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Abstract

In this thesis, we develop and apply non-perturbative approaches for the study of fractional
topological phases. Such phases present a considerable challenge due to their inherent strongly
interacting nature, and are indeed not well understood theoretically. In fact, tractable models
of fractional phases (beyond the quantum Hall regime) are scarce. Throughout this thesis, we
make heavy use of the coupled-wire approach, where the available tools for interacting one-
dimensional systems are applied to higher dimensional ones by breaking them into arrays of
weakly coupled wires.

We start by using the coupled-wire approach to construct analytically tractable models
for a large set of two-dimensional fractional topological insulators. In particular, this ap-
proach allows us to write tractable models of exotic non-Abelian phases. We then extend the
coupled-wire approach to three-dimensions and use it to propose models of fractional strong
topological insulators. Using these models, we study non-trivial properties of the surface
once it is gapped by various mechanisms. In addition, we use the coupled-wire approach to
construct fractional chiral superconductors, constituting the fractional analogs of the p+ ip
superconductor. Such phases give rise to a non-trivial conformal field theories on the edge,
as well as non-Abelian bulk excitations. We further introduce a generalized coupled-layer
approach to realize strongly interacting topological phases in three-dimensions. We do this
by leveraging the recently discovered duality between the Dirac theory in two-dimensions and
QED3, the theory of quantum electrodynamics, as well as the phenomenon of spontaneous
interlayer coherence.

In addition to the above fundamental theoretical results, we also focus on more experimen-
tally realistic proposals. First, we propose an experimental configuration which effectively
realizes fractional quantum Hall physics with a torus topology, giving rise to a topological
ground state degeneracy. We suggest an experiment where imprints of this fundamental de-
generacy can be probed. Finally, we propose path for experimentally realizing effective in-
teracting spin models, and in particular spin-liquid phases, using topological semiconductor
nanowires in a Cooper boxes.



 

 

 

 תקציר

 

פאזות טופולוגיות שבריות.  חקר למטרתכלים אנליטיים לא הפרעתיים מפתחים בתזה זו, אנו 

, ואכן, ההבנה בבסיסןאינטראקציות חזקות  הימצאות אתגר משמעותי עקב מהוותפאזות אלה 

מערכות למעט למעשה, מודלים פתירים עבור פאזות אלה )התיאורטית שלהן לוקה בחסר. 

בשיטת בתזה זו, אנו משתמשים באופן נרחב  מצרך נדיר. הינם( באפקט הול הקוונטי המאופיינות

מימדיות ממודלות על ידי מערך של חוטים המצומדים באופן -, בה מערכות רבהחוטים המצומדים

 מימדיות בעלות אינטראקציות חזקות -מערכות חד שפותחו עבורבמודלים אלה, כלים  חלש.

 .מימדיות-רבמערכות  לחקרמשמשים 

מודלים עבור מבודדים טופולוגיים  לתכנון בשיטת החוטים המצומדיםתחילה, אנו משתמשים 

 אבליות.-מודלים עבור פאזות לא לתכנןבפרט, גישה זו מאפשרת לנו  מימדיים.-שבריים דו

עבור  יםים מודלגמימד, ומצי-בהמשך, אנו מכלילים את שיטת החוטים המצומדים לתלת

לא טריוויאליות בעזרת מודלים אלה, אנו חוקרים תופעות  לוגים חזקים שבריים. מבודדים טופו

 משתמשים  בנוסף, אנופער אנרגיה הנוצר על ידי מנגנונים שונים.   בנוכחות הקורות על השפה

שבריים, המהווים את  יםיראליכ מוליכי על מודלים עבור לבניית שיטת החוטים המצומדיםב

𝑝 על מסוג-האנלוג השברי של מוליכי + 𝑖𝑝  . פאזות אלה מאופיינות על ידי תורות שדה

, אנו כמו כןלא אבליים הרחק ממנה.  ועירורים ,קונפורמיות לא טריוויאליות על השפה

שיטת שכבות מצומדות לצורך חיזוי פאזות טופולוגיות בעלות אינטראקציות חזקות משתמשים ב

תוך שימוש בדואליות שהתגלתה לאחרונה בין תורת דיראק  . אנחנו עושים זאתמימד-בתלת

-הביןקוהרנטיות ה, ובתופעת 𝑄𝐸𝐷3 ,מימדית לתורה המתארת אלקטרודינמיקה קוואנטית-הדו

 שכבתית.

תחילה, אנו מציעים  .הקרובות יותר לניסויים בתחזיותבנוסף לתוצאות אלה, אנו מתמקדים 

ניוון בו קיים על טופולוגיה של טורוס,  פיסיקה של אפקט הול הקוונטישת את המממהמערכת 

, לבסוףניוון יסודי זה. של  ותאנו מציעים ניסוי החושף אות כמו כן, טופולוגי של מצב היסוד.

-ספין בעלי אינטראקציות חזקות, המתארים בין היתר נוזלי-מודלי שלמימוש ניסיוני  מציגיםאנו 

 בקופסאות קופר.  בעזרת חוטים מוליכים למחצה(, spin-liquidsספין )
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Chapter 1

Introduction

Historically, phases of matter have been classified through the celebrated Landau paradigm,
which distinguishes phases according to the concepts of the order parameter and spontaneous
symmetry breaking. Despite its success, it has been recognized in the past few decades that
the Landau paradigm fails to provide a complete description of all phases, with the missing
components being topological properties of the quantum wavefunction.

This became apparent with the observation of integer and fractional quantum Hall states
[1, 2], and later, with the discovery of Z2 topological insulators in two-dimensions (2D) and
three-dimensions (3D) [3–15]. The above are examples of what is now collectively called
topological phases of matter. More recent evidence for observations of topological phases
include topological superconducting phases [16–25], topological crystalline insulators [26–
34], topological semimetallic phases [35–45], spin liquids [46], and others.

One can roughly group gapped topological phases into two categories: “integer” and “frac-
tional” phases (in analogy to the integer and fractional quantum Hall states). In the former,
the phases can generically be understood in the absence of interactions. They are associated
with a topological index in the bulk, and protected gapless edge modes (related by the bulk-
edge correspondence). The presence of symmetries constraints the form of the Hamiltonian
and therefore the single particle wavefunctions, resulting in diverse topological characteristics
depending on the symmetries of the system. This leads to the notion of symmetry protected
topological phases (SPTs). In fact, non-interacting SPTs protected by time-reversal, particle-
hole, and chiral symmetries have been fully classified [47, 48]. Beyond this celebrated periodic
table, topological phases protected by other symmetries, such as lattice symmetries [26–34],
have also been thoroughly studied.

Interactions affect the above picture in two major ways: first, they can reduce the non-
interacting classification by producing paths in parameter space that connect topologically
distinct states without closing the gap, thus making them topologically equivalent. Second,
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they can generate strongly interacting topological phases which cannot exist in the absence of
interactions.

Indeed, fractional phases (also known as or topologically ordered phases), are examples
of states that cannot be understood in the absence of interactions. These states are usually
characterized by remarkable properties such as fractionalization of quantum numbers, any-
onic excitations, and a ground state degeneracy determined by the topology of the underlying
space. Since interactions stabilize these phases, their study generally requires non-perturbative
methods, making their analysis highly non-trivial. Indeed, solvable models giving rise to such
phases of matter are scarce.

A relatively recent approach is the coupled-wire approach [49–72]. In this approach, a 2D
or 3D topologically ordered phase is constructed from coupled 1D gapless systems, each of
which is described by a conformal field theory (CFT). Since the conformal algebra is infinite in
1+1-dimensions, it supplies us with many analytical tools, making gapless one-dimensional
(1D) systems tractable even in the presence of strong interactions. Within the coupled-wire
approach, this machinery plays a central role in allowing us to write exactly solvable or analyt-
ically tractable model systems realizing fractional phases in higher dimensions. Throughout
this thesis, we extensively use the coupled-wire approach to study of fractional phases in two-
and three-dimensions.

The structure of this thesis is as follows: Chapter 2 presents the main tool used throughout
this thesis - the coupled-wire approach - and its application for the study of fractional quan-
tum Hall states. Chapter 3 is based on the results of Ref. [54], where we demonstrate how
the coupled-wire approach can be used to construct fractional Chern and topological insula-
tors in 2D. Chapter 4 presents the results of Ref. [63], in which we propose an experimental
realization of effective fractional quantum Hall states with a torus topology, and suggest im-
prints of the resulting topological ground state degeneracy. Chapter 5 discusses the results
of Ref. [58], where we extend the coupled-wire approach to three-dimensions and use it to
construct three-dimensional fractional topological insulators. Chapter 6 is based on the results
of Ref. [71], in which we use the coupled-wire approach to propose a fractional chiral super-
conductor phase, constituting the fractional analog of the p+ ip superconductor. Chapter 7
introduces the results of Ref. [73], where we leverage the recently discovered duality between
a two-dimensional Dirac cone and QED3 to propose the emergence of a strongly correlated
’composite Weyl semimetal’, as well as topologically ordered phases, in three-dimensions.
Chapter 8 presents the results of Ref. [74], where we propose a path for experimentally re-
alizing interacting spin models from topological semiconductor nanowires in Cooper boxes.
Finally, in chapter 9 I will discuss the main results of this thesis and their possible extensions.



Chapter 2

Methods: The coupled-wire approach

In this section, I will present the coupled-wire approach, which will be used extensively
throughout this thesis. To be specific, I will demonstrate how the coupled-wire approach
is used to study quantum Hall states [49, 50, 75, 76].

2.1 Integer quantum Hall states

Consider a two dimensional system of spinless electrons with an external magnetic field. We
decompose the plane on which the electrons reside into an array of N weakly coupled wires,
making it a highly anisotropic 2D system. As we will see, within this approach, by bosoniz-
ing the wire degrees of freedom, we can explicitly write model Hamiltonians for fractional
quantum Hall states.

We choose a gauge in which the vector potential A points in the x̂ direction. In the absence
of coupling between the wires, the spectrum is now made shifted parabolas. We define 2kφ

as the shift between two adjacent parabolas due to the magnetic field, and k0
F as the Fermi-

momentum in the absence of an external magnetic field. The spectrum of the j’th wire is
given by

E j(kx) =

(
kx−2kφ j

)2

2m
,

where m is the effective mass of the electrons. We start by linearizing the spectrum, and
describing the low-energy physics in terms of 2N chiral boson fields φ

j
R/L, such that

ψ
j

R/L ∝ ei
(

φ
j

R/L+k j
R/Lx

)
, (2.1)

where ψ
j

R/L is the fermion annihilation operator of the right/left moving component of wire
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number j, and k j
R/L is the corresponding Fermi-momentum. The boson fields satisfy[

φR/L(x),φR/L(x
′)
]
=±iπsign(x− x′),

thus ensuring that the electron operators defined in Eq. 2.19 satisfy the fermionic anti-commutation
relations.

The low-energy excitations are given by the quadratic Hamiltonian

Hx =
v

2π
∑

j

∫
dx
[(

∂φ
j

R

)2
+
(

∂φ
j

L

)2
]

in the absence of interactions. The density operators (measuring density deviations from the
homogeneous ground state) are given by ρ

j
R/L(x) = ±

1
2π

∂xφ
j

R/L. Therefore, density-density
interactions leave the Hamiltonian quadratic in terms of the φ -fields, making the bosonization
approach extremely useful in studying 1D interacting systems.

Within our construction, the quantum Hall filling factor is given by

ν =
k0

F
kφ

. (2.2)

Given a filling factor ν , the Fermi momenta take the form

k j
R/L = kφ (2 j±ν)+β , (2.3)

where β is a gauge dependent parameter, which we simply set to zero.
To construct Abelian quantum Hall states, we identify a set of mutually (and self) com-

muting cosine terms that do not break translational invariance (i.e., conserve momentum), and
are capable of completely gapping out the bulk. By an analysis of the gapless modes that
remain near the edges and the properties of the bulk excitations, we will then be able to iden-
tify various QHE states. Notice that once we linearize the spectrum, the only remnants of
the original model are the Fermi-momenta (Eq. 2.3), which dictate the allowed cosine terms
coupling different chiral modes (through momentum conservation). In the quantum Hall case,
these are determined by the filling factor (which in turn is a function of the magnetic field and
the density of electrons). In other systems studied in this thesis, it will generally be a function
of different model parameters, such as the spin-orbit coupling.

The simplest quantum Hall system corresponds to ν = 1, in which case adjacent parabolas
cross at the chemical potential (that is, k j

R = k j+1
L ). In this case, simple tunneling operators

between the wires conserve momentum, and can gap out the spectrum, leaving only a single
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free chiral mode on each edge. To be specific, the terms we consider are

Hν=1 = t
N−1

∑
j=1

∫
dxcos

(
φ

j
R−φ

j+1
L

)
. (2.4)

These terms are relevant, and therefore gap out the bulk degrees of freedom. If the system
contains N wires, the two modes φL,1 and φR,N remain free, and represent the chiral edge
modes of the ν = 1 IQHE.

The generalization to any other IQHE states is simple. Indeed, for ν = n, with n being an
integer, the terms which conserve momentum are n’th-nearest neighbor tunneling operators of
the form

Hν=n = t
N−n

∑
j=1

∫
dxcos

(
φ

j
R−φ

j+n
L

)
. (2.5)

We now have n chiral modes on each edge: φ 1
L ,φ

2
L , · · · ,φ n

L and φ N
R ,φ N−1

R , · · · ,φ N−n+1
R , as

expected for the ν = n IQH state.

2.2 Laughlin states

The simplest fractional states belong to the so-called Laughlin series, occuring at filling factors
of the form ν = 1/m, with m being an odd integer. As opposed to the integer case, multi-
electron processes are required in order to form a set of commuting terms which conserve
momentum and can gap the bulk. In order to identify this set of terms, it is convenient to
define a new set of chiral fields through the transformation

η
j

R/L =
m+1

2
φ

j
R/L +

1−m
2

φ
j

L/R. (2.6)

This mapping should be accompanied by a transformation of the momenta

q j
R/L =

m+1
2

k j
R/L +

1−m
2

k j
L/R. (2.7)

In terms of the fermions, the mapping takes the form

ψ̃
j

R/L =
(

ψ
j

R/L

)m+1
2
(

ψ
j

L/R

) 1−m
2
, (2.8)

where ψ̃
j

R/L ∝ ei
(

η
j

R/L+q j
R/Lx

)
, a negative exponent should be understood as an Hermitian con-

jugation, and the multiplication of identical Fermion operators should be taken with an ap-
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propriate point splitting. Note that while this transformation is very simple in the bosonic
language, it is non-linear in terms of the fermions.

The η-fields satisfy the commutation relations[
ηR/L(x),ηR/L(x

′)
]
=±iπmsign(x− x′),

ensuring that the transformed ψ̃-fields satisfy the fermionic anti-commutation relations as
well.

It can now be checked that the momenta q form a pattern identical to the ν = 1 case.
Similar to the previous section, this means that operators of the form

Hν=1/3 = u
N−1

∑
j=1

∫
dxcos

(
η

j
R−η

j+1
L

)
(2.9)

conserve momentum and can gap out the bulk in the strong coupling limit. In terms of the
original fermions, this term results from a hopping process accompanied by particle-hole ex-
citations. Notice that the above terms are actually irrelevant in the weak coupling limit. They
can however flow to the strong coupling limit if the amplitude u is made large enough. Al-
ternatively, forward scattering interactions can alter the Luttinger-liquid fixed point and make
them relevant.

