elastic tunneling of electrons in

di�erent energy levels are independent, and therefore the net transition rate can be calculated by integrating

over the single-electron energy levels):

Γab =
2π

~

∫ ∞
−∞
|Tab (E)|2 ρa (E − εaF) ρb

(
E − εbF

)
f (E − εaF)

(
1− f

(
E − εbF

))
dE. (1)

Where Tab (E) is the tunneling matrix element (which is determined by the overlap of the wavefunctions from

both conductors as well as the properties of the barrier), ρi (E) is the local electronic density of states (DoS

- the number of electronic states per unit energy) at electrode i = a, b, εiF is the Fermi energy of electrode i

and f (E) is the Fermi-Dirac distribution function

f (E) =
1

e
E
kBT + 1

, (2)

where kB is the Boltzmann constant and T is the temperature (it is assumed all components of the system

are at thermal equilibrium). We note that all the integrands are generally energy dependent.

The energy di�erence εbF−εaF is just the energy an electron gains during the tunneling event (from a to b).

Assuming that the charge distribution completely relaxes during the tunneling event (the time of tunneling
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is much longer than the relaxation time of the system but shorter than the time between tunneling events),

the energy di�erence is given by the change in the electrostatic energy of the system [23]. When applying an

external voltage bias V over the junction, this energy di�erence is just eV , with e being the electron charge.

For a graphic depiction, see Figure (2).

The STM apparatus is constructed so that the density of states of the metallic tip around εF changes

on an energy scale su�ciently larger than the energy scales considered, allowing it to be treated as uniform,

and the tip is kept at such a distance from the sample as to make the overlap between the wavefunctions of

electrons at electrodes a and b exponentially small, allowing us to use the Bardeen approximation - under

reasonable assumptions on the wavefunctions, we treat T (E) as virtually independent of the energy di�erence

εbF − εaF, depending instead only on the distance between the tip and the sample s [25]:

|Tab (E)|2 ≡ |M |2 = e−2κs, (3)

Figure 2: (A) Schematic diagram of a tunnel barrier with two metallic electrodes. The electrodes are
separated by a thin vacuum barrier and biased by voltage V . The respective barrier height is ϕsample and
ϕtip. The tunneling current is facilitated by the exponential tails of the wavefunctions. Inset: The STM
realization of the tunneling barrier. (B) Energy diagram of the respective DoS of the tip (assumed to be �at)
and the sample. The curves in the lateral direction correspond to total DoS at the corresponding energy,
while blue signi�es �lled states. Only electrons in the range [εF, εF ± eV ] contribute to the tunneling current
(up to thermal broadening). Figure taken from [26].

where κ ∼ 1Å−1, causing an exponential decline in amplitude on an atomic scale, the key feature behind

the STM's ability to create sample topography maps at atomic-scale resolution (see Figure (1)C).

The overall tunneling current from the tip to the sample is just:

I = e (Γtip→sample − Γsample→tip) . (4)

Aggregating the above results and assumptions, as well as assuming the temperature energy scale kBT

to be smaller than all relevant energy scales and so can be treated as 0, one arrives at a clean expression for

the tunneling current:

I (V ) = −4πe

~
ρtip (0) |M |2

∫ 0

−eV
ρsample (εF + ε) dε. (5)
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This means that around any bias V a di�erential conductance measurement will yield:

dI

dV
|V ∝ ρsample (εF − eV ) , (6)

allowing a probing of the energy dependence of the local density of states of the sample. Moreover, by

varying the distance between tip and sample such that dI
dV is locked at some predetermined value (assuming

ρsample changes little along the sample edge), a topographical map of the sample surface is obtained.

For the sake of consistency, we note that the way dI
dV is measured (creating an AC voltage oscillation with

amplitude dV around the DC voltage V and measuring the resulting current modulation dI) introduces an

instrumental error ∼ 5 meV (comparable to the error introduced by a temperature of about ∼ 50 Kelvin)

to the measurement which is an order of magnitude larger than the error∼ 1 − 0.1 meV obtained from

neglecting the temperature in the experiment (0.4 − 4.2 K) or less, mildly supporting our previous neglect

of temperature e�ects regardless of the electronic energy scales in the problem.

3.2 The ρ (E) Model

In most settings such an STM probe is enough to determine the sample DoS. Indeed, di�erential conductance

measurements in uncoated areas of the nanowire are almost identical to such measurements on a completely

uncoated nanowire, and both correspond to the predicted density of states of a 1D semiconductor system as

can be seen in Figure (3) when compared to Appendix (7.1).

Figure 3: Typical conductance ( dIdV ) curves measured for a bare nanowire (black) and for a nanowire coated
with Al islands (blue, where the measurement was done o� the islands). In both cases the conduction band

begins at about the same energy - 100 meV below εtip
F .

However, measurements over the Al droplets are not reminiscent of the �at (metallic) Al DoS, the

nanowire DoS or any simple superposition of the two. This (and further spectral features which we will

tackle later on) lead to the understanding that electrons that cross the Al to InAs interface encounter an

energy barrier, and the Al droplet to nanowire interface actually acts as a second tunnel junction (the STM

tip to droplet interface being the �rst), with the complete system now a double-barrier tunnel junction

(DBTJ).

DBTJ systems have been theoretically studied in simpli�ed settings, and modeled successfully by a

simpli�ed ρ (E) model of correlated electron tunneling [24, 27], with an analytical solution even for a more

general setting [23]. This model assumes:

1. The semiclassical assumption: The state of the DBTJ is fully determined by a single classical variable
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V , the voltage over the junction. Moreover, the the tunneling current is given by equation (1) with

the same underlying assumptions, and is determined fully by electrostatic energy considerations over

the junction:

εaF − εbF ≡ −∆Eab. (7)

2. Each tunneling junction i is a mesoscopic component: It has a �nite capacitance Ci and resistance

Ri, such that the consequent charging energies (the energy required to charge the junction with one

elementary charge e) ECi ≡ e2

2Ci
is greater than the thermal energy of the system ECi > kBT and also

Ri > RQ where RQ ≡ π~
2e2 ∼ 6.5 kΩ is the resistance quantum. The DBTJ is represented in terms of a

classical circuit as demonstrated in Figure (4).

Figure 4: Schematic diagram of the equivalent classical circuit to the DBTJ system when the STM tip is
positioned over an Al droplet. Junction 1 corresponds to the Al island-nanowire interface while junction 2
corresponds to the STM tip-Al island interfact. The nanowire is grounded (zero voltage) while the tip is
gated (voltage V ).

As the tunneling process is also assumed stochastic, the number of extra electrons N on the island

resulting from a tunneling process at any time t is modeled by a probability distribution function σ (N,V, t)

(where, following the assumption, this probability is fully determined by V ). As we are interested in a steady

state solution, the t dependence can be discarded and σ (N,V ) must satisfy a detailed balance relation,

requiring the net probability for making a transition between any two adjacent states in a steady state to

be zero:

σ (N,V )
(
Γ1

+ (N,V ) + Γ2
+ (N,V )

)︸ ︷︷ ︸
total tunneling rate onto

island with N electrons

=
(
Γ1
− (N + 1, V ) + Γ2

− (N + 1, V )
)︸ ︷︷ ︸

total tunneling rate out of

island with N + 1 electrons

σ (N + 1, V ) . (8)

Where 1, 2 denote the island-nanowire junction and the tip-island junction respectively, and + (−) signify
tunneling onto (o�) the island. A normalization of probability constraint must also be present for any V :

∞∑
N=−∞

σ (N,V ) = 1. (9)
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An analytical solution for σ (N,V ) solely in terms of the tunneling rates Γ±j (N,V ) exists [23]:

σ (N,V ) =

∏N−1
i=−∞

(
Γ1

+ (i, V ) + Γ2
+ (i, V )

)∏∞
i=N+1

(
Γ1
− (i, V ) + Γ2

− (i, V )
)

∑∞
j=−∞

[∏j−1
i=−∞

(
Γ1

+ (i, V ) + Γ2
+ (i, V )

)∏∞
i=j+1

(
Γ1
− (i, V ) + Γ2

− (i, V )
)] . (10)

Moreover, it is expected to be sharply peaked

Next, taking into account the energy change resulting from a single tunneling event using electrostatic

circuit energy considerations, we have:

∆E±1 = ∆U± ± eC2

C1+C2
V

∆E±2 = ∆U± ∓ eC1

C1+C2
V

∆U± = (Q±e)2

2(C1+C2) −
Q2

2(C1+C2) ,

(11)

where Q is the excess charge on the center electrode before the tunneling event. ∆U± is just the change in

charging energy of the center electrode as it gains or loses one electron respectively, and the second term

in ∆E±j is the potential di�erence across the corresponding junction times the electron charge. We denote

Q = Ne −Q0, where N is the integer nearest Q
e (|Q0| ≤ e

2 ) and Q0 accounts for the possible presence of a

fractional residual charge, which is thought to be due to the di�erence in the work functions of the di�erent

materials used in the junctions [28] and therefore remains unchanged with tunneling events (and as such is

only a function of the location of the tip over the sample and not a function of N or V ).

We can rewrite equations (11) as

∆E±1 = EC

(
1 + 2

(
N − Q0

e

))
± eV

1+
C1
C2

∆E±2 = EC

(
1− 2

(
N − Q0

e

))
∓ eV

1+
C2
C1

,
(12)

where EC ≡ e2

2(C1+C2) is the DBTJ total charging energy. The tunneling rates are simple to determine

in most realizations of the simpli�ed ρ (E) model - the tunneling matrix element is assumed independent

of energy for both junctions (T1,2 (E) ≡ T 0
1,2) and the density of states for all electrodes is assumed to

be metallic (constant in energy measured relative to their Fermi energy: ρtip (E) = ρ0
tip, ρAl (E) = ρ0

Al,

ρInAs (E) = ρ0
InAs), simplifying eq. (1) giving the simple form:

Γ±j (N,V ) =
−∆E±j
Rje2

Θ
(
−∆E±j

)
, (13)

where

Rj ≡
~

2πe2

1

ρ0
j,aρ

0
j,b

∣∣T 0
j

∣∣2 (14)

is appropriately recognized as the resistance of junction j (ρ0
j,i are the DoS of the two electrodes i = a, b

comprising junction j), Θ is the Heaviside step function and negligible temperature T � ∆E±j was assumed.

Finally, the current through the DBTJ is given by:

I (V ) = e
∑∞
N=−∞ σ (N,V )

(
Γ+

2 (N,V )− Γ−2 (N,V )
)

= e
∑∞
N=−∞ σ (N,V )

(
Γ−1 (N,V )− Γ+

1 (N,V )
) (15)

and the di�erential conductance dI
dV (V ) is just the derivative of equation (15) with respect to (w.r.t.) V .
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When used in the framework of standard STM measurements, the model can be greatly simpli�ed by

assuming R2 � R1, justi�ed because the tip-sample resistance in such experiments is on the order of 1GΩ

contrasted with standard sample resistances on the order of 1− 10KΩ. We dwell on this approximation and

the simple ρ (E) model because it a�ords insight on the broad-strokes behavior of the DBTJ.

First, by combining this assumption with equations (8),(13) it is evident that σ (N,V ) is sharply peaked

around some most-probable number of electrons on the central electrode N0 (V ) (σ (N,V ) ≈ δN,N0(V )) which

is set as the integer which satis�es

e−1
(
−C2V +Q0 −

e

2

)
≤ N0 ≤ e−1

(
−C2V +Q0 +

e

2

)
(16)

and the current is given by

I (V ) =

0
− e2 +N0e−Q0

C1
≤ V ≤

e
2 +N0e−Q0

C1

−(N0e−Q0)+C1V− e2 sgn(V )

R2(C1+C2) else
. (17)

A typical σ (N,V ) plot validating our sharply-peaked assumption and an I (V ) curve with its corresponding

conductance ( dIdV ) curve is given in Figure (5).

Figure 5: Typical curves for the simpli�ed ρ (E) model (R2 � R1, C2 < C1), simulated. Voltage is
measured in units of energy (eV ). Note the voltage scaling of the features derived from equations (16),(17)
detailed in the legend. (A) Conductance ( dIdV (V )) curve. Note the presence of both the Coulomb gap and
the charging resonances. (B) Corresponding current-voltage (I (V )) curve. (C) σ (N,V ) false color plot,
describing the probability of electron occupation N at bias V .

The bias domain around V = 0 for which I (V ) = 0 (and also dI
dV = 0) is dubbed the �Coulomb blockade�

regime, where the electrostatic repulsion prevents electron transport through the island even when external

voltage is applied, and the corresponding gap in the dI
dV spectrum is labeled the �Coulomb gap�.
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At higher voltages the current enters a linear-in-V (�Ohmic�) regime where

I (V ) ∝
(
R2

(
1 + C1

C2

))−1

V + const.

dI
dV =

(
R2

(
1 + C1

C2

))−1 (18)

since it is energetically favorable for the system to allow electron transport through the island. This behavior

is interrupted each time the bias a�ords enough energy for the electron occupation of the island N0 to change

by 1 (C2V reaches the next integer multiple of −e), resulting in even more favorable conditions for electron

transport through the island (leading to a discrete jump in I (V ) and therefore a sharp peak in conductance),

after which the the Ohmic regime resumes (equation (18)), and so forth. As sharp peaks in the conductance

curve signal a change in the island charge, they are labeled �charging resonances�.

In order to isolate any e�ects non-pertinent to superconductivity that are not accounted for by the simpli-

�ed ρ (E) model, such as e�ects that the non-metallic nanowire might introduce, the �rst measurement of the

experiment was performed at T = 4.2 K (above TC). It turns out that the simpli�ed ρ (E) model accounts

excellently for the broad-stroke features of the conductance measurements performed in this measurement

as is shown by the dashed red line best �t in Figure (6). The Coulomb gap and charging resonances, as well

as the overall behavior, comply with the model. An arti�cial Gaussian smearing is introduced to account

for the �nite resonance height and width (originates mostly from �nite instrument accuracy, which is set as

the Gaussian's σ parameter).

Figure 6: dI
dV at a particular position on the droplet (inset) at T > TC, with a �t to the simpli�ed ρ (E)

model (red dashed line). The annotations refer to the circuit parameters that can be extracted from the
measurement using equations (16),(17) and (19). Note the excellent �t of the model to the broad-stroke
features (resonance peak location and width, Coulomb gap location) contrasted with its poor �t to the �ne
features mainly at the exit of the Coulomb gap.

This model also captures the asymmetry of the gap and peaks w.r.t. V = 0 via Q0, which a�ects the

conductance by shifting the Coulomb gap and the charging resonances in opposite directions in energy,

explaining their anti-correlated shifts observed when the tip scans over the island (Q0 is dependent, among
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other things, on the work function close to the tip, and therefore changes as the droplet is scanned) as can

be seen in Figure (7). Accounting for this from now on, we can disregard this e�ect henceforth.

Figure 7: Positive resonance peak voltage (blue) and voltage measured at the middle of the Coulomb gap
(red) as the tip scans over a droplet, illustrating their anti-correlated nature. Notice the opposite and scaled
corresponding voltage axes. This anti-correlated shift is taken into account by the model parameter Q0.

However, as can be seen in Figure (6), a notable deviation from the model occurs at the onset of the

Ohmic-like regime, which exhibits a nontrivial structure that suggests additional physics we did not capture,

and which will be discussed below.

Extracting C1, C2 and R2 predicted by the model using the method described in Figure (6) gives

C1 ∼ 1.5 aF, C2 ∼ 0.3 aF (C1 > C2) as well as R2 ∼ 1 GΩ (which �ts our estimate from before). To

estimate R1, we note that the width of the resonance in Figure (6) is actually larger than the experimen-

tal resolution (taking into considering both temperature-induced broadening and instrumental broadening).

This broadening δ around the charging peak Vp actually results from our crude approximation R1

R2
≈ 0, and

can be used to estimate R1 via Γ1 (Vp) =
Vp

eR1

(
1+

C1
C2

) and the time-energy uncertainty relation δ ∼ ~Γ1 (Vp)

[29], leading to:

R1 ∝
~
e

(
1 +

C1

C2

)−1
Vp

δ
. (19)

By measuring the conductance at multiple points on the island, one can extract C1,C2,Vp and δ and

evaluate R1 using equation (19). Surprisingly, it appears R1 decreases with the peak energy E = eVp as is

evident in Figure (8), which suggests R1 is an energy dependent quantity.
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Figure 8: A plot of R1 extracted using equation (19) from multiple conductance measurements, each having
a di�erent peak energy eVp. It con�rms that the island-nanowire resistance R1 depends on the energy of the
tunneling electrons, decreasing with E.

Equations (1), (13), (14) strengthen our aforementioned suspicion that some of the previous assumptions

we made to construct the simpli�ed ρ (E) model are unjusti�ed, and further focuses it to two particular

challenges on our assumptions - the tunneling barrier at the island-nanowire interface being energy dependent

(which leads to an energy dependent tunneling matrix element T1 (E) 6= const.) and the nontrivial nanowire

DoS (ρInAs (E) 6= const.). Moreover, we would like to account for a trivial\topological superconducting

island, which would also imply nontrivial island DoS (ρAl (E) 6= const.).

3.3 Re�ned ρ (E) Model

It is at this point that we to turn to a less simplistic DBTJ description, which includes the nontrivial

energy dependence of ρInAs (E),T1 (E) and ρAl (E). Returning to equations (10), (15), we notice that the

conductance is dependent only on the tunneling rates
{

Γ±j
}
j=1,2

as they also uniquely determine σ (N,V ).

Re-examining equation (1) with an appropriate change of variables, assuming T = 0, using equation (7)

and rede�ning T (E) w.r.t. to εaF (the Fermi energy of electrode a), we �nd the more general alternative to

equation (13):

Γab =
2π

~
Θ (−∆Eab)

∫ 0

∆Eab

|Tab (E)|2 ρa (E) ρb (E −∆Eab) dE (20)

meaning essentially Γab (N,V ) = Γab (∆Eab (N,V )). In this setting the �Ohmic� resistances Rj can be

generalized to:

R+
1

(
∆E±1

)
≡ ~

2πe2
−∆E+

1∫−∆E
+
1

0 |T1(E)|2ρAl(E)ρInAs(E+∆E+
1 )dE

R−1
(
∆E−1

)
≡ ~

2πe2
−∆E−1∫ 0

∆E
−
1

|T1(E)|2ρAl(E)ρInAs(E−∆E−1 )dE

R+
2

(
∆E+

2

)
≡ ~

2πe2
−∆E+

2

|T 0
2 |2ρ0

tip

∫−∆E
+
2

0 ρAl(E)dE

R−2
(
∆E−2

)
≡ ~

2πe2
−∆E−2

|T 0
2 |2ρ0

tip

∫ 0

∆E
−
2

ρAl(E)dE
,

(21)

where now

Γ±j
(
∆E±j

)
=

−∆E±j

R±j
(
∆E±j

)
e2

Θ
(
−∆E±j

)
, (22)

and we assumed the tunneling matrix element is independent of tunneling direction (+ or −).
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Finally, using any functional forms of T1 (E),ρInAs (E) and ρAl (E), we can now use equations (10), (21),

(22) to solve for Γ±j (N,V ),σ (N,V ) for any N,V and from there use equation (15) to solve for dI
dV for any

V . This is generally not analytically solvable, and so a numerical simulation calculating the conductance
dI
dV (V ) was written in MATLAB (for more details, see Appendix (7.2)) to enable further �tting of the �ne

features of the experimental data using functional forms for T1 (E),ρInAs (E) and ρAl (E) which include �tting

parameters (and the other �tting parameters described above).