Once the bulk is gapped, the two modes ηL,1 and ηR,N remain decoupled, and we get a
single chiral η-mode on each edge, which satisfy the chiral Luttinger liquid structure of the
Laughlin-edge modes [

ησ (x),∂ησ (x′)
]
= 2πσ imδ (x− x′). (2.10)

To make contact with more conventional notations (see, e.g., [77]), we define the (bosonized)
quasiparticle operators

χi =
ηi

m
, (2.11)

which satisfy [
χρ(x),∂ χρ(x′)

]
=

2πi
m

δ (x− x′).

In terms of these, the electron operators take the well-known form ψ̃ = eimχ .
If the cosines flow to the strong coupling limit, the low energy bulk excitations are local

kink excitations where the argument ηR
i −ηL

i+1 jump by 2π from one minimum of the cosine
to another - i.e., configurations satisfying

∂x
(
η

R
i −η

L
i+1
)
=±2πδ (x− x0) (2.12)
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where x0 is the location of the kink.
Using the definition of the η-fields, the total charge operator is given by

Q = e
N

∑
i=1

∫
dx

1
2π

∂x
(
φ

R
i −φ

L
i
)

=
e
m

N

∑
i=1

∫
dx

1
2π

∂x
(
η

R
i −η

L
i
)

=
e
m

N

∑
i=1

∫
dx

1
2π

∂x
(
η

R
i −η

L
i+1
)
.

Therefore, the kink configuration in Eq. 2.12, is associated with a charge of±e/m, as expected
from Laughlin quasiparticles. One can additionally study the mutual statistics of two kink
excitations and find that it is identical to that of a Laughlin quasiparticles [50].

In the analysis of the ν = 1/m state, we used a transformation to the new ψ̃ fields, whose
momentum structure resembles that of electrons in a ν = 1 state. This allowed us to repeat the
construction of the ν = 1 case and stabilize a Laughlin state. In what follows we turn to study
hierarchical multi-component FQH states, and demonstrate that similar transformations map
them to non-interacting IQH states of the form ν = n.

2.3 Hierarchical quantum Hall states

In this section we describe hierarchical Abelian states defined by a n× n K-matrix with odd
(even) diagonal (off-diagonal) entries. The charge vector Q in this case is a vector of dimen-
sion n with all entries equal 1. The corresponding filling factor is given by [77]

ν = QT K−1Q. (2.13)

For convenience, we artificially group the wires into sets of n wires (and assume we have N
such groups). Accordingly, we denote the chiral boson fields as φ

j,l
R/L, where j = 1 . . .N , and

l = 1 . . .n. The associated momentum values take the form k j,l
R/L = kφ (2 [( j−1)n+ l]±ν).

For convenience, we define n-dimensional vectors containing the n chiral field for each value
of j:

−→
φ

j
R/L =


φ

j,1
R/L

φ
j,2

R/L
...

φ
j,n

R/L

 . (2.14)
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To follow the same logic as before, we would like to map this state to an integer quantum
Hall state with filling n (which has n edge modes, as required). This can be done through a
simple generalization of Eq. 2.6:

−→
η

j
R/L =

K +1
2
−→
φ

j
R/L +

1−K
2
−→
φ

j
L/R. (2.15)

In terms of these fields the momentum structure indeed corresponds to a state with filling
ν = n, such that terms of the form

Hν=QT K−1Q = u
N−1

∑
j=1

n

∑
l=1

∫
dxcos

(
η

j,l
R −η

j+1,l
L

)
(2.16)

gap out the bulk in the strong coupling limit. Again, these terms describe hopping terms with
particle-hole excitations in terms of the original electrons. The fields−→η 1

L and−→η N
R remain free,

and satisfy the commutation relations[
η

1,l
L (x),∂η

1,l′
L (x′)

]
=−2iπKl,l′δ (x− x′). (2.17)[

η
N,l
R (x),∂η

N,l′
R (x′)

]
= 2iπKl,l′δ (x− x′). (2.18)

These are the low energy degrees of freedom constituting the edge theory. As the above fields
all carry a charge of 1 electron, the n electron operators on the edges take the form

Ψl = eiη l
. (2.19)

Again, to make contact with more conventional notations, we can define the quasiparticle
fields χ on the first edge according to

χ⃗ = K−1
η⃗ .

Their commutation relations take the form[
χl(x),∂ χl′(x

′)
]
=±2iπK−1

l,l′ δ (x− x′),

and in terms of them, the electron operator is

Ψl = ei∑l′ Kll′χl′ .
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The cosine terms in Eq. 2.16, again give rise to kink excitations of the form

∂x
(⃗
η

R
j − η⃗

L
j+1
)
= 2π ê jδ (x− x0), (2.20)

where ê j is a unit vector whose j′th entry is 1 and the rest vanish. The total charge can now
be written as

Q =
e

2π
∑

j

∫
dxQ⃗T

∂x

(
φ⃗

R
j − φ⃗

L
j

)
=

e
2π

∑
j

∫
dxQ⃗T K−1

∂x
(⃗
η

R
j − η⃗

L
j+1
)
.

Therefore, the charge associated with the kink excitation, Eq. 2.20 takes the form eQ⃗T K−1ê j.
Combinations of these charges take the form eQ⃗T K−1l, which indeed reproduces the expected
charges in hierarchical states.

2.4 Non-Abelian states

To discuss generalizations to non-Abelian quantum Hall states, it is useful to first take a
slightly broader view of the approach presented so far. The constructions of Abelian quan-
tum Hall states can be described as follows: first, within each wire (or more generally, each
unit cell), we applied a transformation that defines new set of boson fields η , which behave
like the chiral Luttinger liquid degrees of freedom we expect to find on the edge after we gap
out the bulk.

Then, using these new degrees of freedom, we couple a right moving operator ηR
j of one

unit cell with the left mover ηL
j+1 of the next unit cell (see the upper part of Fig. 2.1 for a

schematic depiction). This leaves the left (right) moving sector of the first (last) wire gapless.
By construction, the edge modes are the expected chiral Luttinger liquid degrees of freedom.
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Figure 2.1: A schematic depiction of the coupled-wire approach for realizing Abelian and
non-Abelian topological states.

To generalize the coupled-wire approach to non-Abelian states, we need to generate gapped
systems with more general chiral CFTs on the edges. To do that, we generalize the above strat-
egy: first, we write interacting terms within each unit cell, in such a way that each unit cell is
described by a new fixed point, described by the CFT which is the non-chiral version of the
CFT expected to reside on the edge of the sample. Identifying fields OR

j (OL
j ) belonging to the

right (left) moving sectors of this CFT, one can then write terms of the form

∑
j

∫
dx
[
OR†

j OL
j+1 +h.c.

]
, (2.21)

thereby gapping the bulk and leaving behind a chiral version of the CFT on each edge. This
process is presented schematically in the lower part of Fig. 2.1.

Indeed, this approach was used by Teo and Kane [50] to realize the non-Abelian Moore-
Read and Read-Rezayi states, and will be used in this thesis to construct novel non-Abelian
phases of matter.



Chapter 3

Non-Abelian topological insulators from
an array of quantum wires

This chapter describes the results of our first project, presented in Ref. [54]. In this project,
we demonstrate that the coupled-wire approach can be useful in studying 2D fractional states
beyond the quantum Hall regime. In particular, we focused on constructing tractable models
for fractional Chern and topological insulators.

3.1 Introduction

Prior to this work, it was demonstrated [49, 50, 75, 76] that integer and fractional quantum Hall
states may be elegantly understood through tractable coupled-wire models. The wire degrees
of freedom are described through the bosonization formalism, allowing one to treat interaction
effects analytically. Indeed, this approach allows one to treat inter-wire multi-electron terms
that stabilize strongly interacting FQH states.

The purpose of this work is to demonstrate that the coupled-wire approach can be used to
construct tractable models for fractional phases beyond the quantum Hall regime. In particular,
we focused on two types of 2D phases: fractional Chern insulators (FCIs) and fractional
topological insulators (FTIs).

An FCI is the fractional analog of a Chern insulator – a material experiencing the IQHE
without a net magnetic field. The possibility of an FCI has been discussed quite extensively in
the literature (see Ref. [78] for a review). Indeed, numerical investigations of lattice models
with nearly flat bands presented strong evidence for FCI states (see, e.g., [79–84] ). In this
work we use the coupled-wire approach to present an alternative analytic approach to the
subject, which in particular does not require the presence of flat bands.
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Using an analogy between a magnetic field and a spin-orbit coupling, we then generalize
the above model to a time-reversal invariant FTI. Such phases have indeed been discussed
previously (see, e.g., Refs. [85–92]), yet analytically tractable models remain scarce.

3.2 Wire construction of a Chern insulator

The existence of edge modes [93] in the QHE can be understood in various ways. In par-
ticular, one can understand them by studying the classical circular trajectories of electrons in
a magnetic field, which turn into chiral “skipping orbits” near the edge. As we argue, it is
possible to construct a similar semi-classical theory for a specific set of Chern insulators as
well. Consider a system consisting of electrons and holes (whose masses differ in sign). In
the presence of a magnetic field, their classical trajectories are curved in opposite directions.
If, however, the electrons and the holes experience opposite magnetic fields, their trajectories
will be curved in the same direction. One can imagine constructing a Chern-insulator by sepa-
rating the plane into regions which contain only holes and only electrons. If the magnetic field
is opposite in the two regions, the classical trajectories will be similar to those of electrons
in a uniform magnetic field. This suggests that, upon quantization, this system should have
a non-zero Chern number despite the fact that the total magnetic flux vanishes, making the
system a Chern insulator.

Motivated by the above semi-classical picture, we have designed the wire construction
shown in Fig. 3.1a. Each unit cell consists of four wires. We tune the wires’ chemical poten-
tials such that wires 1 and 2 of each unit cell are near the bottom of the band, and wires 3 and
4 are near the top. Thus, we have alternating pairs of wires that contain electrons and holes.
A positive (negative) magnetic field is introduced between the pairs of electron (hole) wires.
Indeed, this is an anisotropic version of the semi-classical picture we described above.

It is convenient to choose a gauge in which the vector potential A points in the x̂ direction.
We start by tuning the wires’ bands such that all their crossing points match in energy. In this
case, the energy spectra are similar to those depicted in Fig. 3.1b. In analogy to the quantum
Hall case presented in the previous section, we define k0

F as the Fermi momenta in the absence
of an external magnetic field, and kϕ = eBa

2h̄c as the shift of the parabolas due to the magnetic

fields (see Fig. 3.1b). It is also useful to define the filling fraction as ν =
k0

F
kϕ

. In the scenario
described above, where the crossing points match in energy, it is easy to verify that the filling
factor is ν = 1.

If neighboring wires of the same type are weakly tunnel coupled (with an amplitude t),
a gap opens between parabolas 1 and 2, and parabolas 3 and 4. The spectrum in this case is
depicted in Fig. 3.1c. Introducing coupling between the electrons and holes inside a unit cell
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Figure 3.1: (Color Online) (a) Physical scheme of the Q1D model we study. Blue wires
contain electrons, and red wires contain holes. The black arrows represent the magnetic field
through the system. (b) The energy spectrum of the wires (as a function of kx) near zero
energy without tunneling between the wires (t, t ′, t ′′ = 0). The wires are tuned such that the
four parabolas cross each other at zero energy, and the chemical potential is set to be zero. The
spectra in blue, dashed blue, dashed red, and red correspond to wires 1, 2, 3, and 4 in a unit
cell, respectively. (c) The energy spectrum when t is switched on. A gap opens near kx = 0.
(d) The spectrum when t ′ is switched on as well. This gives an additional gap at kx > 0. Free
chiral modes are left on wires 1 and 4. Finally, if one switches on t ′′, there are free chiral
modes at the edge of the system, which suggests that there is a non-zero Chern number.

(t ′), an additional gap opens at kx > 0, and we obtain the spectrum depicted in Fig. 3.1d. In
the absence of additional terms, each four-wire unit cell contains a chiral mode on each of
its edges. Switching on small tunneling between different unit cells (t ′′), the gapless modes
associated with adjacent unit cells gap out, leaving behind chiral modes on the edges of the
system. The coupling between the edges decays exponentially with the sample width, and
in the thermodynamic limit we expect to find truly gapless edge states. The observation of
gapless edge states indicates that there is a non-zero Chern number C =±1.

3.3 Fractional Chern Insulators

The wire construction prompts us to add interactions and use the bosonization technique, in
analogy to the QHE case (see Chapter 2). This allows us to generalize the above results to
fractional Chern insulator (FCI) states. In the presence of interactions, multi-electron pro-
cesses may open a gap even if the Fermi point of the left movers is not equal to the Fermi
points of the right movers [49, 94–96].

To understand the required conditions for a gap opening due to multi-electron scattering
processes, it is useful to present the spectra of Fig. 3.1b in an alternative way. Instead of
plotting the entire spectrum, we display in Fig. 3.2a the Fermi momenta as a function of the
wire index. A cross (

⊗
) denotes the Fermi point of a right mover, and a dot (

⊙
) denotes the

Fermi point of a left mover. Before analyzing the fractional case, it is useful to revisit the
simple ν = 1 case. We will see that the main results of the previous section arise naturally
through the bosonization framework.

Linearizing the spectrum around the Fermi-points of each wire, and using the standard
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bosonization procedure, we again define the two chiral bosonic fields, φ R
i and φ L

i , for each
wire. In terms of these, the fermionic operators are given by ψR

i ∝ ei(kR
i x+φ R

i ), and ψL
i ∝

ei(kL
i x+φ L

i ).

Without interactions, a momentum conserving single-electron tunneling between the wires
(denoted in Fig. 3.2a by an arrow) is possible only when the left and right movers from adjacent
wires are at the same point in k-space. These single-electron tunneling operators between
adjacent wires (denoted in Fig. 3.2a by green, red, and dashed red arrows) take the form

tψR†
1(3)ψ

L
2(4)+h.c. ∝ t cos

(
φ

R
1(3)−φ

L
2(4)

)
,

t ′ψR(L)†
2 ψ

L(R)
3 +h.c. ∝ t ′ cos

(
φ

R(L)
2 −φ

L(R)
3

)
,

t ′′ψR(L)†
4 ψ

L(R)
1′ +h.c. ∝ t ′′ cos

(
φ

R(L)
4 −φ

L(R)
1′

)
. (3.1)

We switch on the operators in the following way: first, we switch on a small t ≪ tx.
Since this is a relevant operator, it gaps out the spectrum near kx = 0. Then, we switch on
smaller electron-hole couplings t ′, t ′′ < t. The terms ψ

R†
2 ψL

3 and ψ
R†
4 ψL

1′ gap out the rest of

(a) (b)

Figure 3.2: (Color Online) (a) A diagrammatic representation of the energy band structure in
the case ν ≡ k0

F/kϕ = 1 (See Fig. 3.1b for definitions of kϕ and k0
F ). The y axis shows the

wire index inside the unit cell, and the x axis shows kx in units of kϕ . The symbol ⊙ (⊗)
represents kL

i (kR
i ). Colored arrows represent tunneling amplitudes between the wires. (b)

The same diagram for a topological insulator with ν = 1
3 . Colored arrows now represent the

multi-electron processes responsible for the creation of Laughlin-like states. These complex
processes in terms of the electrons (ψ ∼ eiφ ) for ν = 1/3 are mapped to simple tunneling
processes in terms of the fermions ψ̃ ∼ eiη . Thus, ν = 1/3 for ψ is equivalent to ν = 1 for ψ̃ .
In the presence of spin orbit coupling, spin up (blue) and spin down (light red) will experience
opposite alternating effective magnetic fields.
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the spectrum, leaving a gapless edge mode. As we discussed before, this indicates that there
is a non-zero Chern number. Note that the terms ψ

L†
2 ψR

3 and ψ
L†
4 ψR

1′ contain fields which are
conjugate to those already pinned by t. Strong quantum fluctuations are therefore expected to
suppress these terms.