3.3.1 Nontrivial Nanowire DoS

We strive to explain the conductance features of the �rst measurement, where superconductivity should be

negligible (T > TC), and so we can treat the Al islands as metallic ρAl (E) = const., which means R+
2 =

R−2 ≡ R2 is again non-energy dependent and de�ned by equation (14) (and again we expect R2 ∼ 1 GΩ).

This means that we only need to account for the functional forms of T1 (E) and ρInAs (E) before attempting

to �t the data. In order to understand the compounded e�ect both nontrivial T1 (E) and nontrivial ρInAs (E)

have on the conductance, each was studied separately �rst.

In the �rst step, only nontrivial ρInAs (E) was assumed, with a theoretical model for the DoS of the

nanowire (1D semiconductor) was constructed, where the boundaries for the �tting parameters of ρInAs (E)

were determined by comparing it to the STM measurements of the nanowire as depicted in Figure (3) (for

more details, see Appendix (7.1)). However, attempts to �t the island conductance data proved problematic -

in the entire parameter domain the nontrivial ρInAs (E) creates an extreme asymmetry between positive and

negative voltages in the conductance which is practically non-existent in the data, due to its own asymmetry

in energy.

This implies that either the nanowire DoS changes considerably, or that some other e�ect dominates the

�ne conductance features enough to wipe out most of the features caused by the nontrivial nanowire DoS.

This leads us to suspect that the nontrivial tunneling matrix element is behind the leading order e�ect we

see in the conductance measurement, and so a nontrivial form for it was next considered, discarding this

e�ect.

3.3.2 Nontrivial Tunneling Matrix Element

Next, only a nontrivial T1 (E) was assumed. As it is symmetric in energy (equation (21)):

R1 (ε) ≡ R+
1 (ε) = R−1 (ε) =

~
2πe2

−ε
ρ0

Alρ
0
InAs

∫ 0

ε
|T1 (E)|2 dE

. (23)

Examining equations (10), (21) and (22), it is evident that for a given bias V , the dependence of the functional

form of the conductance on the resistances is only through the ratio R1

R2
and not R1, R2 independently (up to

a global scaling constant
(
dI
dV

)
0
for dI

dV (V ) which depends on R2, which we leave as a free �tting parameter

anyway), which depends only on the form of the nontrivial DoS functions, tunneling matrix element and the

capacitance values C1, C2.

Furthermore, we notice that the capacitances C1, C2 only come into play in the energy scaling (bias

voltage scaling) of the problem as they appear only via ∆E±j , where they scale all eV appearances by either

EC

(
1 + C1

C2

)
or EC

(
1 +

(
C1

C2

)−1
)
(equation (12)). This scaling is also not a�ected by R1, R2 (additional

energy scales can come in through the DoS functions or tunneling rate). This means that the capacitances

generally only move the onset of features of the conductance around the voltage axis relative to one another
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but do not introduce new features, and so could still be determined approximately using the previous

simpli�ed ρ (E) model �t, as its description �ts the general features of the conductance well. The ratio R1

R2

is determined for every V by the given functional form of T1 (E).

As iterated before, the conventional assumption following Bardeen's tunneling theory is that the tunneling

matrix element T1 (E) is energy independent, or at the very least varying very little with energy [25], and

therefore we expect the relation R1

R2
� 1 to hold at all voltages. However, R1 varies substantially (by a

factor ∼ 3) as a function of energy and is larger at energies close to the Coulomb gap (Figure (8)). We

can reconcile this by the observation that Bardeen's theory considers only tunneling which occurs due to

the overlap between exponentially vanishing tails of wavefunctions across a �nite width of insulating barrier

(the �weak coupling� limit). In our case, however, the tunneling barrier is formed over an atomically sharp

epitaxial interface, leading instead to strong wavefunction hybridization. The resulting tunneling matrix

element T1 (E) should therefore generally depend strongly on the change in the wavefunctions' spatial form

as a function of E. We also expect that in this setting T1 (E)
E→0
= 0 - the argument for T1 is measured w.r.t.

εaF − εbF, meaning in this case εaF = εbF, and so no available states to tunnel into on both sides of the barrier,

as they are �lled up to the same Fermi energy and the tunneling is elastic. By the same reasoning, we also

expect |T1 (E)|2 to gradually increase with energy.

At the low V regime this implies R1 ∝
(
|T1 (→ 0)|2

)−1

→ ∞ (equation (23)) and therefore R1 should

increase dramatically at low V , even to the extent of becoming comparable to or larger than R2, in accordance

with the measurements.

Understanding the e�ect a ratio R1

R2
���1 has on the conductance, speci�cally in the low V regime, is

therefore critical. As was reasoned before, for �xed capacitances the features for a given V depend only

on the ratio R1

R2
(V ), up to a global scaling constant (a single one for all V ). Therefore, it is possible and

instructive to return to the framework of the simpli�ed ρ (E) model, where R1

R2
= const., and observe the

e�ects such values of R1

R2
have in the low V regime, which should translate similarly to the actual low V

regime of our system.
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Figure 9: (A) Simulated conductance curves using the simpli�ed ρ (E) model (with the extracted values
for the capacitances C1, C2) and varying resistance ratio r ≡ R1

R2
= const.. As r approaches 1, in addition

to the charging resonance at high energy (yellow dashed line) two new resonances emerge at the exit of the
Coulomb gap (blue dashed line) and in between the two (green dashed line). (B) σ (N,V ) false color plot
for the r = 1 case. Out of the Coulomb gap, there is now non-negligible probability for more than one N -
the additional resonances can be explained by the probability for an additional island electron occupation
N becoming possible at higher\lower V .

As can be seen in Figure (9), as R1

R2
increases in value up to the R1

R2
= 1 case, two new resonances gradually

emerge, one atop the exit of the Coulomb gap and the other between it and the original charging resonance.

As the conductance data does contain a small resonance at the exit of the Coulomb gap (see Figure (6)), this

indeed suggests that at the low V regime T1 (E) is small enough such that R1

R2
. 1, and that our reasoning

above for its functional form is correct.

This leads us to suggest a simple model for the potential barrier at the atomically sharp epitaxial interface

- a square potential barrier with an atomic scale width w ≈ 1 − 10Å and height V0 (the work function).

When solved, such a potential barrier leads to the functional form for the transmission [31]:

|T1 (E)|2 =


1

1+
V 2

0 sinh(
√

Φ(V0−|E|))
4|E|(V0−|E|)

|E| ≤ V0

1

1+
V 2

0 sin(
√

Φ(|E|−V0))
4|E|(|E|−V0)

|E| > V0

, (24)

where Φ = 2m∗
w2~2 depends on the width of the barrier and the e�ective mass (here it is constrained

m∗ ∼ me − 0.01me where me is the bare electron mass).

The resulting best �t for the conductance in the low V regime presented in Figure (10) indeed captures

the �ne features identi�ed in the measurement. It displays a peak at the exit of the Coulomb gap, indicating

a transition to a regime of comparable resistances. The gradual increase in the conductance as V becomes

larger therefore re�ects the increase in |T1 (E)|, up to a constant value |T1 (E)| E→∞→ 1, corresponding to

the ratio R1

R2
going from ∼ 1 to � 1, where the conductance goes to a constant value proportional to R−1

2
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(see equation (18)). In addition, our �tting corroborates the potential barrier width w ∼ 1 nm and strength

V0 ∼ 0.5 eV, meaning the presence of a sharp and substantial tunneling barrier is con�rmed.

Figure 10: Low energy dI
dV signal (circles) �tted with the simpli�ed ρ (E) model (red dotted line) and

the re�ned ρ (E) model that accounts for the energy-dependent transmission through the interface, T1 (E)
(solid line). Note the re�ned model accounts for the �ne features at the exit of the Coulomb gap while the
simpli�ed model does not.

3.3.3 Theoretical Predictions for Superconductivity and Topological Superconductivity

After isolating the relevance of the nontrivial nanowire DoS and the nontrivial tunneling matrix element

in the regime where the Al islands are not superconducting, the next step is to understand the isolated

e�ect of superconducting and topological superconducting Al. For superconductivity, we take the Bardeen-

Cooper-Schrie�er (BCS) theory DoS for a superconductor under its critical temperature T < TC in the zero

temperature limit (consistent with our previous assumption) [30]:

ρSC
Al (E) = ρ0

Al

|E|√
E2 −∆2

Θ (|E| −∆) (25)

Where ρ0
Al is the DoS at the Fermi energy for the metallic phase and ∆ ≥ 0 is the amplitude of the

superconducting order parameter.

An additional even-odd e�ect which a�ects the electrostatic energy considerations is not expected to

appear in the experiment due to the relatively high measurement temperature (kBT is larger than the level

spacing in the Al island) and is therefore neglected [32, 33].

In order to account for topological superconductivity, the conventional signature associated with the

Majorana zero energy state is included - a peak at zero energy [1, 10, 11, 12]. Accounting for this we get the

DoS for a topological superconductor with nMZM Majorana zero energy modes at zero temperature:

ρTSC
Al (E) = ρ0

Al

|E|√
E2 −∆2

Θ (|E| −∆) + nMZMδ (E) . (26)

The superconducting DoS introduces a new energy scale ∆. Solving for the tunneling rates using equations

(21), (22) and (25) we �nd:

Γ±j
(
∆E±j

)
=

1

Rj
Θ
(
−∆E±j −∆

)√(
∆E±j

)2 −∆2, (27)
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meaning the new condition for a nonzero tunneling rate Γ±j therefore becomes −∆E±j −∆ > 0, as opposed

to the previous −∆E±j > 0. As at least one combination of rates Γ+
1 ,Γ

−
2 or Γ−1 ,Γ

+
2 must be nonzero for

there to be nonzero current and therefore nonzero conductance through the DBTJ (else we just have charge

accumulation on the island), using equation (12) and the observation that inside the gap N = 0, it becomes

evident that the voltage to exit the gap is one of two voltages which correspond to the equations:

e |V | =

(
1 +

(
C1

C2

)±1
)(

∆ + EC

(
1± 2

Q0

e

))
. (28)

The introduction of superconductivity therefore enlarges the gap Vgap from the previous Coulomb gap width

VCoulomb = 2
EC
e
·max
±

{
1 +

(
C1

C2

)±1
}

(29)

(notice Q0 shifts the gap, but does not change its overall size, as previously mentioned) by an additive factor

VSC = 2
∆

e
·max
±

{
1 +

(
C1

C2

)±1
}

(30)

to a total width Vgap = VCoulomb +VSC. This makes sense when considering that for both junctions we must

�rst supply the system with enough voltage to reach occupied\available states at the exit of the SC gap ∆,

and from there our treatment of the tunneling becomes similar to before.

We infer that this enhanced gap is expected to hold even in the presence of nontrivial nanowire DoS

and tunneling matrix element, as these do not alleviate the problem of non-accessible states in the Al

superconducting island. Experimental evidence supports this, as we have demonstrated above that the

tunneling matrix element cannot be neglected, and still the system exhibits an enhanced gap (which is at

least partially due to superconductivity, as it is susceptible to the introduction of a magnetic �eld) as can

be seen in Figure (11).

Figure 11: False color plot of conductance measurements performed at T < TC over a superconducting
Al island (island shown in the inset) for di�erent voltages (x axis) and magnetic �elds (y axis). Colorbar
represents normalized conductance (all conductance measurements are normalized so that the maximal
conductance is 1). Measurements acquired at di�erent magnetic �elds (dashed lines) are interpolated to
show the closure of the superconducting gap (B ≤ 0.5T), leaving only the Coulomb gap (B ≥ 0.75T).

The introduction of topological superconductivity just amounts to an addition δΓ±j to all regular super-
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conductivity tunneling rates Γ±j (equations (26), (27)) of

δΓ±j
(
∆E±j

)
=

1

Rj

nMZM

ρ0
Al

Θ
(
−∆E±j

)
, (31)

which implies a constant (not voltage dependent) contribution to the tunneling rates for voltages that are

larger than the Coulomb gap but smaller than the full superconductivity-induced gap. Also, the scaling

of the voltages relevant to these terms is the same as in the no SC case (as ∆ does not appear). This

implies that the conductance signature of such Majorana zero energy modes �rst appears as a peak in sub-

gap conductance at the onset of the Coulomb gap, shifted from zero bias by 1
2VCoulomb, but also replicates

periodically at additional multiples of the voltage scaling VCoulomb, as can be seen in actual calculations in

Figure (12).

Figure 12: Simulated re�ned ρ (E) model conductance for a trivial superconductor (red) and topological
superconductor (blue). The charging resonances are shifted by the scaled ∆+EC (pink, green dashed lines),
while the zero energy peaks originating in the Majorana modes are shifted by the scaled EC (purple, yellow
dashed lines). The Majorana peak height is determined by the magnitude of nMZM. Notice that the sub-gap
Majorana peak is washed out by the �nite measurement resolution, but the replicated peaks (appearing at
1
2VCoulomb +mVCoulomb for integer m) are not.

This sharp, unique signature can be measured at multiple �nite biases, making Majorana zero energy

modes easier to resolve and distinguish from competing features in such conductance measurements. We

emphasize that our model treats the Majorana zero modes only as a feature in the nanowire DoS, and

therefore an accidental zero energy mode such as an Andreev bound state will yield similar results.
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4 Topological Phases of a Chern Insulator-based 2D Topological

Superconductor

As was stated in the introduction, in this part we suggest a new topological class D model which is based on

a Chern insulator (a class A topological insulator) with introduced superconductivity. We study the phase

diagram of the Chern insulator, then introduce superconductivity in the simplest possible form, continue on

to build the topological phase diagram and characterize the system's strong and weak topological phases and

edge modes, and �nish by discussing the most general manner in which superconductivity can be introduced

to the system.

4.1 A Simple Model for a 2D Chern Insulator

We begin with a simple model for a Chern Insulator, onto which we shall also introduce superconductivity

in the next sections. The relative simplicity of the model, in conjunction with the fact that it will serve as

a base for our more complicated model for which we will employ much of the same reasoning and methods,

incentivises treating this model �rst.

We introduce a variation on the Bernevig-Hughes-Zhang (BHZ) model [34] for a 2D Chern Insulator:

H =
∑
k∈BZ

ψ† (k)H (k)ψ (k) ,

H (k) = (m− t (cos (kxa) + cos (kya)))σz − µI +A sin (kxa)σx +A sin (kya)σy, (32)

and ψ (k) =

(
ak

bk

)
.

The above Hamiltonian is a momentum-space representation of a tight-binding model for electrons on a

2D square lattice, where our system is a spin-polarized system (suppressing the single spin specie's explicit

notation) and the σ degree of freedom (σ are the Pauli matrices, I is the 2x2 identity matrix) signi�es two

orbitals a, b in each site, but could conceivably denote a two-atom unit cell or any other form of pseudo-spin.

ak, bk are the annihilation operators for electrons on a, b orbitals (respectively) with momentum k.

In this case, a denotes the lattice constant (same in both x and y directions) - for brevity, we'll measure

kx, ky in units of a−1 and therefore can set a = 1 in the Hamiltonian. m,t,µ and A are real variables as H

is Hermitian.

To understand the physical meaning behind the Hamiltonian's parameters (32), we can also look at the
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position-space representation of this Hamiltonian:

H = Hon−site +
∑
r=x,y

Hr
hopping +

∑
r=x,y

Hr
cross−hopping,

Hon−site =
∑
r

(m− µ) a†rar + (−m− µ) b†rbr,

Hr
hopping =

∑
r

−t
(
a†rar+r̂ + a†r+r̂ar

)
− t
(
b†rbr+r̂ + b†r+r̂br

)
, (33)

Hy
cross−hopping =

∑
r

A

2

(
b†rar+ŷ + a†r+ŷbr

)
− A

2

(
a†rbr+ŷ + b†r+ŷar

)
,

and Hx
cross−hopping =

∑
r

A

2i

(
b†rar+x̂ − a†r+x̂br

)
+
A

2i

(
a†rbr+x̂ − b†r+x̂ar

)
.

Here r runs over the 2D square lattice with periodic boundary conditions and r̂ is a unit vector in the r = x, y

direction. The on-site Hamiltonian contains a chemical potential term −µ (the energy both orbitals gain by

electron occupation) and a �mass term� m (signi�es the energy di�erence between the two orbitals, 2m), t

is the nearest-neighbor hopping coe�cient for hopping between identical orbitals in both x and y directions

and A is the nearest-neighbor hopping amplitude for hopping between di�erent orbitals, where hopping in

the x direction gains an i phase and hopping in the y direction gains no phase.

Figure 13: A schematic diagram of the relevant energy scales of the tight-binding Chern insulator Hamil-
tonian (32). The gray ellipse signi�es a single site, where two electronic orbitals a, b with energies −µ ±m
reside. Electrons can tunnel to adjacent sites either to the same orbital (with amplitude t) or to the other
orbital (with amplitude A). E is the energy axis and j is either x or y.

The momentum space Hamiltonian (32) can be displayed in the following form

H (k) = d (k) · σ − µI (34)

d (k) =

 A sin kx

A sin ky

m− t cos kx − t cos ky

 , σ =

 σx

σy

σz


whose eigenvalues are always given as [1]:

E± = ± |d (k)| − µ. (35)

We are interested in the topological phase diagram of this system - the relevant topological invariant is
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the 1st Chern number which in the standard representation, using Berry curvature, is de�ned as [1]:

ν =
∑
j

[
− i

2π

∫
BZ

d2k
(
〈∂kxψj (k) |∂kyψj (k)〉 − 〈∂kyψj (k) |∂kxψj (k)〉

)]
, (36)

where j runs over all �lled energy band indices, and |ψj (k)〉 are the corresponding eigenstates. The Chern

number's value labels distinct topological phases for the system - however this does not necessarily mean that

two phases with the same Chern number are in the same phase [17]. The Chern number is only well-de�ned

for a gapped system - that is, a system where there is no contact point between bands at the Fermi energy

(a contact point between a �lled energy band and an un�lled energy band) [1].

As the Chern number is the system's topological invariant, it may only change its value after a closing

and reopening of the energy gap under the change of some combination of the Hamiltonian's parameters.

Therefore, it is enough to �nd the parameter values for which the gap closes to determine the curves in the

parameter space which bound regions of parameter space where the Chern number can be di�erent.

Choosing µ = 0, we �nd that the gap between the energy bands closes only for |d (k)| = − |d (k)| = 0,

or equivalently  A sin kx

A sin ky

m− t cos kx − t cos ky

 = d (k) = 0. (37)

Assuming A 6= 0 we �nd that the gap can close in exactly 4 unique points in the BZ, these closures requiring

special values of mt :

(kx, ky) = (0, 0),
m

t
= 2, (38)

(kx, ky) ∈ {(0, π) , (π, 0)}, m
t

= 0,

and (kx, ky) = (π, π),
m

t
= −2.