We now turn to generalize this to Laughlin-like FCI states, with a filling factor ν =

k0
F/kϕ = 1/m, where m is an odd integer. For example, the momentum pattern associated

with ν = 1/3 is shown in blue in Fig. 3.2b. In this case, multi-electron processes must be
considered in order to gap out the bulk. In analogy to the quantum Hall case (described in the
previous section), it is enlightening to define new chiral fermion operators

ψ̃
R(L)
i = (ψ

R(L)
i )

m+1
2 (ψ

†L(R)
i )

m−1
2 ∝ ei

(
qR(L)

i x+η
R(L)
i

)
, (3.2)

with η
R(L)
i = m+1

2 φ
R(L)
i − m−1

2 φ
L(R)
i , and qR(L)

i = m+1
2 kR(L)

i − m−1
2 kL(R)

i . Whereas the original
φ -fields satisfy

[
φρ(x),φρ(x′)

]
= iπρsign(x− x′), with ρ = ± corresponding to R/L, the η-

fields satisfy
[
ηρ(x),ηρ(x′)

]
= iπmρsign(x− x′). As we saw in the previous section, this

ensures that the ψ̃’s are fermionic operators. In addition, it can easily be checked that the
resulting structure of the q’s is identical to that of the k’s in the case of ν = 1 (Fig. 3.2a), so
that ψ̃ can be regarded as a fermionic field with ν = 1.

Repeating the analysis of the ν = 1 case, we can now write single ψ̃ tunneling operators,
identical to those found in Eq. (3.1) (replacing ψ→ ψ̃,φ → η , with new tunneling amplitudes
t̃, t̃ ′, and t̃ ′′). In terms of the original electrons, these operators describe the multi-electron pro-
cesses shown in Fig. 3.2b. Note that when the interactions are strong enough, these operators
become relevant [49, 94, 95]. From this point, the process is identical to the construction of
the normal CI. The gap due to the ψ̃ tunneling operators ensures that competing processes (for
example, single electron tunneling between wires 2 and 3, or 4 and 1’) are suppressed, as they
contain fields conjugate to the fields pinned by t̃ (which is dominant by our construction).

As we saw in Chapter 2, the fact that the composite η-fields (and not the original φ fields)
are pinned, leads to the various properties of these Laughlin-like states, like the fractional
charge and statistics of the excitations, in analogy to the known FQHE states.

3.4 Non-Abelian Fractional Chern Insulators

As the discussion above shows, the wire-construction provides a path for creating Abelian
fractional Chern insulators. It was demonstrated in Ref. [94] that non-Abelian FQHE states
can be constructed by enlarging the unit cell, and taking a non-uniform magnetic field inside
each unit cell. By our construction, any non-Abelian state constructed in Ref. [94] can be gen-
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eralized to non-Abelian CI state. To do so, one can take two unit cells from the construction in
Ref. [94], reverse the magnetic field of the second unit cell, and use holes instead of electrons.

In fact, the lack of a total magnetic flux in our system enables simpler constructions of
non-Abelian states, which do not have a direct analog in the QHE. We now show that a slight
modification of the procedure that enabled the construction of Laughlin-like states may lead
to non-Abelian states. We will focus here on a state similar to the Z3 Read-Rezayi state, but
we note that generalizations to other non-Abelian states are possible.

To obtain a Z3 parafermion state, we take ν = 1/3, and start by writing the ψ̃ (or η)
operators. Let us start in the special point where t̃, t̃ ′, and the coupling between ψ̃R

1 and ψ̃L
4

are tuned to have exactly the same value, denoted by v (at the end, when the topological
nature of our construction will be revealed, this strict requirement can be relaxed). As we now
demonstrate, this special point in parameter space corresponds to a fixed point described by a
non-trivial Z3 parafermion in each unit cell. In terms of the bosonized η fields, these terms
take the form

H = v
∫

dx
[
cos
(
η

L
2 −η

R
1
)
+ cos

(
η

R
3 −η

L
4
)
+{2↔ 4}

]
. (3.3)

Defining charge and “spin” degrees of freedom according to (φc,θc,φs,θs)
T =U

(
ηR

1 ,η
L
2 ,η

R
3 ,η

L
4
)T ,

with

U =
1√
24π


1 1 1 1
−1 1 −1 1
1 −1 −1 1
−1 −1 1 1

 ,

we can write the Hamiltonian in the convenient form

H =
∫

dx

[
1
2 ∑

a=c,s

(
(∂xφa)

2 +(∂xθa)
2
)

+2vcos
(√

6πθc

)[
cos
(√

6πθs

)
+ cos

(√
6πφs

)]]
dx. (3.4)

If we manage to pin the field θc, the term cos
(√

6πθc

)
can be regarded as a constant. The

simplest way to pin θc is to add a multi-electron term of the form

v′
∫

dxcos
(
η

L
2 −η

R
1 −η

R
3 +η

L
4
)
= v′

∫
dxcos

(√
24πθc

)
.

While this term is irrelevant, if we increase its bare coupling constant, we can make it
flow to strong coupling. Alternatively, one can add density-density interactions that alter the
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Luttinger-liquid fixed point in the charge sector, leading to a charge-sector Hamiltonian of the
form ∫ v∗

2

(
Kc (∂xφc)

2 +
1

Kc
(∂xθc)

2
)

dx. (3.5)

When the repulsive interactions become strong enough (i.e. Kc becomes small enough), the
term multiplying v′ becomes relevant and θc is pinned to the minimum of the cosine. In this
case, the term cos

(√
6πθc

)
appearing in Eq. (3.4) is pinned, and can be treated as a constant.

Under these assumptions, the Hamiltonian in Eq. 3.4 describes the β 2 = 6π critical self-
dual Sine-Gordon model, known to realize a Z3 parafermion CFT [97, 98]. Following the
scheme presented in Sec. 2.4, we would like to couple the right moving parafermion sector
with the left mover in the next unit (leaving a single chiral parafermion CFT on each edge).
However, such coupling requires terms which involve tunneling of quasiparticles [98]. These
terms are therefore non-local and cannot be written in terms of the wire degrees of freedom.

To overcome this, we need to effectively create a bulk FQHE state between these modes,
in which tunneling of quasiparticles can be generated. This can be done if we slightly modify
our construction such that each wire contains two flavors (denoted by a and b). The spectrum
as a function of the momenta q (corresponding to the composite fields ψ̃) is shown in Fig.
(3.3). We now have effectively 8 wires in each unit cell, out of which we can create an
effective bulk FQHE state. Green arrows represent the operators which form the FQHE state,
and red arrows represent the operators which create the gapless parafermion modes. The
quasiparticle tunneling terms needed to create the Z3 parafermion state can now be generated
through the thin FQHE stripe in each unit cell, and one can construct the desired 2D state with
Z3 parafermion CFT on the edge (in addition to chiral boson modes).
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Figure 3.3: The diagrammatic representation of the spectrum of the case where the system is
tuned to ν = 1/3 and each wire has two flavors. The momenta shown in the figure are the q’s
corresponding to the composite fields ψ̃ . Blue and orange modes represent the flavors a and
b. Green arrows are terms used to effectively create a bulk FQHE state, and red arrows are
used to map the problem to the β 2 = 6π self-dual Sine-Gordon model in each unit cell. The
effective bulk supports the quasiparticle tunneling needed to couple the parafermion modes.

The above construction seems to require considerable fine-tuning tuning of the couplings.
However, due to the topological nature of the phase we describe, deviations from this specific
form are possible, as long as the bulk gap does not close.

3.5 Topological insulators from the wires approach

The entire analysis presented here can also be carried out for spinful electrons if one introduces
spin-orbit interactions (in the ẑ direction only). This can be done if an alternating electric
field is introduced instead of an alternating magnetic field. For example, the electric field
can be tuned in such a way that the spin-orbit coupling is positive at wires 1 and 4, and
negative at wires 2 and 3. Fig. 3.2b shows the appropriate Fermi-momenta corresponding
to ν = 1

3 (in blue for spin up and light red for spin down). If one considers only processes
which conserve Sz, we get a simple construction for integer, Laughlin-like, and non-Abelian
topological insulators [85], which are simply two copies of the FCI states discussed above
(with opposite chiral modes for the different spin species). In Chapter 5, we will analyze
these models in details. The stability of such states with respect to time-reversal invariant
perturbations can be addressed through the arguments described in Ref. [85].



Chapter 4

Imprint of topological degeneracy in
quasi-one-dimensional fractional
quantum Hall states

This chapter presents the results of our second project, presented in Ref. [63]. In this project,
we propose experimental systems which are equivalent to fractional quantum Hall states with
a torus topology, known to possess a topological ground state degeneracy. These realizations
present measurable imprints of the topological degeneracies, which play a fundamental role
in our understanding of fractional phases.

4.1 Introduction

One of the hallmarks of the fractional quantum Hall effect (FQHE) is that if the two-dimensional
electron system resides on a manifold with a nontrivial topology, it will have a ground state
degeneracy which depends on the topology [99]. For a fractional quantum Hall state on an
infinite torus, the degeneracy of the ground state equals the number of topologically distinct
fractionalized quasi-particles allowed in that state. Furthermore, no local measurement may
distinguish between the degenerate ground states. When the torus is of large but finite size,
the degeneracy is split, but the splitting is exponentially small in L, where L = min

{
Lx,Ly

}
and Lx,Ly are the two circumferences of the torus.

In this work we consider two systems that are topologically equivalent to a torus, and
- unlike the torus - are within experimental reach. The first is that of an annular shaped
electron-hole double-layer in which the electron and hole densities are equal, and are both
tuned to the same FQHE state. In the absence of any coupling between the layers, both the
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interior edge and the exterior edge of the annulus carry pairs of counter-propagating edge
modes of the electrons and the holes. These pairs may be gapped by means of inter-layer back-
scattering, resulting in a fully gapped system with the effective topology of the torus. In fact,
this system is richer than a seamless torus, since the interior and exterior edges may be gapped
in different ways. In particular, gapping the counter-propagating edge modes by coupling
them to a superconductor may have interesting consequences. Some of these consequences
are central to the current paper.

The second realization we consider is that of a two dimensional time-reversal-invariant
fractional topological insulator [85]. To be concrete, we assume that it is constructed of wires
subjected to spin-orbit coupling and electron-electron interaction. In this realization, electrons
of spin-up form a FQHE state of filling factor ν , and electrons of spin-down form a FQHE of
filling factor−ν . Similar to the particle-hole case, the edges carry pairs of counter-propagating
edge modes with opposite spins that may be gapped in different ways. Remarkably, when the
edge modes are gapped by being coupled to superconductors, the system is invariant under
time-reversal, yet topologically equivalent to a FQHE torus.

We use these realizations of a toroidal geometry and their inter-relations to investigate the
transition of a fractional quantum Hall system from the thermodynamic two-dimensional to the
quasi-one dimensional regime. In particular, we find signatures of the topological ground state
degeneracy of the two-dimensional (2D) limit (akin to that of fractional quantum Hall states
on a torus) that survive the transition to the quasi one-dimensional (1D) regime and propose
experiments in which these signatures may be probed. For example, for an Abelian fractional
quantum Hall state, we find a 2πd-periodic Josephson effect, where d is the degeneracy in the
2D thermodynamic limit.

4.2 The main results and the physical picture

4.2.1 The systems considered

The first system we consider - the electron-hole double-layer - is conceptually simple to visu-
alize (see Fig. (4.1a)). We consider an electron-hole double-layer shaped as an annulus with
equal densities of electrons and holes, and a magnetic field that forms FQHE states of ±ν in
the two layers. The system breaks time reversal symmetry, but its low energy physics satisfies
a particle-hole symmetry. For most of our discussion we focus on the case ν = 1/3. In that
case each edge carries a pair of counter-propagating ν = 1/3 edge modes. The edge modes
may be gapped by means of normal back-scattering (possibly involving spin-flip, induced by
a magnet) or by means of coupling to a superconductor. In line with common notation, we
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Figure 4.1: (a) The first realization we consider is that of an electron annulus (blue) and a
hole annulus (red) under the action of a uniform magnetic field. It is evident that coupling the
annuli’s edges forms the topology of a torus. The second realization we suggest is that of a
fractional topological insulator. Fig. (b) shows a possible model for a fractional topological
insulator. We have an array of N wires, with a strong spin-orbit coupling. The spin orbit cou-
pling is linear with the wire index n. The similarity of the resulting spectrum (see Fig. (4.3a)
below) to the one corresponding to the wires construction of quantum Hall states suggests an
equivalence to two quantum Hall annuli subjected to opposite magnetic fields (each annulus
corresponds to a specific spin). (c) The edge modes of the two above models can be gapped
out by proximity coupling to superconductors. In the case of a thin (quasi-1D) system, the
phase difference between the inner and the outer superconductors leads to a Josephson effect
mediated by tunneling across the region of a fractional quantum Hall double layer or a frac-
tional topological insulator. The edge modes can also be gapped using proximity to magnets,
in which case one can measure the spin-Josephson effect.

refer to these two ways as F and S respectively.
The second system is a fractional topological insulator. To model the fractional topolog-

ical insulator we consider an array of N coupled quantum wires of length Lx, each satisfying
periodic boundary conditions (Fig. (4.1b)). The wires are subjected to a Rashba spin-orbit
coupling, and we consider a case in which the spin-orbit coupling constant in the n’th wire is
proportional to 2n−1 (similar to the model considered by Ref. [100]). Effectively, this form
of spin-orbit coupling subjects electrons of opposite spins to opposite magnetic fields. While
this particular coupled-wire model of a time reversal invariant topological insulator does not
naturally allow for the regime of a large N, other realizations, such as those proposed in the
previous chapter, allow for such a regime. These realizations require more wires in a unit cell,
and are therefore more complicated that the one considered here. Most of the results of our
analysis are independent of the specific realization of the fractional topological insulator, and
we present the analysis for the realization that is simplest to consider.

For non-interacting electrons, the spectrum of the array we consider takes the form shown
in Fig. (4.3a). Single-electron tunneling processes (which conserve spin) gap out the spectrum
in all but the first and last wires, which carry helical modes (Fig. (4.3b)). If the chemical
potential is tuned to this gap, then in the limit of large N the system is a topological insulator
(TI), and therefore the gapless edge modes are protected by time-reversal symmetry and charge
conservation [4].
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Both realizations are equivalent to two electron QH annuli with opposite magnetic fields.
If the edges are coupled, the two annuli are effectively “stitched” into a torus. The edge modes
may be gapped by coupling the two external wires (n = 1 and n = N) to a superconductor or
to a system with appropriate magnetic order. A Zeeman field that is not collinear with the
spin-orbit coupling direction is necessary to couple the different spin directions. Moreover,
in our coupled-wire model the spin-up and the spin-down electrons at the n = N edge have
different Fermi-momenta, so that edge would not be gapped by a simple ferromagnet. In order
to conserve momentum one would need to introduce a periodic potential that could modulate
the coupling to the ferromagnet at the appropriate wave vector, or one would need to use a
spiral magnet with the appropriate pitch. In more sophisticated wire models, such as those
discussed in the previous chapter, or in actual realizations of topological insulators, the two
edge modes can have the same Fermi momenta, so a simple ferromagnet can be used.