Our topological phase diagram is therefore dependent only on the value of m
t . The gap closure points

m
t = 0,±2 set the phase boundaries, which translate to di�erent values of the Chern number. From there on,

it is enough to evaluate the Chern number for a single value of mt inside each possible phase to determine it

for the entire phsae, and such an evaluation is easily done numerically. Both this method and a full numerical

calculation of the Chern number for many m
t points expectedly yield the same phase diagram, which can be

seen in Figure (14).
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Figure 14: Phase diagram of our BHZ model for a Chern Insulator (32). There are 3 distinct topological
phases: ν = 0 (

∣∣m
t

∣∣ > 2), ν = −1 (−2 < m
t < 0) and ν = 1 (0 < m

t < 2).

As we can see, this model already exhibits non-trivial topological characteristics (the Chern number for

trivial systems is always ν = 0).

We see that the parameter A has no e�ect on the topological phase diagram - we can explain this by

noting that as long as A 6= 0, it does not determine the gap closure points or parameters.

The ν = 0 sections (
∣∣m
t

∣∣ > 2) can be intuitively understood by looking at the
∣∣m
t

∣∣→∞ limit, and noting

there are no phase boundaries between that limit and m
t = ±2. In this limit m is much larger than the other

energy scales t, A, equivalent to setting all hopping (t, A) to zero, as if each site was isolated from all other

sites. This e�ectively creates two separated bands, each belonging only to a single orbital a, b (which band

is higher and which band is lower is determined only by the sign of mt ), corresponding to a single electron

per isolated site with a wavefunction completely localized, and therefore no topologically non-trivial phase

can appear (such a phase is an inherently global entanglement phenomena [1]). This isolated atom picture

is labeled the atomic limit.

The intermediate regime is also clear - starting from m
t > 2, we have ν = 0. At m

t = 2, we have a gap

closure at (0, 0) and all other points (38) remain gapped, and for 0 < m
t < 2 the Chern number is di�erent.

This suggests looking around the speci�c closure point for the cause, and so we can simplify and analyze the

low-energy theory around it. The Chern number value we calculate in this approximated Hamiltonian can be

anything (even non-integer) because the global band structure is di�erent than the approximated one, but

the di�erence between the Chern numbers for the approximated Hamiltonian before and after the closing

and reopening of the band gap will be the correct change in the Chern number of the full Hamiltonian, as

the change can only come from this local closure.

The Hamiltonian at that point is (equation (32)):

H (k) =

(
s A (kx − iky)

A (kx + iky) −s

)
, (39)

where s = m− 2t. We notice that around m
t ∼ 2, the s term changes sign. By direct calculation of the the

low energy Hamiltonian Chern number it can be shown that

ν = − sgn (s)

2
(40)
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And therefore the Chern number increases by δν = 1 when going from m
t > 2 to 0 < m

t < 2. As ν = 0 for
m
t > 2, we have ν = 1 for 0 < m

t < 2.

The observation (40) can actually be generalized for any low energy theory which gives a Dirac-cone

dispersion at the gap closure points s = 0, of a form similar to (39):

H (k) = ηkxσx + ξkyσy + sσz , η, ξ ∈ {±1} , (41)

ν = −1

2
sgn (ηξ) sgn (s) , (42)

δν = sgn (ηξ) , (43)

where δν is calculated across a phase boundary line where s changes sign from positive (sgn (s) > 0) to

negative (sgn (s) < 0)

The general observation is that such a closing and reopening of a Dirac cone gap changes the Chern

number by ±1. A similar procedure can be performed for the gap closure points relevant to rest of the

parameter range, yielding the complete phase diagram.

It should be noted that our result is expected within the existing classi�cation of topological phases. Our

Chern insulator Hamiltonian (32) describes a 2D system and possesses neither time-reversal symmetry, nor

particle-hole symmetry nor chiral symmetry [34], and therefore belongs to the topological class A with a Z
topological invariant. This is the Chern number, which we have indeed found to take the values 0,±1.

4.2 Introducing p-wave Superconductivity

We wish to induce a superconducting pairing (Cooper channel) onto our Chern insulator system. This

pairing cannot be of the common s-wave pairing form which couples electrons of opposite spins (encourages

Cooper pairs formed of electrons with opposite spin) as our system is spin-polarized (has only electrons from

a single spin specie - either ↑ or ↓), and so should be of p-wave superconductivity form (coupling electrons

of the same spin)[1]. The most general such term we can add, framing it in the standard mean-�eld fashion

as a non particle-number conserving term, is of the form (in momentum space):

HSC = 2
∑
k

∆aa (k) a−kak + ∆bb (k) b−kbk + ∆̃ab (k) a−kbk + ∆̃ba (k) b−kak + h.c. . (44)

We stress that only couplings between electrons pairs with momenta k and−k is allowed, rather than

any momenta pair k and k′. The origin of this restriction is our mean-�eld treatment of the Cooper channel

(where it is assumed that the signi�cant electron pairing channel is with total momentum zero). Using the

anti-commutation relation of the fermion operators {bk, bq} = {ak, aq} = {ak, bq} = 0 and the fact that

summation over BZ momenta is symmetric w.r.t. to inversion k → −k, we notice that the diagonal terms

must be antisymmetric:

∆aa (k) = −∆aa (−k) , (45)

∆bb (k) = −∆bb (−k) ,

and also that the last two terms can be rede�ned as:

∆ba (k) b−kak −∆ba (−k) a−kbk. (46)
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In matrix form it is written as

HSC =
∑
k

(
a−k b−k

)
∆ (k)

(
ak

bk

)
,

∆ (k) =

(
∆aa (k) ∆ba (k)

−∆ba (−k) ∆bb (k)

)
. (47)

Moreover, we require consistency with our nearest-neighbor tight-binding Hamiltonian which restricts

the possible superconducting pairing terms in real space up to nearest-neighbor terms. In momentum space,

this translates to momentum dependency of the matrix elements that is either constant or that depends

solely on k ·a as an argument of 2π-periodic trigonometric terms (cos,sin), with a being any primitive lattice

vectors (ax̂, aŷ in our case).

As our original Chern insulator Hamiltonian (32) has no time-reversal symmetry, particle-hole symmetry

or chiral symmetry, there are no further limitation to our possible pairing terms. Aggregating the above

conclusions and equations (45),(47) and assuming that the pairing is isotropic in amplitude, we �nd that

∆aa (k) = ∆s
aa

(
sin kx + eiϕ sin ky

)
, (48)

∆bb (k) = ∆s
bb

(
sin kx + eiϕ sin ky

)
,

and ∆ba (k) = ∆0
ba + ∆s

ba

(
sin kx + eiφ sin ky

)
+ ∆c

ba

(
cos kx + eiϕ cos ky

)
are the most general terms we can write for our model.

To start, we choose the simplest possible pairing - only taking the constant (on-site) term ∆0
ab to be

nonzero, while setting all other terms to zero. This can be interpreted as an approximation treating intra-

site superconductivity as negligible but inter-site superconductivity as signi�cant in our system, meaning

superconductivity is strongly suppressed in distance for all types of superconducting pairing:

∆0
ba � ∆s

aa,∆
s
bb,∆

s
ba,∆

c
ba. (49)

Relabeling ∆0
ba ≡ ∆, this gives our SC term as

HSC =
∑
k

(
ak bk

)
∆ (k)

(
a−k

b−k

)
+ h.c. , (50)

and ∆ (k) =

(
0 ∆

−∆ 0

)
.

Here we can assume ∆ to be real , as it can be made so by rede�ning the annihilation operators with an

additional phase [35].

4.3 Chern Number Characterization of the Model

Next, by casting our existing HamiltonianH and superconducting pairingHSC into the standard Bogoliubov-

de Gennes (BdG) Hamiltonian form, with the following standard de�nitions the BdG Hamiltonian HBdG (k)
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and Nambu spinor Ψk [35]:

H =
1

2

∑
k∈BZ

(
Ψ†kHBdGΨk + Tr (H (k))

)
, (51)

HBdG (k) =

(
H (k) ∆ (k)

∆† (k) −HT (−k)

)
, (52)

and Ψ†k =
(
a†k b†k a−k b−k

)
, Ψk =


ak

bk

a†−k
b†−k

 , (53)

with T for transpose. We have:

H (k) =

(
(m− t cos kx − t cos ky)− µ A (sin kx − i sin ky)

A (sin kx + i sin ky) − (m− t cos kx − t cos ky)− µ

)
, (54)

and HT (−k) =

(
− (m− t cos kx − t cos ky) + µ A (sin kx + i sin ky)

A (sin kx − i sin ky) (m− t cos kx − t cos ky) + µ

)
. (55)

With τ representing Pauli matrices in the particle-hole subspace and σ representing Pauli matrices in the

orbital subspace (as before), we can write our BdG Hamiltonian in more compact form as:

HBdG (k) = A sin kxσx +A sin kyσyτz + (m− t cos kx − t cos ky)σzτz −∆σyτy − µτz. (56)

Next, disregarding the constant contribution 1
2

∑
k∈BZ Tr (H (k)), we �nd the energy bands. By noticing

σ and τ work in orthogonal subspaces, using the properties of Pauli matrix products and squaring the

Hamiltonian equation twice, it is straightforward to show that the energy bands are ±E± (k), where:

E± (k) =

√
(A2(sin2 kx+sin2 ky)+(m−t cos kx−t cos ky)2+∆2+µ2)±2

√
µ2A2(sin2 kx+sin2 ky)+(m−t cos kx−t cos ky)2(∆2+µ2)

. (57)

According to (57), the energy bands satisfy

− E+ (k) ≤ −E− (k) ≤ 0 ≤ E− (k) ≤ E+ (k) , (58)

meaning the ground state of the system is where the two bands with negative energy, −E± (k), are �lled.