In order to construct a fractional topological insulator, we first tune the chemical potential
such that the density is reduced by a factor of three, to ν = 1/3. For an array of wires in
a magnetic field and spinless electrons, Kane et al. [49] have introduced an interaction that
leads to a ground state of a FQHE ν = 1/3 (as discussed in chapter 2). Here we show that the
same interaction, if operative between electrons of the same spin only, leads to a formation of
a fractional topological insulator, i.e., to the spin-up electrons forming a ν = 1/3 state and the
spin-down electrons forming a ν =−1/3 state.

Both the electron-hole double-layer and spin-orbit wire system have counter propagating
edge modes. They are distinct, however, in a few technical details. An electron-hole double
layer system has been realized before in several materials, such as GaAs quantum wells and
graphene. The requirements we have here - no bulk tunneling, sample quality that is sufficient
for the observation of the fractional quantum Hall effect, and a good coupling to a supercon-
ductor or a magnet - are not easy to realize, but are not far from experimental reach [101–103].
In addition, we assume that the two layers are far enough such that inter-layer interactions do
not play an important role, but close compared to the superconducting coherence length to
enable pairing on the edges.

The array of wires we describe can in principle be formed using semi-conducting wires
such as InAs and InSb [19, 21, 23], where variable Rashba spin-orbit coupling could be
achieved by applying different voltages to gates above the wires. We stress that the wires con-
struction is nothing but a specific example of a fractional topological insulator, and that any
fractional topological insulator is expected to present the effects we discuss. Two-dimensional
topological insulators were conclusively observed [5, 6, 8, 9, 11, 104, 105], and more recently
proximity effects to a superconductor were demonstrated on their edges [10, 106, 107]. How-
ever, fractionalization effects due to strong electron-electron interaction were not observed yet
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in these systems and are less founded theoretically.

4.2.2 Ground state degeneracy and its fate in the transition to one di-
mension

In Sec. 4.3 we investigate the topological degeneracy of the ground state in the 2D thermody-
namic limit. Using general arguments, we find that the degeneracy depends on the gapping
mechanism of the edges: when both edges are gapped by the same mechanism, be it proximity
coupling to a superconductor or to a magnet, the topological degeneracy is three, as expected.
However, if one edge is gapped using a superconductor and the other is gapped using a magnet
the ground state of the system is not degenerate.

Physically, the degeneracy is most simply understood in terms of the charge on the edge
modes. For an annular geometry there are two edges, in the interior and the exterior of the
annulus, and therefore four edge modes with four charges, q1,q2,q3, and q4 (here we use the
subscript 1,2 to denote the two counter-propagating edge modes on the interior edge, and 3,4
to denote the modes on the exterior edge). Edges 1 and 4 belong to one layer (or one spin
direction) and edges 2 and 3 belong to the other layer (other spin direction); see Fig. (4.1a)).
It will be useful below to distinguish between the integer part of qi, which we denote by ni,
and the fractional part denoted by fi, to which we assign the values fi = −1/3,0,1/3, such
that qi = ni + fi.

When a pair of counter-propagating edge modes, say with charges q1,q2, is gapped by
normal back-scattering of single electrons, their total charge q1 +q2 is conserved. Since there
is an energy cost associated with the total charge, it assumes a fixed value for all ground states.
(The tunneling between the edges gaps the system and makes it incompressible, leading to an
energy cost associated with a change of the total charge.) For simplicity, we fix this value to
be zero, making q1 = −q2. A strong back-scattering term makes n1−n2 strongly fluctuating
but leaves the fractional part f1 = − f2 fixed. As a consequence, there are three topological
sectors of states that are not coupled by electron tunneling, characterized by f1 being 0, 1/3 or
-1/3.

Since each of the layers (in the double-layer system) or each spin direction (in the spin-
orbit-coupling system) must have an integer number of electrons, the sums q1 + q4 and q2 +

q3 must both be integers. This condition couples the fractional parts of the charges on all
edges. Combining all constraints, we find that when both edges are gapped by a normal
backscattering, the following conditions should be fulfilled

f1 =− f2, f3 =− f4, (4.1)
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f1 =− f4, f2 =− f3. (4.2)

There are three solutions for these equations describing three ground states, with fl = (−1)l p
3 ,

where p may take the values 0,1,−1 and l = 1,2,3, and 4. When both edges are gapped by a
superconductor, f2 and f4 change sign in Eq. (4.1) and the fractional parts satisfy f1 = f2 =

− f3 = − f4 = p/3, Finally, when one edge is gapped by a superconductor and the other by
normal back-scattering, only one of the two equations labeled (4.1) change sign and the only
possible solution is fl = 0 so that all q’s must be integers, and the ground state is unique.

Formally, the degeneracy of the ground state may be shown by an explicit construction
of two unitary operators, Ux and Uy, that commute with the low-energy effective Hamiltonian
and satisfy the operator relation

UxUy =UyUxe
2π

3 i. (4.3)

The existence of a matrix representation of this relation, acting within the ground state mani-
fold, requires a degenerate subspace of minimal dimension 3.

We construct such operators explicitly for both realizations. For both cases, one of these
operators, say Ux, measures the fl’s and the other operator, Uy, changes the fl’s by ±1/3 (the
sign depends on l and on the type of gapping mechanism).

Even when Lx is infinite, a finite Ly splits the degeneracy. The source of lifting of the
degeneracy is tunneling of quasi-particles between the two edges of the annulus, i.e., tunneling
of quasi-particles from the first to the last wire. More precisely, we find that as long as the
bulk gap does not close, the only term that may be added to the low-energy Hamiltonian is of
the form

λUy +λ
∗U†

y (4.4)

This term is generated by high orders of perturbation theory that lead to a transfer of quasi-
particles between edges. The amplitude λ decays exponentially with the width of the system.

4.2.3 Remnants of the degeneracy in the quasi-one dimensional regime

The topological degeneracy is lifted in the transition from a two-dimensional system to a quasi-
one dimensional one, but it leaves behind an imprint which can in principle be measured. This
is seen when we add another parameter to the Hamiltonian. For a torus, this parameter may be
the flux within the torus. For the systems we consider here, when gapped by one superconduc-
tor at the interior edge and one superconductor at the exterior edge, this parameter may be the
phase difference ϕ between the two superconductors. In this case the fractional quantum Hall
torus forms the insulator in a superconductor-insulator-superconductor Josephson junction.



4.2 The main results and the physical picture 34

The dependence of the spectrum on these parameters is encoded in the amplitude λ of
Eq. (4.4). In particular, since the tunneling charge is 2/3 of an electron charge, which is
1/3 of a Cooper pair, we find that the tunneling amplitude at the point x along the junction is
proportional to the phase factor eiϕ(x)/3, where ϕ(x) is the phase difference between the two
superconductors at the point x. For the fractional topological insulator, no magnetic flux is
enclosed between the superconductors, and the equilibrium phase difference does not depend
on x. In contrast, for the electron-hole quantum Hall realization the magnetic flux threading
the electron-hole double layer makes ϕ(x) vary linearly with x, such that the phase of the
tunneling amplitude winds as a function of the position of the tunneling. The amplitude λ

of Eq. (4.4) is an integral of contributions from all points at which the superconductors are
tunnel-coupled,

λ =
∫

dxT (x) (4.5)

where T (x) is the local tunneling amplitude.
When the superconductors are tunnel-coupled only at a single point (say x = 0), such that

T (x) ∝ δ (x), the spectrum of the three ground states as a function of ϕ , which is now the
argument of T (x = 0) can be written in the explicit form

∆Eα = 2t0 cos
(

ϕ−2πα

3

)
, (4.6)

where α = 0,1,−1 enumerates the ground states. This is shown in Fig. (4.2a).
While the amplitude t0 is exponentially small in the width Ly, or in the number of wires

N, we find that the spectrum as a function of the phase difference across the junction has
points of avoided crossing in which the scale of the splitting between the two crossing states is
proportional to e−Lx/ξx , i.e., is exponentially small in Lx (here ξx is a characteristic scale which
depends on the microscopics). Thus, in the quasi-one-dimensional regime, where Ly or N are
small but Lx is infinite, the three states are split, but cross one another at particular values of
ϕ .

Remarkably, this crossing cannot be lifted by any perturbation that does not close the
gap between the three degeneracy-split ground states and the rest of the spectrum. This lack
of coupling between these states result from the macroscopically different Josephson current
(from the inner edge to the outer edge) that they carry. The Josephson junction formed be-
tween the two superconductors will show a 6π- periodic DC Josephson effect for as long as
the time variation of the phase is slow compared to the bulk energy gap, but fast compared
to a time scale that grows as eLx/ξx . The Josephson current distinguishes between the three
ground states. This current oscillates as a function of the position of the tunneling point for an
electron-hole quantum Hall system and is position-independent for the fractional topological
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(a) (b)

Figure 4.2: (a) The spectrum of the three low energy states as a function of the phase difference
ϕ between the two superconductors (see text for elaboration). The amplitude of oscillations
falls exponentially with the number of wires N. For a finite N, each eigenstate has a periodicity
of 6π . At the special points ϕ = πn the spectrum remains 2-fold degenerate. If the system
is of finite length Lx, the degeneracy at these points is lifted by a term that is exponentially
small in Lx. (b) The spectrum corresponding to ν = 2/5 with λ2/λ1 = 0.2 as a function of
the relative phase difference ϕ . The periodicity of each eigenstate is 10π and at the points
ϕ = πn, we find two crossing points whose splitting falls exponentially with Lx.

insulator.
When tunneling between edges takes place in more than one point, T (x) in (4.36) is non-

zero at all these points, and has to be integrated. A particularly interesting case is that of a
uniform junction. In that case T (x) and the Josephson current are constant for the fractional
topological insulator, while in the electron-hole double-layer the phase of T (x) winds an inte-
ger number of times due to the magnetic flux between the superconductors, and the Josephson
current averages to zero.

A magnetic coupling between the electron and hole layers, or between electrons of the
two spin directions may lead to a “(fractional) spin Josephson effect", in which spin current
takes the place of charge current in the Josephson effect [108–110]. In this case, assuming
that the spin up and down electrons are polarized in the z direction, coupling between the
edge modes occurs by a magnet that exerts a Zeeman field in the x− y plane. The role of
the phase difference in the superconducting case is played here by the relative angle between
the magnetization at the interior and exterior edge, but an interesting switch between the two
systems we consider takes place. In the electron-hole quantum Hall case the direction of the
magnetization is uniform along the edges and a uniform and opposite electric current flows in
the two layers.
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For the fractional topological insulators the edges are gapped only when for one of the
edges the direction of the magnetization in the x− y plane winds as a function of position.
As a consequence, in our coupled-wire model the spin current oscillates an integer number of
oscillations along the junction, and thus averages to zero.

Our discussion may be extended beyond the case of ν = 1/3. For Abelian states, we find
that the periodicity of the Josephson effect is 2π/e∗, where e∗ is the smallest fractional charge
allowed in the state. In any Abelian state, this is also 2π times the degeneracy of the ground
state in the thermodynamic limit.

4.3 Ground state degeneracy in the thermodynamic 2D limit

4.3.1 The coupled wires construction for a Fractional Topological Insu-
lator

In this Section we explain how a fractional topological insulator may be constructed from a
set of coupled wires, as a result of a combination of spin-orbit coupling and electron-electron
interaction. We start with the case of non-interacting electrons, in which case a 2D topological
insulator is formed, and then introduce interactions that lead to the fractionalized phase.

4.3.1.1 The integer case - a non-interacting quantum spin Hall state

We consider an array of N quantum wires, with a Rashba spin-orbit coupling (see Fig. (4.1b)).
Each wire is of length Lx and has periodic boundary conditions. We tune the Rashba electric
field (which we set to be in the y direction, for simplicity) such that the spin-orbit coupling of
wire number n is linear with n. The resulting term in the Hamiltonian takes the form

Hso,n = (2n−1)ukxσz, (4.7)

where σz is the spin in the z direction, and u is the spin-orbit coupling. The spectrum of wire
number n is therefore

En(k) =
(kx +(2n−1)ksoσz)

2

2m
, (4.8)

where m is the effective mass, and kso =
u
m . The energy of the different wires as a function of

kx is shown in Fig. (4.3a).
The similarity of the spectrum to the starting point of the wires construction of the QHE

[49, 76, 94] is evident. This system is then analogous to two annuli of electrons of opposite
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Figure 4.3: (a) The spectrum of a system consisting of three wires (see Fig. (3.1a)) with
non-interacting electrons subjected to spin orbit coupling whose magnitude depends on the
wire index according to Eq. (4.7), when tunneling between the wires is switched off. The
spectra in blue, red, and green correspond to wires number 1,2, and 3. Solid lines correspond
to spin-down, and dashed lines correspond to spin-up. (b) The resulting spectrum when a
weak spin-conserving tunneling amplitude is switched on between the wires. The bulk is now
gapped, with helical modes localized on the edges.

spins subjected to opposite magnetic fields or to the electron-hole double-layer we discussed
above (see Fig. (4.1a)).

Following the analogy with the wires construction of the QHE, we define the filling factor
as

ν =
k0

F
kso

, (4.9)

where k0
F is the Fermi momentum without a spin-orbit coupling (see Fig. (4.3a)).

In the “integer” case, ν = 1, the chemical potential is tuned to the crossing points of two
adjacent parabolas.

As in the previous chapters, we linearize the spectrum around the Fermi points, and use
the usual bosonization technique to define two chiral bosonic fields φ

R/L
n,σ , where n is the wire

index, σ is the spin index, and R (L) represents right (left) movers. In terms of these bosonic
fields, the fermion operators take the form

ψ
R/L
n,σ ∝ ei

(
φ

R/L
n,σ +kR/L

n,σ x
)
, (4.10)

where
kρ

n,σ =−σ((2n−1)kso +ρk0
F)

is the appropriate Fermi-momenta in the absence of interactions and tunneling between the
wires, with σ = 1 (−1) corresponding to spin up (down), and ρ = 1 (−1) corresponding to
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Figure 4.4: A diagrammatic representation of the spectrum in the case ν = 1, similar to the
previous section. One can observe that single electron spin-conserving tunneling operators
conserve momentum, and can therefore easily gap out the bulk in this case.

right (left) movers. The chiral fields satisfy the commutation relations[
φ

σ
nρ(x),φ

σ
nρ(x

′)
]
= iρπsign(x− x′). (4.11)

Similar to the previous chapter, once we linearize the spectrum, it becomes convenient to
present it diagrammatically by plotting only the Fermi-momenta as a function of the wire
index. Fig. (4.4) shows the diagram corresponding to ν = 1 , where a right (left) mover is
represented by the symbol ⊙ (⊗).

One sees that single electron tunneling operators of the type

Ht↓ = t
N−1

∑
n=1

∫
dx
(

ψ
L†
n+1,↓ψ

R
n,↓+h.c.

)
= t

k0
F

π

N−1

∑
n=1

∫
dxcos

(
φ

L
n+1,↓−φ

R
n,↓
)
,

Ht↑ = t
N−1

∑
n=1

∫
dx
(

ψ
R†
n+1,↑ψ

L
n,↑+h.c.