Moreover, to get a band crossing between �lled and empty bands we must have E− (k) = 0, as imposed by

inequality (58). To obtain the topological phase diagram we must determine for what parameter range (and

at which k) this crossing can occur. As explained in the previous part, the parameters ranges corresponding

to possible gap closure points are the only curves in the phase diagram which can delineate di�erent phases.

This is translated to the requirement E− (k) = 0, which can be simpli�ed after some nontrivial manipulation

to:(
A2
(
sin2 kx + sin2 ky

)
+ (m− t cos kx − t cos ky)

2 −
(
∆2 + µ2

))2

+ 4A2∆2
(
sin2 kx + sin2 ky

)
= 0. (59)

We note that the two terms are non-negative, meaning they must both be zero for this equality to hold,
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translating to the requirements:

A2
(
sin2 kx + sin2 ky

)
+ (m− t cos kx − t cos ky)

2 −
(
∆2 + µ2

)
= 0, (60)

4A2∆2
(
sin2 kx + sin2 ky

)
= 0. (61)

We assume as before A 6= 0 and also nontrivial superconductivity ∆ 6= 0 (the ∆ = 0 case was solved in the

previous section), turning the second requirement (61) (as a sum of non-negative terms) to

sin kx = sin ky = 0. (62)

Meaning this band gap closure can only occur at the 4 high symmetry points of the 2D BZ (which we denote

as Γi):

(kx, ky) ∈ {Γi}4i=1 = {(0, 0) , (0, π) , (π, 0) , (π, π)} (63)

which are the exact same gap closure points we found in the previous case with no SC (equation (38)). The

high symmetry points are so called because they are the only points in the BZ which satisfy −Γi = Γi +G

for all reciprocal lattice vectors G ∈
{(

2π
a , 0

)
,
(
0, 2π

a

)}
., which will be useful later.

Denoting as before:

dz (kx, ky) ≡ m− t cos kx − t cos ky, (64)

we �nd that at these points

dz (0, 0) ≡ m− 2t,

dz (0, π) = dz (π, 0) ≡ m, (65)

and dz (π, π) ≡ m+ 2t.

The �rst requirement (60), which is relevant for only these special points now, gives

dz (kx, ky) = ±
√

∆2 + µ2, (66)

so the appropriate gap-closure parameter curves, with the corresponding points in the BZ where the gap

closes, are:

(0, 0) : m = ±
√

∆2 + µ2 + 2t,

(0, π) , (π, 0) : m = ±
√

∆2 + µ2, (67)

and (π, π) : m = ±
√

∆2 + µ2 − 2t.

At the ∆, µ → 0 limit we indeed recover the result from the previous section m
t = ±2, 0 at the appropriate

points in the BZ. Equation (67) shows the phase diagram is symmetric w.r.t. ∆,−∆ and µ,−µ (as only

∆2, µ2 appear in the phase boundary expression) and depends only on
√

∆2 + µ2 (not on ∆ or µ separately).

Dividing by t, we therefore have only two parameters which determine the phase diagram, mt and

√
∆2+µ2

t .

The appearance of ∆ and µ on the same footing as a single, equally weighted parameter
√

∆2 + µ2 which

determines the phase space structure signi�es the fact that they are complementary energy scales for inter-

site electron occupation - introducing an electron to an orbital gains −µ energy, and the intra-site Cooper

channel strives to �ll sites with either two electrons or zero electrons with an energy bene�t from the SC
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pairing ∆. This is contrasted with the m
t term, which aspires to make only a single orbital bene�cial for

occupation, as it determines the energy di�erence between the two.

The same analytical method as was used in the previous section can again be utilized to �nd the phase

diagram. It utilizes the low energy theory around the gapless points when the parameter values approach

their critical values (equation (67)) to determine changes in the Chern number. We start from a familiar

regime in the phase diagram - ∆ = µ = 0, mt > 2 which we analyzed in the previous section and corresponds

to a topologically trivial phase ν = 0. From there on we can calculate the Chern number change each time

we cross a phase boundary line, until we have them all. The result of this analytical calculation, with phase

boundaries and the values of the Chern number veri�ed numerically, can be seen in Figure (15).

Figure 15: Phase diagram of the model in equation (56), plotted in the

√
∆2+µ2

t vs. m
t plane. Di�erent

colors represent di�erent Chern numbers, calculated numerically, with a color key brought at the top. Phase
boundary lines are labeled at the sides.

The Chern numbers at the µ = ∆ = 0 cut of the diagram seem doubled w.r.t. to our Chern number

calculated in the previous section. This is because the Chern number we calculate now is e�ectively twice

the previous one, doubled by the arti�cial doubling of degrees of freedom which was used to construct the

BdG Hamiltonian (56) (in this BdG formalism there are now two �lled bands instead of one in this limit,

each contributing to the Chern number). We shall deal with the signi�cance of these values of the Chern

number in determining the edge mode properties of the system in the next section.

Looking at the phase diagram, we notice that some disjointed parts of the phase diagram possess the

same Chern number, which leads us to suspect these could represent di�erent phases (albeit with the same

Chern number). This, coupled with our desire to understand the edge modes corresponding to these phases

when translational symmetry in some direction is removed, motivates us to look for additional indices to

characterize our system, which will lead us to introduce the concept of weak topological phases.
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4.4 Weak Topological Phases and the Full Topological Phase Diagram

We can �nd 2 more indices which characterize our system. This can be done as long as the only gap closure

points of the Hamiltonian are the high symmetry points Γi [18, 21], which is indeed true in our case (see

equations (62),(63)). We do this by analyzing the properties of our Hamiltonian at the high symmetry points

Γi at any well-de�ned topological phase (gapped phase).

To derive these new indices, we will use the fact that our BdG Hamiltonian has particle-hole symmetry

(an anti-unitary operator which anti-commutes with the Hamiltonian):

CHBdG (k)C−1 = −HBdG (k) , (68)

with the symmetry operator being

C ≡ τxK, (69)

where K is the complex conjugation operator (is also anti-unitary [takes k → −k] with K2 = 1), as can be

checked explicitly using the explicit expression for HBdG (k) in terms of σ, τ matrices.

It should be noted that we still have no Time-Reversal symmetry and therefore no Chiral symmetry as

well, so this along with C2 = 1 classi�es our system as topological class D, and as our system is 2D this

means it should have a Z topological invariant, which is again the Chern number.

Using the fact that H†BdG (k) = HBdG (k) and the properties of the conjugation operator, equation (68)

can be restated as τxHBdG (k) τx = −HT
BdG (−k), which at the high symmetry points turns into (using the

properties of these points and the BZ property HBdG (k +G) = HBdG (k)):

τxHBdG (Γi) τx = −HT
BdG (Γi) . (70)

Using this property we can show that an equivalent Hamiltonian ˜HBdG (Γi) = UHBdG (Γi)U
−1 gained by

a change of basis using the unitary transformation U = ei
π
4 τx gives an anti-symmetric form ˜HBdG

T
(Γi) =

− ˜HBdG (Γi), which makes the P�a�an of this matrix well de�ned. We can use the property det
(

˜HBdG (Γi)
)

=(
pf
(

˜HBdG (Γi)
))2

and the invariance of the determinant under unitary transformation to �nd

(
pf
(

˜HBdG (Γi)
))2

= det (HBdG (Γi)) . (71)

Direct calculation of the determinant at the high symmetry points is easy because HBdG (Γi) is in block

diagonal form (see equation (56)). We get two possible values

pf
(

˜HBdG (Γi)
)

= ±
(
µ2 + ∆2 − dz (Γi)

2
)
. (72)

This sets the P�a�an up to a sign, which will not matter as the relevant topological indices will be dependent

only on the signs of products of such P�a�ans (and so an overall minus sign to the de�nition will leave the

indices invariant) [21]. We choose:

pf
(

˜HBdG (Γi)
)

= µ2 + ∆2 − dz (Γi)
2
. (73)

Next, we de�ne

sΓi ≡ sgn
(
−pf

(
˜HBdG (Γi)

))
(74)
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And four topological indices νx,0, νx,π, νy,0, νx,π (de�ned modulo 2) via [15, 21]:

(−1)
νx,0 = s(0,0)s(0,π),

(−1)
νx,π = s(π,0)s(π,π), (75)

(−1)
νy,0 = s(0,0)s(π,0),

(−1)
νy,π = s(0,π)s(π,π),

where νi,p (i = x, y, p = 0, π) are topological invariants of e�ective 1D systems which belong to the topological

class D, with a �xed momenta coordinate in the i direction ki = p [5, 18]. The high symmetry points in the

BZ, the sΓi variables de�ned at these points and their relations to the indices are illustrated in Figure (16).

Figure 16: De�nition of the weak indices νx,0, νx,π, νy,0, νy,π via products of pairs of sΓi-s, de�ned in the
BZ (equation (75)). sΓi are in turn determined by the Pfa�ans of the Hamiltonian at the 4 high symmetry
points Γi (equation (74)). All topological phases can be characterized 2 weak indices (one in each direction)
and a strong index, ν (equation (76)). The two weak indices chosen here are νx,π and νy,π (highlighted by
the red and blue dashed ellipses).

Equations (73),(74) imply that the weak indices can change their value only at the previously determined

phase boundaries (67), which we found using our previous method relating to the Chern number. This is

part of a more general truth, with the weak indices being related to the Chern number by [18, 21]:

νx,0 + νx,π = νy,0 + νy,π = ν mod 2, (76)

which establishes codependency between the indices, such that to determine the topological phase of the

system one can use only a single index with an x label, a single index with a y label and the Chern number.