)
= t

k0
F

π

N−1

∑
n=1

∫
dxcos

(
φ

R
n+1,↑−φ

L
n,↑
)
, (4.12)

are allowed by momentum conservation (these operators are represented by the arrows in Fig.
(4.4)). Noting that these operators commute with one another, the fields within the cosines may
be pinned, and therefore the bulk is gapped. These terms, however, leave 4 gapless modes on
wires 1 and N: φ R

1,↑,φ
L
1,↓,φ

L
N,↑,φ

R
N,↓. In fact, the above model is a topological insulator, and the

gapless helical modes are the corresponding edge modes, protected by time-reversal symmetry
and charge conservation. Although our model also has a conservation of Sz, this is not actually
necessary to preserve the gapless edge modes.

To completely gap out the spectrum, we have to gap out the two edges separately. This
can be done using two mechanisms: proximity coupling of wire 1 and N to a superconductor
which breaks charge conservation, or to a magnet which breaks time-reversal symmetry. The
terms in the Hamiltonian that correspond to these cases are
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HS
1 = ∆1

∫
dxcos

(
φ

R
1,↑+φ

L
1,↓+δ1

)
,

HF
1 = B1

∫
dxcos

(
φ

R
1,↑−φ

L
1,↓+β1

)
,

HS
N = ∆N

∫
dxcos

(
φ

L
N,↑+φ

R
N,↓+δN

)
,

HF
N = BN

∫
dxcos

(
φ

L
N,↑−φ

R
N,↓+βN +4ksoNx

)
. (4.13)

The phases δ1,δN are the phases of the superconducting order parameter of the superconduc-
tors that couple to the wires 1,N respectively. The phases β1,βN are the angles of the Zeeman
fields (which lie in the x− y plane) coupling to the wires 1,N respectively, with respect to the
x-axis. As the last equation shows, for the magnetic field coupled to the n’th wire to allow for
a momentum-conserving back-scattering, we must have βN = −ksoNx, i.e., the Zeeman field
acting on the N’th wire must rotate in the x−y plane at a period of 2π/(ksoN). This field then
breaks translational invariance.

4.3.1.2 The fractional case - a Fractional Topological Insulator

We now consider the case ν = 1/3, depicted diagrammatically in Fig. (4.5). Single electron
tunneling processes of the type we considered above do not conserve momentum (see Fig.
(4.5)) for this filling factor, and one has to consider multi-electron processes in order to gap
out the bulk. Motivated by the analysis of the ν = 1/3 FQHE state (see chapter 2), we define
new fermion fields

ψ̃
R/L
n,σ =

(
ψ

R/L
n,σ

)2(
ψ

L/R
n,σ

)†
∝ ei

(
pR/L

n,σ x+η
R/L
n,σ

)
, (4.14)

with

η
R/L
n,σ = 2φ

R/L
n,σ −φ

L/R
n,σ ,

pR/L
n,σ = 2kR/L

n,σ − kL/R
n,σ . (4.15)

Strictly speaking, the operators in (4.14) should operate at separated yet close points in space,
due to the fermionic nature of ψ

R/L
n,σ . The commutation relations of the η-fields are given by[

η
σ
nρ(x),η

σ
nρ(x

′)
]
= 3πiρsign(x− x′). (4.16)

In addition, if one draws the diagram that corresponds to the p’s, the effective Fermi-
momenta of the ψ̃ fields, one gets the same diagram as in the ν = 1 case (Fig. (4.4)). Single-ψ̃
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Figure 4.5: A diagrammatic representations of the fractional case ν = 1/3. Now, we find that
only multi-electron processes can gap out the bulk. The processes we consider are represented
by colored arrows. In terms of the composite ψ̃-fields, however, the diagram corresponding
the fractional case is identical to the one corresponding to the integer case ν = 1 (Fig. (4.4)).

tunneling operators conserve momentum, and one can repeat the process that led to a gapped
spectrum in the integer case. First, we switch on single-ψ̃ tunneling operators of the form

H̃t↓ = t̃
N−1

∑
n=1

∫
dx
(

ψ̃
L†
n+1,↓ψ̃

R
n,↓+h.c.

)
=

t̃
4

(
k0

F
π

)3 N−1

∑
n=1

∫
dxcos

(
η

L
n+1,↓−η

R
n,↓
)
,

H̃t↑ = t̃
N−1

∑
n=1

∫
dx
(

ψ̃
R†
n+1,↑ψ̃

L
n,↑+h.c.

)
=

t̃
4

(
k0

F
π

)3 N−1

∑
n=1

∫
dxcos

(
η

R
n+1,↑−η

L
n,↓
)
. (4.17)

In terms of the ψ̃-fields, it is clear that one cannot write analogous interactions between elec-
trons of opposite spins, and therefore the dominating terms are those that couple electrons with
the same spins. Recall that as opposed to the integer case, these operators are irrelevant in the
weak coupling limit. However, they may be made relevant if one introduces strong repulsive
interactions [49, 94, 95], or a sufficiently strong t̃.

For N wires, Eqs. (4.17) introduces 2N−2 tunneling terms, which gap out 4N−4 modes,
and leave 4 gapless chiral η-modes on the edges. Two counter-propagating modes are at the
j = 1 wire, and two are at the j = N wire. Once again, these may be gapped by proximity
coupling to a superconductor or a magnet. Operators of the type shown in Eq. (4.13), however,
do not commute with the operators defined in Eq. (4.17). The arguments of the cosines in
(4.13) cannot then be pinned by Eq. (4.17). The lowest order terms that commute with the
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operators in Eq. (4.17) are

H̃S
1 = ∆̃1

∫
dxcos

(
η

R
1,↑+η

L
1,↓+ δ̃1

)
,

H̃F
1 = B̃1

∫
dxcos

(
η

R
1,↑−η

L
1,↓+ β̃1

)
,

H̃S
N = ∆̃N

∫
dxcos

(
η

L
N,↑+η

R
N,↓+ δ̃N

)
,

H̃F
N = B̃N

∫
dxcos

(
η

L
N,↑−η

R
N,↓+ β̃N +4ksoNx

)
. (4.18)

Again, for the magnetic coupling to gap the edge modes on the nth wire, it must wind in the
x− y plane with a period of 2π/(ksoN). The electronic density is three times smaller than in
the previous case, so on average there is 1/3 of an electron per period. Guided by the analogy
between the above construction and the ν = 1/3 FQH state on a torus, we expect the ground
state to have a 3-fold degeneracy.

Using the present formalism, we will be able to see how this degeneracy is lifted as one
goes from an infinite array to the limiting case of a few wires.

4.3.1.3 Ground state degeneracy in the wire construction

For simplicity, we focus first on the FF case, where the analogy to the FQHE on a torus is
explicit. In this case, we define the idealized Hamiltonian as

HI = H̃K + H̃t↑+ H̃t↓+ H̃F
1 + H̃F

N , (4.19)

where
H̃K =

1
2 ∑

n
∑
ρ,ρ ′

∑
σ ,σ ′

∫
dx
(

∂xη
σ
nρ

)
V σ ,σ ′

ρ,ρ ′

(
∂xη

σ ′
nρ ′

)
(4.20)

is the quadratic term that contains the non-interacting part of the Hamiltonian, and small mo-
mentum interactions (for simplicity, we consider only intra-wire small momentum interac-
tions). We assume that all the inter-wire terms become relevant and acquire an expectation
value. To investigate the properties of the ground state manifold, we define the two unitary
operators

Uy(x) = ei 1
3(∑

N
n=1(ηR

n,↑−ηL
n,↑+ηR

n,↓−ηL
n,↓)) = eiυ(x)ei 1

3(ηR
N,↓−ηL

N,↑+ηR
1,↑−ηL

1,↓), (4.21)

Ux = ei 1
3
∫ L

0 ∂xηR
1,↑dx. (4.22)
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All the η fields are functions of position x. The phase υ(x) in Eq. (4.21) is given by

υ(x) =
1
3

[
N−1

∑
n=1

(
η

R
n+1,↑−η

L
n,↑
)
−

N−1

∑
n=1

(
η

L
n+1,↓−η

R
n,↓
)]

. (4.23)

Since all the operators in the sum are pinned by the bulk Hamiltonian, they may be treated
as classical fields, and their value becomes x-independent in any one of the ground states.
Similarly, the combination of operators (ηR

N,↓−ηL
N,↑+ηR

1,↑−ηL
1,↓) which appears on the right

side of Eq. (4.21) is pinned by the coupling to the boundary, and becomes independent of x.
Therefore, the operators Uy(x) may be considered to be independent of x within the manifold
of ground states.

The form of Uy(x) shown in the first equality of Eq. (4.21) is useful because it allows us
to express Uy(x) as a product of electronic operators:

Uy = ei(∑
N
n=1(φ R

n,↑−φ L
n,↑+φ R

n,↓−φ L
n,↓)). (4.24)

where the x-dependence of the operators is omitted for brevity. It can be verified that

[Uy(x),Uy(x′)] = 0 (4.25)

and that
[Ux,HI] = [Uy,HI] = 0, (4.26)

so that operating Uy(x) or Ux on a ground state leaves the system in the ground state manifold.
Using the commutation relations of the η-fields, it can also be checked directly that

UxUy(x) =Uy(x)Uxe
2π

3 i, (4.27)

independent of x. The smallest representation of this algebra requires 3× 3 matrices [111],
which shows that the ground state of the idealized Hamiltonian (4.19) must be at least 3-fold
degenerate.

The operators Uy (Ux) can be interpreted as the creation of a quasiparticle-quasihole pair,
tunneling of the quasiparticle across the y (x) direction of the torus and annihilating the pair
at the end of the process. In fact, if we adopt this interpretation, Eq. (4.27) is a direct conse-
quence of the fractional statistics of the quasiparticles [111].

A similar analysis can be carried out for the SS case. Ux is identical to the operator used
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(a) (b) (c)

Figure 4.6: (a) The spectrum of the wires model for an electron-hole double layer at filling
ν = 1 when all the inter-wire terms are switched off. The spectra in blue correspond to wires in
the electron layer, and the spectra in red correspond wires in the hole layer. (b) The spectrum
when tunneling between wires in the same layer is switched on. A gap is formed in the bulk,
and we get achiral edge modes. (c) The spectrum in the fractional case ν = 1/3.

in the FF case, but now Uy takes the form

Uy = ei 1
3(∑

N
n=1(ηR

n,↑−ηL
n,↑+ηL

n,↓−ηR
n,↓)), (4.28)

and the entire analysis can be repeated.

4.3.2 The coupled wires construction of an electron-hole double layer

In this Section we explain how one can model a quantum Hall electron-hole double layer at a
fractional filling factor ν = 1/3 using a set of coupled wires.

We examine a system with two layers, each containing an array of wires. In one layer, the
electron layer, we tune the system such that only states near the bottom of the electronic band
are filled. In this case, we can approximate the spectra of the various wires as parabolas. If we
add a constant magnetic field B perpendicular to the layers, and use the Landau gauge to write
the electromagnetic potential as A =−Byx̂, the entire band structure of wire number n will be
shifted by an amount 2kφ n, where kφ is defined as kφ = eBa

2h̄ . The energy of wire number n is
therefore written in the form (if we choose the position of wire number 1 to be at y = a/2)

En(k) =
(kx−(2n−1

)
kφ

)2

2m
+Ue, (4.29)

where Ue is a constant term, and m is the effective mass. In the hole layer the bands of the
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various wires are nearly filled, such that we can expand the energy near the maximum as

En(k) =−
(kx−(2n−1

)
kφ

)2

2m
+Uh. (4.30)

In the above, we assumed that the effective masses of the electron and the hole layers have the
same magnitude and opposite signs. We assume that Uh >Ue, and tune the chemical potential
to be µ = Ue+Uh

2 . Defining δε = Uh−Ue
2 , we get the spectra

En(k)−µ =

[
(kx−(2n−1

)
kφ

)2

2m
−δε

]
σ , (4.31)

where σ = 1(−1) for the electron (hole) layer. This way the system has a built-in particle-
hole symmetry in its low energy Hamiltonian. Notice that as a result of the magnetic field,
the spectra of the two layers are shifted in the same direction. This is a consequence of the
common origin of the electron and hole spectra from a Bloch band whose shift is determined
by the direction of the magnetic field.

We define k0
F =
√

2mδε , and the filling factor is now given by ν =
k0

F
kφ

. In the case ν = 1,
the corresponding spectrum is given by Fig. (4.6a). As before, if we apply tunneling between
adjacent wires in the same layer, we get the gapped spectrum in Fig. (4.6b). Furthermore, we
see that each edge carries a pair of counter propagating edge modes (one for each layer).

It is straightforward to generalize this to the case of filling ν = 1/3, shown in Fig. (4.6c).
To treat this case, we again linearize the spectrum, and write the problem in terms of the
chiral bosonic degrees of freedom φ

R/L
n,σ , where now σ = e,h represents the layer number,

and n represents the wire index. To treat the fractional case, we define new chiral fields
η

R/L
n,σ = 2φ

R/L
n,σ −φ

L/R
n,σ . Like before, it can be checked that these modes behave like modes at

filling 1, so we can repeat the analysis performed in this case.
This process leaves us with two counter propagating η-modes on each edge: ηL

1,e,η
R
1,h,η

R
N,e,η

L
N,h.

These modes can be gapped out by terms analogous to the terms in Eq. (4.18):

H̃S
1 = ∆̃1 cos

(
η

L
1,e +η

R
1,h + δ̃1

)
,

H̃F
1 = B̃1 cos

(
η

L
1,e−η

R
1,h + β̃1

)
,

H̃S
N = ∆̃N cos

(
η

R
N,e +η

L
N,h + δ̃N +4kφ Nx

)
,

H̃F
N = B̃N cos

(
η

R
N,e−η

L
N,h + β̃N

)
. (4.32)

In contrast to the case of the fractional topological insulator, here the backscattering terms con-
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serve momentum, i.e., do not include phases that are linear in x. Rather, the superconducting
term H̃S

N appears not to conserve momentum. However, the flux between the two supercon-
ductors will lead to a winding of the phase difference between them, which can cancel the
x-dependent phase of HS

N .
Let us first consider the situation where the bounding superconductor wires are thin enough

that there are no vortices inside them. The energy of a superconducting ring is minimized
when ∆φ , the change in the superconducting phase around the ring is equal to 2eΦ, where Φ

is the magnetic flux enclosed by a circle embedded at the center of the wire. The value of
∆φ is quantized in multiples of 2π , and in practice there may exist a number of metastable
states where it differs from 2eΦ by a finite amount and the wire carries a supercurrent around
its circumference. Let us consider a model where there is a distance a′ between the center
of the inner most superconductor and the center of our first electron-hole nanowire and a
similar separation between the Nth nanowire and the outer superconductor. If the centers
of the nanowires are separated from each other by a distance a, then the flux Φ is equal to
BaLx(N−1+2(a′/a)). In this case, if the superconductors are in their ground states, we get
δ̃1 =

(
−2+4a′

a

)
kφ x+ δ̃ 0

1 and δ̃N = −
(

4N−2+4a′
a

)
kφ x+ δ̃ 0

N , where δ̃ 0
1(N) do not depend

on x. If a′ is tuned to a′ = a/2, the oscillating phases are eliminated from Eq. (4.32).
If a′ differs from a/2, it may be still possible to gap out the edges. If the phase mismatch is

small, and if coupling to the superconductor is not too weak, then there can be an adjustment
of the electron and hole occupations in the nanowires nearest the two edges, which allows
the phase change around the nanowires to match the phase change in the superconductors.
The energy gain due to formation of a gap can exceed the energy cost of altering the charge
densities in the nanowires.

If the difference between a′ and a/2 is too large, then carrier densities in the inner and
outer nanowires will not change enough to satisfy the phase matching condition. In this case,
a variation of the magnetic field of order 1/N would eliminate the x-dependence of the phases
at the cost of introducing quantum Hall quasiparticles in the bulk of the system. For large N,
the density of these quasiparticles will be small. Presumably they will become localized and
not take the system out of the quantum Hall plateau.

We note that the separation a′ can be engineered, and, in principle can even be made
negative. Consider, for example, a situation where the superconducting wire sits above the
plane of the nanowires, so that depending on the shape of a cross-section of the wire, its center
of gravity may sit inside or outside of the line of contact to the outermost nanowire.

The situation is more complicated if the superconductors are thick enough that they contain
vortices in the presence of the applied magnetic field. If the vortices are effectively pinned,
however, it should be possible to achieve conditions where the electron-hole system is gapped
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and experiments such as Josephson current measurements can be performed.
The degeneracy of the ground states in both the SS and FF cases may be shown by defining

the two operators Ux and Uy in exactly in the same form as we did in Sec. 4.3.1.3 (with ↓→ e
and ↑→ h), and following the same analysis.

4.4 Measurable imprint of the topological degeneracy in quasi-
one dimensional systems

We now look at the quantum Hall double-layer system with ν = ±1/3. As long as the bulk
gap does not close, in the limit of infinite Lx and infinite N (or Ly) we expect deviations from
the idealized Hamiltonian not to couple the three ground states. When N and Ly are finite and
Lx is still infinite, coupling does occur, and the degeneracy is lifted.

Generally, Hermitian matrices operating within the 3×3 subspace of ground states of the
idealized Hamiltonian may all be written as combination of nine unitary matrices O j,k

∆H =
(1,1)

∑
( j,k)=(−1,−1)

λ j,kO j,k. (4.33)

where
O jk =U j

x Uk
y . (4.34)

and λ jk = λ ∗− j,−ke−
i2π jk

3 . Note that a direct consequence of Eq. (4.27) is that U3
x =U3

y = 1 (this
can most easily be understood by recalling that the operators transport quasiparticles across
the torus. Acting three times with each of them is equivalent to transporting an electron around
the torus, which cannot take us from one ground state to another). However, in the limit of
infinite Lx local operators cannot distinguish between states of different fractional charges,
and therefore cannot contain the operator Ux. Thus, up to an unimportant constant originating
from λ00, deviations from the idealized Hamiltonian (projected to the ground state manifold)
take the form of Eq. (4.4):

∆H = λUy +λ
∗U†

y , (4.35)

The coefficient λ may be expressed as an integral,

λ =
∫

dxT (x), (4.36)

and we expect that the absolute value of the amplitude T (x) should fall off exponentially with
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N. One can see this explicitly in the various models we have constructed from coupled wires.
For example, in the case of a fractional topological insulator with magnetic boundaries, the
operator Uy, according to (32 ) and (17) involves a product of factors involving four electronic
creation and annihilation operators on each of the N wires. The bare Hamiltonian contains
only four-fermion operators on a single wire, and two-fermion operators that connect adjacent
wires, with an amplitude t that we consider to be small. The operator Uy can only be generated
by higher orders of perturbation theory, in which the microscopic tunneling amplitude t occurs
at least 2N times. In our analysis, we have assumed that interaction strengths on a single wire
are comparable to the Fermi energy EF , so we expect T to be of order |t/EF |2N or smaller.
Similar arguments apply to the other cases of superconducting boundaries or electron-hole
wires. We also note that if the system is time-reversal invariant, we must have T = T ∗.

The phase of T (x) depends on the realization - electron-hole quantum Hall vs. fractional
topological insulator - and on the gapping mechanism - two superconductors or two magnets.
We start from the case of the fractional topological insulator gapped by two superconductors.
Eqs. (4.18) shows that for the edges to be gapped, the superconductors on the two edges
should have uniform phases δ̃1, δ̃N . We choose a gauge where δ̃1 = 0 and denote ϕ = δ̃N to be
the phase difference.

In the case of a fractional topological insulator, the proximity gapping terms are

H̃S
1 = ∆̃1

∫
dxcos

(
η

L
1,↑+η

R
1,↓+ϕ

)
,

H̃S
N = ∆̃N

∫
dxcos

(
η

R
N,↑+η

L
N,↓
)

(4.37)

(note that these terms involve coupling to the superconductor, and we therefore have ∆̃1(N) ∝

|∆1(N)|, where ∆1(N) are the corresponding superconducting order parameters). We define new
bosonic fields through the additional transformation

η̃
L
1,↑ = η

L
1,↑+

ϕ

2
, η̃

R
1,↓ = η

R
1,↓+

ϕ

2
, (4.38)

and η̃
ρ

n,σ = η
ρ

n,σ for all the other values of n,σ ,ρ . If we rewrite the Hamiltonian in terms
of the new fields, the phase ϕ is eliminated from the idealized Hamiltonian. However, this
modifies the operator Uy (defined in Eq.(4.21)), which now takes the form

Uy = ei 1
3(∑

N
n=1(η̃R

n,↑−η̃L
n,↑+η̃L

n,↓−η̃R
n,↓))ei ϕ

3 . (4.39)

Thus, a non-zero phase difference ϕ shifts the argument of λ in Eq. (4.35) by ϕ

3 . In the time
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reversal symmetric case λ is real, and we find, by diagonalizing ∆H, that

∆E1 = 2λLx cos
(

ϕ

3

)
,

∆E2 = 2λLx cos
(

ϕ−2π

3

)
,

∆E3 = 2λLx cos
(

ϕ +2π

3

)
. (4.40)

The resulting spectrum as a function of ϕ is depicted in Fig. (4.2a).
At ϕ = πn the degeneracy is not completely lifted, as two states remain 2-fold degenerate.

These states are not coupled by the low energy Hamiltonian (4.35) and the lifting of their
degeneracy requires terms of j ̸= 0 in (4.34). Such terms distinguish between states of different
edge charges fi and their amplitude scales as e−(Lx/ξx). Neglecting this splitting, Eq. (4.40)
shows that all eigenstates have a 6π periodicity. A measurement of the Josephson current,
given by the derivative of the energy with respect to ϕ , can detect the 6π-periodicity. Due
to the exponentially small splitting at the crossing points, this property can be observed by
changing the flux at a rate that is not slow enough to follow this splitting.

Note that the 6π-periodic component of the spectrum is completely determined by Eq.
(4.27). This part of the spectrum is therefore highly insensitive to the microscopic details, and
can serve as a directly measurable imprint of the topological degeneracy with only a few wires.
There will also be a contribution from ordinary Cooper pair tunneling between the supercon-
ductors, which does not distinguish between the ground states and has 2π periodicity. This
term will alter the detailed shapes of the three spectra but not their splitting or periodicity. In
the case where time reversal symmetry does not hold, λ is not necessarily real. Consequently,
the spectrum in Eq. (4.40) is shifted according to ϕ → ϕ +Arg(λ ), and the crossing points
are not constrained to be at ϕ = πn.

Similar results arise in the FF case for a quantum Hall electron-hole double layer. Now,
the angle ϕ is the relative orientation angle of the Zeeman fields (which lies in the x−y plane).
To be precise, if we fix the Zeeman field at wire number N to point at the x direction, and the
field at wire number 1 to have an angle ϕ relative to the x direction, we get the proximity terms

H̃F
1 = λ̃1F

∫
dxcos

(
η

L
1,↑−η

R
1,↓+ϕ

)
,

H̃F
N = λ̃NF

∫
dxcos

(
η

R
N,↑−η

L
N,↓
)
. (4.41)

Similar to Eq. (4.38), we define new bosonic fields through the transformation

η̃
L
1,↑ = η

L
1,↑+

ϕ

2
, η̃

R
1,↓ = η

R
1,↓−

ϕ

2
, (4.42)
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and η̃
ρ

n,σ = η
ρ

n,σ for the other fields. Again, the gapping term acting on the N’th wire returns
to its original form (with ϕ = 0), but Uy becomes Uyei ϕ

3 . Therefore, the spectrum as a function
of ϕ is identical to the spectrum found in the SS case.

In the other two cases, the situation is more complicated, since ϕ depends on x. For the
quantum Hall electron-hole double layer gapped by superconductors ϕ increases linearly with
x, due to the flux penetrating the junction between the two superconductors. For the fractional
topological insulator gapped by magnets, Eq. (4.18) requires that βN increases linearly with
x. In both cases, this winding leads to λ =

∫
dx|t(x)|ei2πnx/L+iϕ , with n an integer. A uniform

tunneling amplitude |t(x)| then leads to a vanishing λ , while non-uniformity allows for a non-
vanishing λ .

4.5 Extensions to other Abelian states

We have shown above that it is possible effectively realize experimentally the ν = 1
3 FQHE

state on a torus, and that by measurement of the Josephson effect in the resulting construction
we can directly measure the corresponding topological degeneracy. In this section we extend
the above results to other Abelian FQHE states.

For a FQHE state described by a M×M K-matrix, there is a ground state degeneracy
of d = detK on a torus, and d topologically distinct quasiparticles. Each quasiparticle is a
multiple of the minimally charged quasiparticle, whose charge is e∗ = e

d .
Repeating the analysis we carried out in Sec. 4.3, we consider an electron-hole double

layer system or a fractional topological insulator, and couple the counter-propagating edge
modes. Since there are now M pairs of counter-propagating modes on each edge, we need
m scattering terms. We assume that these terms are all mutually commuting, that they are
either all charge-conserving or all superconducting, and that the M edge modes of each layer
(spin-direction) are mutually coupled. Under these assumptions, each of the four edges is
characterized by a single quantum number - the fractional part of the total charge fi (with i =
1, · · · ,4), which may take the values −d−1

2d ,−d−3
2d , · · · , d−1

2d . The mutual coupling between the
M edge modes excludes the possibility of other quantum numbers being constants of motion.
Similar to the case where ν = 1/3, the requirements of a total integer charge for each layer or
spin direction, together with the mechanism of gapping and the requirement to minimize the
energy of the edge Hamiltonians, relate all values of fi to one another.

We work in a basis | f ⟩ where the fractional charges fi are well defined. We define the
unitary operator Uy which transfers a single minimally charged quasiparticle, analogously to
the operator defined before, such that Uy | f ⟩ = |( f + e∗/e)mod(1)⟩. It follows that U l

y | f ⟩ =
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|( f + le∗/e)mod(1)⟩, and that Ud
y = 1. We therefore have in general

(
U l

y

)†
=Ud−l

y . (4.43)

Again, in the quasi-1D limit where Lx is infinite and N is finite, Hermitian combinations
of the operators U l

y are the only operators capable of lifting the degeneracy. The amplitude of
these terms falls exponentially with N. In order to analyze the effects of these perturbations
we consider terms of the form

∆H =
(d−1)/2

∑
l=1

(
λlU l

yeiδl +h.c.
)
, (4.44)

where λl ∝ e−N/ξl is a real coefficient (note that we expect terms with l > 1 to result from
higher orders in e−N . More specifically, we expect ξl ∝

1
l ). The summation was terminated

at (d− 1)/2 because of Eq. (4.43) and the requirement that the Hamiltonian is Hermitian.
Again, the resulting spectrum depends on the realization, the gapping mechanism, and the
uniformity of the tunneling amplitude. This dependence is similar to the one discussed for
ν = 1/3. For example, for uniform tunneling between two superconductors separated by a
fractional topological insulator, a relative phase ϕ between the two superconductors translates
to δl = ϕ

e⋆
e l.

The spectrum of this Hamiltonian for the time reversal symmetric case is then

∆Ep = 2
(d−1)/2

∑
l=1

λl cos
(

l
d
(ϕ +2pπ)

)
, (4.45)

with p = 1 . . .d. Each eigenstate has a 2πd-periodicity, and like the ν = 1/3 case we find
that the overall periodicity is 2π times the degeneracy of the system in the thermodynamic
limit. In addition, similar to the ν = 1/3 case, at the time-reversal invariant points ϕ = πn,
we have degeneracy points protected by the length of the wires. For example, at ϕ = 0, we
have d−1

2 pairs of states |p⟩ ,|d− p⟩ (p = 1, . . . d−1
2 ) which have the same energy. It can easily

be checked from Eq. (4.45) that the same number of crossings occurs for any ϕ = πn. Hence
if the spectrum is measured, the degeneracy d can found by simply counting the number of
crossing points at ϕ = πn. Note that due to the terms with l > 1, we can have additional
crossing points at ϕ ̸= nπ . Again, if time reversal symmetry does not hold the crossing points
can be shifted. One can still show that in the most general case there must be at least the same
number of crossing points as the number of crossing points at ϕ = πn in the time reversal
invariant case. The smallest number of degeneracy points occurs when the functions ∆Ep
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have a single maximum and a single minimum between 0 and 2πd. In that case, the energies
that correspond to two different values of p must cross at two points between 0 and 2πd. We
therefore have 2 crossing points for each pair p1, p2, The total number of degeneracy points,

summed over all the pairs p1, p2 is therefore 2

(
d
2

)
= d(d− 1), which is the number of

crossing points at all the values ϕ = πn in the time reversal invariant case. Depending on the
values of λl , we may have more than a single minimum and a single maximum, in which case
we can get additional crossing points.

As an example we examine the case ν = 2/5, which can be characterized by the K-matrix

K =

(
3 2
2 3

)
. (4.46)

The degeneracy on a torus in this case is d = 5 and the spectrum (in the time reversal
invariant case) is

∆Ep = 2λ1 cos
(

1
5
(ϕ +2pπ)

)
+2λ2 cos

(
2
5
(ϕ +2pπ)

)
, (4.47)

with p = 1 . . .5. If we take for example λ2/λ1 = 0.2, the resulting spectrum is shown in Fig.
(4.2b).



Chapter 5

From an array of quantum wires to
three-dimensional fractional topological
insulators

This chapter presents the results of our third project, presented in Ref. [58]. In previous
chapters (and other previous works), it was demonstrated that the coupled-wire approach is
an effective tool for constructing tractable models of 2D fractional phases. In this chapter,
we extend this approach to 3D and study the resulting time-reversal invariant fractional strong
topological insulators.

5.1 Introduction

While topological phases have conclusively been found to exist in three-dimensions (3D),
fractional phases are still usually associated with 2D systems. This is a consequence of the
well-known theorem stating that anyonic statistics between two point-particles cannot occur
in 3D [112, 113].

A possible way to go around this theorem and realize topologically ordered phases in
3D is to consider loop excitations, which can have non-trivial braiding statistics with point-
particles, as well as other loops. Indeed, a few recent works [86, 114–121] have used various
non-perturbative approaches to discuss fractional topological insulators in 3D. These are the
fractional counterparts of the well-studied non-interacting strong topological insulators.

In this work, we extend the coupled-wire approach to 3D, and apply it to the case of
fractional topological insulators.