We choose νx,π, νy,π ∈ Z2 as well as the mandatory ν ∈ Z, and denote the phase as

ν : νx,πνy,π (77)

Using equations (73), (74), (75) we can easily compute νx,π, νy,π and further label the phase diagram, as

can be seen in Figure (17).
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Figure 17: Full topological phase diagram of the model in equation (56), including both strong and weak
topological indices calculated analytically and veri�ed numerically, labeled in the ν : νx,πνy,π convention

(equation (77)) and plotted in the

√
∆2+µ2

t vs. m
t plane. Di�erent colors represent di�erent phases, with a

color key brought at the top. Phase boundary lines are labeled to the sides.

Looking at Figure (17), we are convinced the trio ν : νx,πνy,π uniquely labels our phases, which now leads

us to interpret the physical signi�cance these three indices have.

It is an established observation that the Chern number ν of the system gives the total number of chiral

edge modes (electron and\or hole excitations which travel along the edge of the system), where the sign for

each term in the sum is determined by a the chirality of the corresponding edge mode (1 or −1). Furthermore,

the presence of these chiral edge modes does not rely on any symmetry, and is robust (in the sense that they

remain in the face of weak perturbations) [1]. This motivates the labeling of phases with a nonzero Chern

number as strong topological phases, and the Chern number itself as a strong topological index.

In addition, in the presence of translational symmetry in the x, y directions we can always de�ne two Z2

indices which count the parity of the number of edge modes in each such direction respectively - these are

in fact the two other indices νx,π, νy,π respectively [15, 21].

Also note that an νi,p index as we de�ned it is only well de�ned as long as there is translational invariance

in the i direction - it is in this sense, the lack of robustness of the resulting edge modes, that these indices

are labeled weak topological indices. A phase with ν = 0 but nonzero weak indices is therefore labeled a

weak topological phase.

The practical meaning of this is that, for example, in the presence of a boundary exactly parallel to the

x axis a copy of our system in the weak topological phase 0 : 11 and a copy of our system in the trivial phase

0 : 00, there will be two counter-propagating Majorana zero energy edge modes with kx = 0 and kx = π,

as we actually show by explicit construction in Appendix (7.3). A summary of the phases appearing in our

system and their corresponding edge mode con�gurations is given in Table (1):
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ν : νx,πνy,π
s(0,π) s(π,π)

s(0,0) s(π,0)
Edge States (Chiral Majorana modes)

Trivial Phase 0:00
+ +
+ +

,
− −
− − None

Weak Phase 0:11
− +
+ − Non-chiral modes along edges parallel to x and y

Strong Phases -1:11
+ −
+ +

,
− +
− − Single C = −1 mode along edges parallel to x

with kx = π and parallel to y with ky = π

1:00
+ +
− +

,
− −
+ − Single C = +1 mode along edges parallel to x

with kx = 0 and parallel to y with ky = 0

-2:00
+ +
+ +

Two C = −1 modes along edges parallel to x and
y with either both at kx = 0, ky = 0 or both at

kx = π, ky = π

2:00
+ +
+ +

Two C = +1 modes along edges parallel to x and
y with either both at kx = 0, ky = 0 or both at

kx = π, ky = π

Table 1: All possible topological phases and their edge states. Chirality is denoted by C. The �rst
column describes the nature of each topological phase (trivial, weak or strong), the second labels it in the
ν : νx,πνy,π convention (equation (77)), the third details the corresponding sΓi con�gurations where ±1 is
labeled ± (equations (74)) and the fourth details the deduced edge mode con�gurations.

It should be noted that the �two Majorana chiral edge mode� phases 2 : 00,−2 : 00 should agree with the

Chern insulator topological phase at ∆ = µ = 0. The reconciliation comes from the fact that the ±1 BHZ

Chern insulator phases house a single ±1 chirality electronic edge mode [34] and an electronic edge mode

can always be decomposed into two co-propagating Majorana edge modes, and the fact that the SC Chern

number ν counts the chirality-weighed total number of Majorana edge modes, while the Chern insulator

Chern number counts the number of electronic edge modes.

Therefore, our system's phases with an even Chern number have either electronic edge modes (ν = ±2)

or no edge modes (ν = 0), and those with an odd Chern number have Majorana edge modes (ν = ±1).

Also, the sought-after topological phase with a single Majorana chiral edge mode suggested for quantum

computation is realizable in our system as the phases −1 : 11,1 : 00.

4.5 Generalizing to Weak Superconducting Pairing

We can now treat the superconducting pairing in its full generality, returning to the most general permissible

form in equation (48), with now all non-∆0
ab pairings nonzero but weak. The pairings are to be weak in the

sense that they do not create possible gapless points in the BZ outside of the 4 high symmetry points Γi. In

such a case our weak indices are still well de�ned, and we can retrace the steps of our analysis. The phase

boundaries are still determined by the P�a�an de�ned by equation (71) at the high symmetry points. Then

it is enough to look only at ∆ (Γi):

∆ (Γi) =

(
0 ∆̃ (Γi)

−∆̃ (Γi) 0

)
,

∆̃ (Γi) ≡ ∆0
ba + ∆c

ba (cos Γxi + cos Γyi ) , (78)
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∆̃ (0, 0) = ∆0
ba + 2∆c

ba,

∆̃ (0, π) = ∆̃ (0, π) = ∆0
ba, (79)

∆̃ (π, 0) = ∆0
ba − 2∆c

ba,

This is the same form of the ∆ (k) matrix we had previously in equation (50) at the high symmetry points,

with ∆̃ (Γi) instead of ∆ (now a complex variable instead of a real one, but the solutions will still depend on∣∣∣∆̃∣∣∣ as they did before), now depending on the point of choice Γi and generally ∆̃ (Γi) 6= ∆̃ (Γj). Therefore,

the weak indices are now de�ned via

sΓi = sign
(
dz (Γi)

2 −
(
µ2 + |∆ (Γi)|2

))
(80)

and the phase boundaries are set by the solution to the 4 equations

dz (Γi)
2

= µ2 + |∆ (Γi)|2 (81)

as before. We can therefore expect a similar phase diagram which is easily interpolated from the phase

diagram in Figure (17) (∆c
ba = 0), albeit with slightly modi�ed phase boundaries.

A speci�c example to the general analysis above is the speci�c case where all pairings besides ∆0
ba,∆

c
ba

are zero. Here, equation (78) describes the SC parameter for all values of k. A critical point to our analysis'

veracity in this case is the parameter ratio
∆0
ba

∆c
ba

- for values
∣∣∣∆0

ba

∆c
ba

∣∣∣ ≥ 2 there exist points kj in the BZ for

which ∆̃ (kj) = 0 ((79)), for which equations (60) and (61) imply other possible gapless points. Our weak

coupling assumption here therefore takes the form
∣∣∣∆0

ba

∆c
ba

∣∣∣ < 2.
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5 Conclusions

This work was an attempt to tackle topological superconductivity and its implications in low dimensions (1D

and 2D), using a two pronged approach. On the one hand a more practical and experiment-oriented study

of such a realized 1D system, and on the other hand a more theoretical approach to studying topological

superconductivity in a new variation on a studied 2D system.

In the �rst part, a theoretical analysis of an experimental STM probe of a potential realization of 1D

topological superconductivity was performed. This realization consisted of gated semiconducting (InAs)

nanowires coated with a spattering of superconducting drops (Al), whose conductance was measured by

the STM apparatus as the bias voltage was scanned. At �rst, the system was studied when not in a

superconducting phase in order to lay the groundwork for study of its superconducting phase. An existing

scheme for modeling the system as a DBTJ dubbed the simpli�ed ρ (E) model was utilized and was found

to describe the broad strokes features of the measurements - Coulomb blockade dynamics due to substantial

charging energy of the Al islands.

This simpli�ed model, however, failed to account for the �ne features or the measurements or to provide

predictions for the system's behavior when in its superconducting phase. The underlying assumptions of the

model were revisited and a new, re�ned ρ (E) model was proposed, which accounts for the nontrivial energy

structure of the DoS of the composing materials and of the tunneling coe�cients, even accommodating

superconductivity, and a numerical simulation of the model was written to accompany the analysis. Each

of the possible causes for the �ne features in the measurements was then studied separately. First, the

e�ect of signi�cant nontrivial nanowire DoS was deemed incompatible with even the broad features of the

measurements as well as the �ne features, and was therefore written o� as a non-signi�cant factor. Then,

a more in-depth examination of the island-to-nanowire tunneling interface suggested an energy dependent

tunneling coe�cient due to an energy barrier over the sharp interface. To account for this e�ect a model of

this interface and the resulting tunneling coe�cient was suggested, agreeing nicely with the �ne features of

the measurement.

Finally, predictions on future measurements of superconducting and topologically superconducting phases

were suggested, supported by measurements in the regular superconductivity case, including a prominent,

replicating Majorana edge mode signature not at zero bias.

A natural next step would be to combine the e�ects mentioned above together, as they were only con-

sidered in isolation. First, a more rigorous study of the combined e�ect of nontrivial nanowire DoS and the

tunneling matrix element is needed in order to understand why the predicted e�ects of nontrivial nanowire

DoS are not seen in the measurements. It may corroborate or rule out our assumption that the suggested

e�ect is �washed out� by the more powerful nontrivial tunneling coe�cient e�ect. Second, studying the joint

e�ect of both the tunneling coe�cient and regular\topological superconductivity is of the highest order of

importance in order to understand the �ne features of future measurements in the experimental system.

The e�ects of temperature were neglected in our treatment under reasonable assumptions and accounted

for in a roundabout way, but can actually be accounted for directly, albeit with increased numerical com-

plexity. Comparing the di�erences between the full temperature-dependent calculations and ours and trying

to �nd the di�erence in the data should prove enlightening.