The resulting topologically ordered phase studied here has a novel gapless surface mode,
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Figure 5.1: (a) A schematic depiction of the array of wires studied in this manuscript. The
fractional strong topological insulator phase we construct has an exotic fractional Dirac liq-
uid on the surface. Upon breaking time-reversal symmetry or charge conservation, we end
up with a gapped surface displaying unique topological properties. For example, by breaking
time-reversal symmetry, we get a halved fractional quantum Hall effect, characterized by a
surface Hall conductance of the form σxy =

1
2

e2

mh , where m is an odd integer (in a state associ-
ated with the 2D Laughlin state at filling ν = 1/m). On the magnetic domain wall shown in
(b), one therefore finds a chiral Luttinger liquid, similar to the edge mode of the correspond-
ing 2D Laughlin-state. If the system is gapped by proximity to an s-wave superconductor
(i.e., by breaking charge conservation), we get an exotic time-reversal invariant topological
superconductor. It is interesting to study the boundary between a superconducting region and
a magnetic region, as depicted in Fig (c). A fractional Majorana mode, which cannot be de-
scribed by a free Majorana theory, is found on the interface between the two regions.

which cannot be described by Dirac’s theory of free fermions. Throughout this work, we refer
to the surface as a fractional Dirac liquid. It is insightful to study what happens to the fractional
Dirac theory once it is gapped by breaking time reversal symmetry or charge conservation.

We will see that if a time reversal breaking perturbation is introduced, the surface acquires
a Hall conductance of the form σxy =

1
2m

e2

h in a state at filling ν = 1/m. This Hall conductance
is half that of the associated 2D Laughlin FQH state, and we therefore refer to this effect as a
halved fractional quantum Hall effect.

In addition, we will break charge conservation by proximity coupling the surface to an
s-wave superconductor. The resulting superconducting state is found to be topologically non-
trivial. On the surface of a non-interacting strong topological insulator, for example, one finds
a phase that resembles a px + ipy superconductor, but has time reversal symmetry [14]. One
way to reveal the topological nature of the surface is to separate the surface into two domains:
one with broken time-reversal symmetry, and another with broken charge conservation. It was
shown in Ref. [14] that a chiral Majorana mode is localized near the boundary separating the
two regions.

Repeating the same thought experiment in the fractional phase, we find a strongly corre-
lated chiral mode on the boundary, which cannot be described by a free Majorana theory. In
particular, the tunneling density of states associated with this 1D channel is proportional to
ωm−1.
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Figure 5.2: (a) The simplified model we use to describe a weak topological insulator. Each
plane forms an Sz-conserving 2D topological insulator. The edge of each layer therefore con-
tains counter-propagating spin-up and spin-down modes, represented by red and blue arrows.
(b) A diagrammatic depiction of the surface of the simplified model. The vertical direction
represents the layer index, and the horizontal direction represents spin. The symbol

⊗
(
⊙

)
corresponds to a right (left) mover. We introduce nearest-layer coupling terms, represented
by arrows connecting different chiral modes. Time reversal symmetry relates the amplitudes
of the terms represented by the full arrows to the amplitudes of the terms represented by the
dashed arrows. The above model can be decomposed into two decoupled gapless Hamiltoni-
ans, represented by the green and purple arrows.

5.2 Fractional weak topological insulators

5.2.1 Weak topological insulators

Before discussing fractional weak topological insulators, we briefly review the physics of non-
interacting weak topological insulators.

To construct a simple model for a weak topological insulator, we imagine stacking many
2D topological insulators (see Fig. (5.2a) for illustration).

For simplicity, we assume that the 2D topological insulators in the various layers conserve
Sz. We can therefore describe their edge states as counter propagating spin-up and spin-down
modes. In the limit where the layers are decoupled, the surface in the xz direction, for example,
is composed of these helical modes. The modes are represented diagrammatically in Fig.
(5.2b), where the vertical direction represents the layer index, and the horizontal direction
represents the spin. The symbol

⊗
(
⊙

) corresponds to a right (left) mover.
We now introduce coupling between adjacent layers. In doing so, we consider only the

terms represented by the arrows in Fig. (5.2b), as these are the only terms capable of gapping
the surface. Time reversal symmetry relates the amplitudes of the terms represented by the
full arrows and those represented by the dashed arrows.

To be concrete, if we define the electron annihilation operators ψn,↑(x),ψn,↓(x) (where n is
the layer index), we can write the low energy surface Hamiltonian in the form

H = Hz +Hx, (5.1)
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where

Hx =−iv∑
n

∫
dx
[
ψ

†
n,↑(x)∂xψn,↑(x)−ψ

†
n,↓(x)∂xψn,↓(x)

]
(5.2)

represents the Hamiltonian of the decoupled helical edge modes, and

Hz = t ∑
n

∫
dx
[
ψ

†
n,↑(x)ψn+1,↓(x)eiα −ψ

†
n,↓(x)ψn+1,↑(x)e−iα +h.c.

]
(5.3)

represents their nearest-layer coupling. In the above, α is a fixed phase, which we set to be 0
for simplicity.

If the system has periodic boundary conditions in the x and z directions, kx and kz are good
quantum numbers. We can therefore write the Hamiltonian in k-space, where it takes the form
H = ∑kz

∫
dkxψ†(⃗k)H (⃗k)ψ (⃗k), with ψ (⃗k) = ( ψ↑(⃗k), ψ↓(⃗k) )T and

H =−2tσy sin(kza)+ vkxσz (5.4)

(here the σi’s are Pauli matrices acting on the spin degrees of freedom). We see that we have
two Dirac cones on the surface: one around (kx = 0,kz = 0), and another around (kx = 0,kz = π).
These are not protected by time-reversal symmetry, as time-reversal invariant terms can cou-
ple the two Dirac modes and gap them out. However, such terms necessarily involve a large
momentum transfer. Therefore, if lattice translation invariance is also imposed, the two Dirac
modes remain protected.

5.2.2 The surface of fractional weak topological insulators

In order to generalize the above simplified model to a fractional weak topological insulator,
we imagine stacking layers of 2D fractional topological insulators. Again, we focus on the
Sz conserving case, where each 2D fractional topological insulator can be thought of as two
decoupled FQHE layers. These two FQH states have equal densities, but opposite fillings ±ν

and spins.
We focus on the time reversal invariant analog of a Laughlin state with filling ν = 1/m,

where m is an odd integer. Before introducing inter-layer coupling terms, the natural way to
describe the edge modes of the various layers is in terms of two boson fields χ

↑
n and χ

↓
n . These

modes satisfy the commutation relations[
χ

σ
n (x),χ

σ ′
n′ (x

′)
]
=

1
m

iπσδn,n′δσ ,σ ′sign(x− x′)+
1

m2 iπsign(n−n′)+
1

m2 πδn,n′σ
σ ,σ ′
y , (5.5)
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where in the above σ = 1(−1) for spin ↑ (↓). In terms of these, the chiral fermion operators
take the form ψ̃n,σ ∝ eimχσ

n , and the Laughlin quasiparticle operators are given by ψ̃
QP
n,σ ∝

eiχσ
n . The second and third terms in Eq. 5.5 ensure that fermions associated with different

modes anti-commute. If we introduce inter-layer coupling terms, the effective low energy
Hamiltonian describing the surface is given by

H̃ = H̃z + H̃x, (5.6)

where
H̃x =

mv
4π

∑
n,σ

∫
dx(∂xχ

σ
n )

2 (5.7)

represents the decoupled chiral Luttinger liquids, and

H̃z = t̃ ∑
n

∫
dx
(

ψ̃
†
n,↑ψ̃n+1,↓− ψ̃

†
n,↓ψ̃n+1,↑+h.c.

)
(5.8)

represents their coupling. In what follows we assume that the amplitude t̃ is large enough such
that these operators flow to the strong coupling limit (if they are considered separately). In the
integer case, where m = 1, H̃ reduces to the Hamiltonian H defined in Eq. (5.1), as can be
seen directly by rewriting H using Abelian bosonization. In the fractional case, where m > 1,
H̃ cannot be mapped to a non-interacting fermionic Hamiltonian. However, the model can still
be represented by the diagram shown in Fig. (5.2b). Notice that now the symbols

⊗
and

⊙
represent right and left moving ψ̃ (or χ) fields, respectively.

Each of the two terms in Eq. (5.8), if considered separately, can gap out the spectrum in
the thermodynamic limit. However, the two gapped phases that result from these terms are
topologically distinct. Noting that the two non-commuting operators have the same amplitude
and scaling dimension, it is clear that the system must be in a critical point between the two
gapped phases. We emphasize that the criticality of the surface is imposed by time reversal
symmetry, and is not a result of fine-tuning the Hamiltonian. It is explicitly assumed that
additional interacting terms do not destabilize the critical point. This crucial assumption must
be checked for a given microscopic model.

Like in the integer case, this gapless model is represented by two decoupled gapless theo-
ries. This can be identified by writing the Hamiltonian in the form H̃ = H̃1 + H̃2, with

H̃1 =
mv
4π

∑
n,σ

∫
dx
(

∂xχ
↑
2n

)2
+
(

∂xχ
↓
2n+1

)2
+ t̃ ∑

n

∫
dx
(

ψ̃
†
2n,↑ψ̃2n+1,↓− ψ̃

†
2n+2,↑ψ̃2n+1,↓+h.c.

)
,

(5.9)
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Figure 5.3: (a) The simplified model we use to describe an antiferromagnetic topological
insulator and its fractional analog. Each layer can be thought of as a single-component QHE
system at filling±ν (where ν = 1 in the integer case, and in the fractional case we consider ν =
1/m, where m is an odd integer). Due to the existence of a modified time-reversal symmetry,
given by the product of the original time-reversal operator and a translation by a unit cell, the
xz surface remains gapless even in the presence of inter-layer coupling terms. The surface can
be described in terms of coupled 1D channels, which enables a simple derivation of universal
surface properties. We argue that these properties remain true for a strong topological insulator
and its fractional analog, where the surface is protected by the local time reversal symmetry.
(b) A diagrammatic representation of xz surface of the above model in terms of the coupled
1D chiral edge modes. (c) The diagram that corresponds to the situation where the modified
time-reversal symmetry is explicitly broken by introducing a term of the form (5.11) with
t̃ ′ = t̃.

H̃2 =
mv
4π

∑
n,σ

∫
dx
(

∂xχ
↑
2n+1

)2
+
(

∂xχ
↓
2n

)2
+ t̃ ∑

n

∫
dx
(

ψ̃
†
2n+2,↓ψ̃2n+1,↑− ψ̃

†
2n,↓ψ̃2n+1,↑+h.c.

)
.

(5.10)
The green (purple) arrows in Fig. (5.2b) represent terms belonging to H̃1 (H̃2). In the integer
case each of these Hamiltonians is described by a low energy Dirac theory, as can be seen by
refermionizing the bosonic theories. Importantly, the Hamiltonians H̃1 and H̃2 remain gapless
in the fractional case as well, as indicated by the argument we have used to show that H̃ is
gapless. However, in the fractional case these Hamiltonians cannot be described by a low
energy Dirac theory. In the future we refer to their low energy theories as fractional Dirac
liquids.

5.3 A simplified model for the surface of fractional strong
topological insulators

We have seen above that the simple model for a fractional weak topological insulator can
be decomposed into two decoupled gapless theories described by the Hamiltonians H̃1 and
H̃2. In the integer case, weak topological insulators possess an even number of Dirac cones
on the surface, while strong topological insulators necessarily have an odd number of Dirac
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cones [13]. By analogy, we naturally expect the low energy theory describing the surface
of a fractional strong topological insulator to be related to the surface of a fractional weak
topological insulator. We therefore ask whether a single decoupled surface Hamiltonian, say
H̃1, describing left movers on layers with even indices and right movers on layers with odd
indices (see Fig. (5.3a)), can faithfully describe the surface of a fractional strong topological
insulator.

Strictly speaking, this is clearly impossible since H̃1 is not independently time reversal
invariant. Nevertheless, we follow Ref. [122] in noting that H̃1 is invariant under a modified
time reversal operation, defined as the product of the original time-reversal operator and a
translation by a unit cell.

Such a symmetry characterizes antiferromagnetic topological insulators, which can be cre-
ated, for example, by adding an antiferromagnetic order parameter to a strong topological
insulator (without closing the gap). Remarkably, it was shown in Refs. [123, 124] that the
introduction of such a time-reversal breaking perturbation does not destroy all the surface
Dirac cones. Instead, the remaining Dirac cones are protected by the modified time-reversal
operation described above.

This leads us to assume that H̃1 faithfully describes the surface of the fractional analog of
an antiferromagnetic topological insulator. The corresponding gapless surface is expected to
be in the same universality class as the surface of a fractional strong topological insulator with
a local time-reversal symmetry. We can therefore use H̃1 to derive some of the universal prop-
erties expected to characterize the surface of a fractional strong topological insulator. Notice
that the bulk excitations of the fractional antiferromagnetic topological insulator are generally
different from the fractional excitations characterizing the 3D fractional strong topological
insulator.

As noted in Ref. [122], studying a system with the modified time-reversal symmetry, for
which one can write an explicit model of the surface in terms of weakly coupled 1D channels,
greatly simplifies the analysis. This is impossible in systems that have a local (unmodified)
time-reversal symmetry. To study these using a set of weakly coupled 1D systems, we will be
forced to explicitly construct the 3D bulk as well. This will be done in Sec. 5.4.

Again, we depict the surface model using diagrams representing the inter-layer terms cou-
pling the various chiral modes. In particular, the diagram that represents the gapless surface
Hamiltonian H̃1 is shown in Fig. (5.3b).

Until now we have preserved the modified time-reversal symmetry and charge conserva-
tion of H̃1, and thus the surface was found to be gapless. In what follows we focus on the
properties of the surface once these protecting symmetries are explicitly broken. We will see
below that the resulting gapped fractional Dirac mode has unique properties.
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Figure 5.4: A diagrammatic representation, in terms of the ψ̃ (or χ) modes defined at the
beginning of Sec. 5.2.2, of the situation where the coefficient t̃ ′ of the time reversal breaking
term changes abruptly from −t̃ to t̃ around n = 1. A decoupled chiral ψ̃ mode is seen to be
localized near the boundary at n = 1, leading to the conclusion that the gapped surface has a
halved fractional quantum Hall effect.

To break the modified time reversal symmetry, we add a perturbation of the form

H̃t = t̃ ′∑
n

∫
dx
(

ψ̃
†
2n,↑ψ̃2n+1,↓+ ψ̃

†
2n+2,↑ψ̃2n+1,↓+h.c.

)
(5.11)

The physics of the resulting phase becomes transparent at the points t̃ ′ =±t̃, where the Hamil-
tonian is decomposed into decoupled sine-Gordon models. For example, if t̃ ′ = t̃ the non-
quadratic part of the Hamiltonian takes the form

2t̃ ′∑
∫

dx
(

ψ̃
†
2n,↑ψ̃2n+1,↓+h.c.

)
=4t̃ ′∑

∫
dxcos

[
m
(

χ
↑
2n−χ

↓
2n+1

)]
. (5.12)

Thus we end up with a set of mutually commuting cosine terms, which can be pinned in the
ground state and fully gap the surface. This configuration is depicted diagrammatically in Fig.
(5.3c).

To identify the surface Hall conductance σxy characterizing this gapped state, we change
t̃ ′ abruptly from −t̃ to t̃ around the point n = 1, as demonstrated in Fig. (5.4). It can be seen
that a chiral χ-mode, localized on the boundary, remains decoupled. This mode is identical to
the mode residing on the edge of a ν = 1/m Laughlin FQHE state. By invoking the bulk-edge
correspondence and noticing that this mode is a result of contributions from the two sides of
the boundary, we find that the gapped surface has σxy =± 1

2m
e2

h .

Thus, the gapped surface of the fractional strong topological insulator exhibits a halved
fractional quantum Hall effect. We emphasize that the above result is not limited to the special
choice of parameters, which were tuned to the so called “sweet point” [52, 125], and is in fact
true as long as the gap remains open. Physically, deviations from t̃ ′ = ±t̃ in the two regions
introduce a non-zero localization length for the boundary mode.