In the second part, a theoretical study of a novel potential 2D realization of topological superconductivity

was performed. First, a variation on the BHZ tight-binding model for a pseudo-spin Chern insulator was

studied, culminating in the characterization of all its topological phases using a strong topological index - the
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Chern number ν ∈ Z. A topological phase diagram was constructed using analytical means by examining

the possible gapless points of the system, as the Chern number can only change after a gap closing and

reopening, and veri�ed numerically. Next, possible ways to introduce superconductivity to the model were

considered, and a strictly intra-site form of superconductivity was chosen. The model was then recast into

the BdG formalism, and a rich phase diagram using the Chern number ν was constructed, using the same

previous method of pinpointing possible gapless points, and then veri�ed numerically.

To further classify the topological phases of the system as well as understand its edge mode structure,

the concept of weak topological phases and their corresponding weak topological indices was introduced.

In contrast to the robust edge modes of strong topological phases, these phases exhibit �weak� edge modes

along speci�c lines parallel to the BZ's symmetry axes. The indices can also be used to di�erentiate di�erent

strong topological phases.

The implementation of this concept in our system revolves around the Hamiltonian's properties at the

high symmetry points in the BZ, which are the only possible gapless points in our system, and a�ords the

de�nition of 4 weak topological indices νx,0, νx,π, νy,0, νy,π, 2 of which are redundant in phase characterization

due to their connection with the Chern number ν. The indices were calculated explicitly, and a full topological

phase diagram characterized by ν : νx,π, νy,π was found analytically. The exact relation between these indices

and the edge modes of the corresponding topological phases was then highlighted and discussed. Lastly, the

previous conclusions were generalized to the case of weak inter-site superconducting pairing.

A possible future direction of study would be to go beyond the weak SC pairing regime or study only intra-

site superconductivity where our approach breaks down, in order to try and �nd topological phases unrealized

in our system. Speci�cally, introducing p+ip superconductivity to our system should prove interesting, as

it has been integrated into topologically trivial models to create rich topological phases. Another option to

realize new phases would be to modify the Chern insulator model, which is the basis of our analysis. For

example, making the t hopping anisotropic in amplitude would separate the phase lines corresponding to the

(0, π) and (π, 0) gapless points, enriching the phase diagram further.
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7 Appendices

7.1 Model for InAs Nanowire DoS

Naively, one would expect a 1D dispersion which is a series of van-Hove singularities:

ρInAs ∝ ρ0
InAs

∞∑
n=0

1√
E − En

Θ (E − En)

Where En describes the sub-band energy level spacing (the nanowire is assumed to be much longer than its

width, therefore the longitudinal quantization is ~continuous and can be integrated out, in contrast to the

transverse direction quantization):

En = E0 + nδE

And E0 is the onset the conduction band, δE is the sub-band spacing. A �t to the experimental measurement

(Figure (3)) gives:

E0 ≈ −100meV

δE ≈ 20meV

However, when taking into account hybridization of the InAs with the Al, these features must be smeared,

and so this must be taken into consideration for ρInAs (E).

Starting from scratch, using Dyson's equation we can write the corresponding Green's function as [37]:

Gnn (E) =
1

E − En − Σnn (E)

Where Σ is the self-energy term, which we approximate as ∼ iΓ for all relevant energies as we assume the

metal is coupled in the same fashion to all nanowire states, and we are only interested in the diagonal terms

as we will soon take a trace to �nd the DoS. Then:

ρ (E) ∝ Tr (= (Gnn (E + i0))) =
∑
n

= (Gnn (E + i0)) =
∑
n

=
(

1

E − En − iΓ

)
=
∑
n

Γ

(E − En)
2

+ Γ2

This indeed produces a smeared density of states by a Lorentzian factor - something that should give

separated levels in the Γ→ 0 limit:

ρ (E) =
∑
n

δ (E − En)

Which it does, as:

δ (ε) = lim
Γ→0

1

π

Γ

ε2 + Γ2

For our problem, we take the energies as:

Elk =
~2k2

2m
+ E0 + δ︸︷︷︸

subband energy spacing

l
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Where k is the band quantization and l is the sub-band quantization. Then, assuming k is dense (L is the

nanowire length):

ρ (E) =
∑
k,l

1

π

Γ(
E − Elk

)2
+ Γ2

=
1

πΓ

L

2π

∞∑
l=0

∫ ∞
−∞

dk
1(

~2k2

2m

Γ − E−(E0+δl)
Γ

)2

+ 1

The integration can be performed analytically, yielding:

ρ (E) =
L

2π

1√
Γ

√
m

~

∞∑
l=0

√
E−(E0+δl)

Γ +

√(
E−(E0+δl)

Γ

)2

+ 1√(
E−(E0+δl)

Γ

)2

+ 1

This allows us control of an additional parameter, the broadening parameter Γ, which is needed �t our model

to the measured InAs density of states.

An example for the best �t for the conductance with only nontrivial ρInAs (E) is brought below. It

required lowering the threshold of the onset of the conductance band E0 to ∼ −500 meV in contrast with

our �tting results, and still creates distinct �wiggles� that do not appear in the measurement and asymmetry

between positive and negative biases.

Figure 18: Best �t (dashed blue line) for the conductance measurement (black line) for only nontrivial
ρInAs (E).

7.2 Re�ned ρ (E) Model Numerical Simulation Protocol

A MATLAB script was written, taking as input the model variables C1, C2 and the functional forms of all

density of state functions and tunneling elements, in turn evaluating all Γj
(
∆E±j

)
numerically and employing

the fact that σ (N,V ) is generally nonzero only for a few adjacent values of N to calculate σ (N,V ) to �nite

(but as great as required) accuracy using equations (10), (21), (22). This allows the calculation of the current

using equation (15), which is then numerically di�erentiated to �nd the conductance.

Given parametrized models of all required functional forms, an additional script implemented a �tting
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algorithm to the experimentally measured conductance in order to �nd the best �t values of the parameters

(e.g. in the nontrivial T1 (E) case, all DoS are set as constant with a single parameter for magnitude, and

the T1 (E) �tting parameters V0 and Φ).

7.3 Explicit Construction of a Majorana Fermion at a Weak Phase Boundary

We will show the Majorana residing at a boundary parallel to the x axis with kx = π between the weak

topological phase 0 : 11 and the trivial phase 0 : 00 (the treatment for the ones at kx = 0,ky = 0, π is similar).

Recalling equations (73),(74):

sΓi = sign
(
dz (Γi)

2 −
(
µ2 + ∆2

))
=

1
√
µ2 + ∆2 < |dz (Γi)|

−1
√
µ2 + ∆2 > |dz (Γi)|

We take the trivial phase 0 : 00 with (see Table (1)):

s(0,π) s(π,π)

s(0,0) s(π,0)

=
+ +

+ +
⇐⇒ |∆| < |dz (0, 0)| , |dz (0, π)| , |dz (π, 0)| , |dz (π, π)|

And the weak topological phase 0 : 11 with:

s(0,π) s(π,π)

s(0,0) s(π,0)

=
− +

+ −
⇐⇒ |∆| < |dz (0, 0)| , |dz (π, π)| , |∆| > |dz (0, π)| , |dz (π, 0)|

Next, we can set a phase boundary parallel to the x axis (at y = 0 without loss of generality) by making the

SC parameter ∆ a function of y which places the system into the two di�erent phases at y < 0 and y > 0:

∆→ ∆ (y) =

> max {|dz (0, π)| , |dz (π, 0)|} y > 0

< min {|dz (0, π)| , |dz (π, 0)|} y < 0

Next we write the e�ective real space BdG Hamiltonian, as a function of y around ky = 0 (keeping ky terms

up to linear order) and at kx = π:

HBdG (π, y) = (A (−i∂y)σy + dz (π, 0)σz) τz −∆ (y)σyτy

We are looking for zero energy modes χ, and so we must satisfy HBdGχ = 0 for them. The eigenvalue

equation becomes:

((A (−i∂y)σy + dz (π, 0)σz) τz −∆ (y)σyτy)χ = 0

We can multiply the entire equation by τzσy from the left and get:

(−A∂y + dz ({0, π} , 0)σx + ∆ (y) τx)χ = 0

We look for a solution of the form (u is a vector in τ subspace, v is a vector in σ subspace)

χη,υ ∝ eλη,υyuηvυ
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Where u±, v± are eigenvectors of τx, σx with eigenvalues ±1. Plugging this in we get the scalar equation for

λη,υ:

λη,υ = A−1 (υdz (π, 0) + η∆ (y))

which we must solve for y > 0 and y < 0 separately. The wavefunction must be regular for y → ±∞,

which means sign (λ) =

−1 y > 0

1 y < 0
. The �rst requirement sets η = −1, and the second one then sets

υ = −sign (dz (π, 0)), meaning only a single pair η, υ gives a valid solution. This solution is in fact (α is the

normalization factor, set up to global phase)

χ−1,υ (kx = π, y) = αeλ(y)y 1

2

(
1

−1

)
τ

(
1

υ

)
σ

= αeλ(y)y 1

2


1

υ

−1

−υ


= αeλ(y)y 1

2

(
akx,0 + υbkx,0 −

(
a†−kx,0 + υb†−kx,0

))
= αeλ(y)y 1

2

((
akx,0 − a

†
−kx,0

)
+ υ

(
bkx,0 − b

†
−kx,0

))
This is indeed a Majorana (when setting the global phase factor as i), as a Majorana in momentum space

γk satis�es γ†−k = γk:

χ†−1,υ (−kx = −π, y) = αeλ(y)y (−i)
2

((
a†−kx,0 − akx,0

)
+ υ

(
b†−kx,0 − bkx,0

))
= αeλ(y)y i

2

((
akx,0 − a

†
−kx,0

)
+ υ

(
bkx,0 − b

†
−kx,0

))
= χ−1,υ (kx = π, y)

As we wanted to show. Note that also in the BZ, π and −π are identi�ed as the same point, and therefore

also:

χ†−1,υ (π, y) = χ−1,υ (π, y)
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