Alternatively, the fractional Dirac liquid can be gapped out by proximity-coupling to an
s-wave superconductor, i.e., by breaking charge conservation. A superconducting term which
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does not violate the modified time-reversal symmetry is given by

H̃∆ = ∆∑
n

∫
dx
(
ψ̃2n,↑ψ̃2n+1,↓+ ψ̃2n,↑ψ̃2n−1,↓+h.c.

)
. (5.13)

Again, the physics becomes simple at a sweet point given by ∆ = ±t̃. Taking ∆ = t̃, for
example, the non-quadratic part of the Hamiltonian can be written as

H̃∆ = 2it̃ ∑
n
(−1)n

∫
dxγ

1
n γ

2
n+1, (5.14)

with ψ̃n,σ = γ1
n + iγ2

n , and
(
γ i

n
)†

= γ i
n (notice that we have omitted the spin index, which is

fully determined by n). The modes γ i
n are referred to as fractional Majorana modes. Indeed,

in the integer case, these become chiral Majorana modes, described by a free Majorana the-
ory. The structure of this Hamiltonian is depicted diagrammatically in Fig. (5.5b), where the
dotted symbols represent the fractional Majorana modes γ1

n and γ2
n . From the form of Eq.

(5.14), it is clear that the system is gapped. Notice that Eq. (5.11), describing time-reversal
symmetry breaking, can be expressed in terms of the fractional Majorana modes as well. In
particular, the non-quadratic part of the Hamiltonian H̃1+ H̃t with t̃ ′ = t̃ takes the simple form
2it̃ ∑n

∫
dx
(
γ1

2n+1γ2
2n− γ2

2n+1γ1
2n
)
, which is depicted in Fig. (5.5a).

Once the surface is gapped by proximity to a superconductor, it forms an exotic time-
reversal invariant topological superconductor. A closely related 2D fractional topological su-
perconductor will be studied in details in the next chapter.

However, it is illuminating to examine the boundary between a magnetic region with bro-
ken time-reversal symmetry, and a superconducting region. The physics is simplest if we gap
the region with n > 1 using a time reversal breaking term of the form (5.11) with t̃ ′ = t̃, and
the region with n < 1 using a proximity-coupling term of the form (5.13) with ∆ = t̃. This
situation is depicted in Fig. (5.5c). We see that a decoupled chiral Majorana mode of the form
γ1

1 = 1
2

(
eimχ

↓
1 + e−imχ

↓
1

)
is localized on the boundary. The propagator describing this frac-

tional Majorana field takes the form
〈
γ1

1 (x, t)γ
1
1 (0,0)

〉
∝ (x+ vt)−m, making it clear that this

gapless channel cannot be described by a free Majorana theory. We point out the similarity to
the edge mode of the 2D fractional topological superconductor discussed in Refs. [71, 126].

The above analysis relied on a modified time reversal symmetry to directly model the
surface using coupled 1D modes. In what follows we treat a 3D model with a local time
reversal symmetry. As we will see, the analysis presented in the next sections reproduces the
universal results derived here.
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Figure 5.5: A diagrammatic representation of the surface model in terms of the fractional Ma-
jorana modes γ i

n (defined after Eq. (5.14)) in three situations: (a) The modified time reversal
symmetry is broken by the perturbation (5.11) with t̃ ′ = t̃. (b) Charge conservation is broken
by a superconducting term of the form (5.13) with ∆ = t̃. (c) The region with n < 1 of the
surface is gapped by a superconducting term, and the region with n > 1 is gapped by a modi-
fied time-reversal symmetry breaking term. A chiral fractional Majorana mode is attached to
the boundary at n = 1. Here the vertical direction represents the index i, and the horizontal
direction represents the layer index n. Dotted symbols represent the chiral fractional Majorana
modes.

5.4 Fractional Strong topological insulators

5.4.1 Construction of 2D fractional topological insulators

In Sec. 5.4.2-5.4.3 we will construct a 3D model for a fractional strong topological insulator.
Our starting point will be the 2D construction of a fractional topological insulator which was
introduced in chapter 3. In this section we present this construction in more details, and intro-
duce the general approach used throughout the rest of this work. Unlike the previous section
(Sec. 5.3), where we used a simplified model with a modified time-reversal symmetry [see
Fig. (5.3a)], here we have a local (unmodified) time reversal symmetry. To avoid confusion,
we will use a different set of notations in the analysis that follows.

5.4.1.1 Two-dimensional topological insulator from an array of quantum wires

The 2D model which is the focus of this section is made of 4N wires, as depicted in Fig.
(5.6a). The j’s unit cell is composed of four wires. We note that for convenience the unit cell
is shifted by one wire with respect to the unit cell defined in chapter 3.

The first and last wires in each unit cell contain electrons, i.e., their highest occupied states
are close to the minimum of the conduction band. In a particle-hole symmetric fashion, the



5.4 Fractional Strong topological insulators 62

two other wires contain holes, i.e., their highest occupied states are close to the maximum of
the band.

We describe the system in terms of a tight binding model, where each wire is composed
of sites at positions x = a · i (see Fig. (5.6a)). Here a is the distance between adjacent sites,
and i is an integer enumerating the sites. Adjacent lattice points are coupled with a hopping
amplitude tx (−tx) in the electron (hole) wires, as depicted by the arrows in Fig. (5.6a). We
define the annihilation operator ψ

(i, j)
α,s for an electron with spin s in wire number α (α = 1 . . .4)

of the unit cell labeled by (i, j). The Hamiltonian that describes the decoupled wires takes the
form H0 = Hm +Hx, where

Hm = m∑
i, j

(
∑

α=1,4
ψ

(i, j)†
α,s ψ

(i, j)
α,s − ∑

α=2,3
ψ

(i, j)†
α,s ψ

(i, j)
α,s +h.c.

)
, (5.15)

and

Hx =−tx ∑
i, j

(
∑

α=1,4
ψ

(i+1, j)†
α,s ψ

(i, j)
α,s − ∑

α=2,3
ψ

(i+1, j)†
α,s ψ

(i, j)
α,s +h.c.

)
. (5.16)

The term Hx describes intra-wire hopping, and the term Hm produces an opposite shift
in energy for the electrons and the holes. We note that to have a particle-hole symmetry, the
chemical potential is set to be zero. Going to k-space, we write H =∑k∈BZ1 ψ⃗†(k)H (k)ψ⃗(k),

with ψ⃗ =
(

ψ1↑ ψ2↑ ψ3↑ ψ4↑ ψ1↓ ψ2↓ ψ3↓ ψ4↓

)T
. In addition, we define the ma-

trices τi (i= 1 . . .3) as the Pauli-matrices operating on the wires 1-2 (and 3-4) space. Similarly,
the matrices σi operate on the (1,2)-(3,4) blocks, and si act on the spin degrees of freedom.

In terms of these, the Bloch Hamiltonian corresponding to Eqs. (5.15)-(5.16) takes the
form

H0 = [m−2tx cos(kxa)]σzτz. (5.17)

Furthermore, we introduce Rashba spin-orbit interactions with an alternating coupling
λso (−1)α . If the electric field is aligned in the y direction, the resulting term is

Hso =−λsoszτz sin(kxa) . (5.18)

It proves convenient to define new parameters: t̄x,kso, and k0
F , satisfying tx = t̄x cos(ksoa) ,λso =

2t̄x sin(ksoa) ,m = 2t̄x cos
(
k0

Fa
)
. In terms of these, it is simple to see that the energy spectra of
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the four decoupled wires in each unit cell take the form

E1,s = 2t̄x
[
cos
(
k0

Fa
)
− cos((kx− skso)a)

]
,

E2,s =−2t̄x
[
cos
(
k0

Fa
)
− cos((kx− skso)a)

]
,

E3,s =−2t̄x
[
cos
(
k0

Fa
)
− cos((kx + skso)a)

]
,

E4,s = 2t̄x
[
cos
(
k0

Fa
)
− cos((kx + skso)a)

]
. (5.19)

If we define the filling factor as ν =
k0

F
kso
, the spectra corresponding to the spin-up sector are

depicted in Fig. (5.6b) for the ν = 1 case, and in Fig. (5.6c) for the ν = 1/3 case. We
now introduce small tunneling operators that couple adjacent wires, and write the inter-wire
Hamiltonian in the form Hy +H

′
y, where

Hy =−ty ∑
i, j

[
ψ

(i, j)†
3,s ψ

(i, j)
2,s +ψ

(i, j+1)†
1,s ψ

(i, j)
4,s +h.c.

]
, (5.20)

H
′
y =−t ′y ∑

i, j

[
ψ

(i, j)†
2,s ψ

(i, j)
1,s +ψ

(i, j)†
4,s ψ

(i, j)
3,s +h.c.

]
, (5.21)

with ty, t ′y≪ tx. The parameter ty describes hopping between two electron-wires or two hole-
wires, whereas t ′y couples the electron and hole wires.

The Bloch Hamiltonian can now be written in the form

H = 2tx
[(

cos
(
k0

Fa
)
− cos(kxa)cos(ksoa)

)
σzτz− szτz sin(ksoa)sin(kxa)

]
− t ′yτx−

ty
2
(τyσy + τxσx)−

ty
2
(τxσx− τyσy)cos(4kya)−

ty
2
(τxσy + τyσx)sin(4kya) .

(5.22)

For simplicity, we treat the case where the lattice spacings are identical in the two directions:
ax = ay≡ a. This requirement can be lifted without affecting any of the topological properties.
Notice that in these conventions, the first Brillouin zone is defined as ky ∈

(
− π

4a ,
π

4a

]
,kx ∈(

−π

a ,
π

a

]
.

We first investigate the integer case, ν = 1, where it can be checked from Eq. (5.22) that as
long as ty ̸= t ′y and t ′y ̸= 0, the system is completely gapped when periodic boundary conditions
are employed. At ty = t ′y the gap closes, indicating that there might be a phase transition
between two topologically distinct phases. To understand the nature of the insulating phases
for different values of ty and t ′y, it is useful to linearize the spectrum around the Fermi-momenta
(similar to previous chapters).

Similar to the previous chapters, to keep track of the allowed terms, it is convenient to
present the Fermi-momenta as a function of the wire index (i,α), as depicted in Fig. (5.7a) for
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Figure 5.6: (a) The wire construction we use as a realization of a 2D fractional topological
insulator. This model is the starting point in our construction of a 3D fractional strong topo-
logical insulator (see Sec. 5.4.2-5.4.3). The spectrum of the system depicted in Fig. (5.6a),
when the inter-wire terms are switched off for (b) ν = 1, and (c) ν = 1/3. We note that only
the spin-up sector is presented here. The energies in blue, cyan, red, and green correspond to
wires number 1, 2, 3, and 4, respectively.

the spin-up sector (notice that while the model is equivalent to that depicted in Figs. 3.2a and
3.2b, the unit cell is shifted by one wire). Again, the symbol

⊗
(
⊙

) represents a right (left)
moving mode, and the arrows represent the coupling between different modes, generated by
the terms defined in Eqs. (5.20)-(5.21).

Since the system is fully gapped for 0 < t ′y < ty, any such state is adiabatically connected,
and therefore topologically equivalent, to the state where t ′y is negligibly small compared to
ty. Therefore, it is simple to see that the terms ψ

i,R†
2,↑ ψ

i,L
3,↑+h.c. and ψ

i,R†
4↑ ψ

i+1,L
1,↑ +h.c. (and in

the same way, ψ
i,L†
2,↓ ψ

i,R
3,↓+h.c. and ψ

i,L†
4↓ ψ

i+1,R
1,↓ +h.c. for the spin-down sector) dominate, and

gap the modes near kx = 0. These terms, however, leave two gapless modes on each edge of
the system - one for each spin. For the edge at i = 1, these edge modes are ψ

1,L
1,↑ , and ψ

1,R
1,↓ .

The terms ψ
i,R†
1↑ ψ

i,L
2,↑+ h.c. and ψ

i,R†
3↑ ψ

i,L
4,↑+ h.c. (and in the same way ψ

i,L†
1↓ ψ

i,R
2,↓+ h.c. and

ψ
i,L†
3↓ ψ iR

4,↓+ h.c.) are responsible for gapping the modes with kx ̸= 0. We therefore have a
fully gapped bulk with counter-propagating edge modes, protected by time reversal symmetry.
Thus, the phase with t ′y < ty is a topological insulator.

On the other hand, any state with t ′y > ty is adiabatically connected to the state with ty = 0,
where now the terms ψ

i,L†
1,↑ ψ

i,R
2,↑+ h.c. and ψ

i,L†
3,↑ ψ

i,R
4,↑+ h.c. (and in the same way ψ

i,R†
1,↓ ψ

i,L
2,↓+

h.c. and ψ
i,R†
3,↓ ψ

i,L
4,↓+h.c) gap the modes near kx = 0. In this case we have a fully gapped bulk

with no edge modes, indicating that the phase we discuss is topologically trivial.

5.4.1.2 Two-dimensional fractional topological insulator from an array of quantum
wires

Having found that the above model (defined in Eqs. (5.15)-(5.16) and (5.20)-(5.21)) can be
a topological insulator in the ν = 1 case, we now turn to study fractional fillings. We again
restrict ourselves here to fillings of the form ν = 1/m, where m is an odd integer.

The diagram that corresponds to the ν = 1/3 case is shown in Fig. (5.7b). We define
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the chiral boson fields φ
i,R/L
α,s , such that ψ

i,R/L
α,s ∝ exp

[
i
(

φ
i,R/L
α,s + ki,R/L

α,s x
)]

, where ki,R/L
α,s is the

corresponding Fermi-momentum, and the boson fields satisfy the commutation relations[
φ

n,ρ
α,s ,φ

n′,ρ ′

α ′,s′

]
= iρπδs,s′δα,α ′δρ,ρ ′δn,n′sign(x− x′) (5.23)

+ iπ
(
sign(n−n′)+δn,n′sign(α−α

′)
)
+δn,n′δα,α ′π

(
σ

s,s′
y +δs,s′σ

ρ,ρ ′
y

)
,

ensuring that the various electron operators anti-commute (notice that as opposed to previous
chapters, it now proves important to write the commutation relations between different boson
modes explicitly). Motivated by the previous chapters, we define new chiral fermion operators
according to

ψ̃
i,R/L
α,s ∝ ei

(
η

i,R/L
α,s +qi,R/L

α,s x
)
, (5.24)

with

η
i,R/L
α,s =

m+1
2

φ
i,R/L
α,s −

m−1
2

φ
i,L/R
α,s , (5.25)

qi,R/L
α,s =

m+1
2

ki,R/L
α,s −

m−1
2

ki,L/R
α,s . (5.26)

The commutation relations of the η-fields are

[
η

n,ρ
α,s ,η

n′,ρ ′

α ′,s′

]
= iρmπδs,s′δα,α ′δρ,ρ ′δn,n′sign(x− x′) (5.27)

+ iπ
(
sign(n−n′)+δn,n′sign(α−α

′)
)
+δn,n′δα,α ′π

(
σ

s,s′
y +mδs,s′σ

ρ,ρ ′
y

)
.

As in previous chapters, plotting the diagrams corresponding to the q’s, we find that the picture
is identical to the one associated with ν = 1 (Fig. (5.7a)). Hence, in terms of the ψ̃-fields,
we can repeat the analysis of the ν = 1 case, and write the terms used to obtain a topological
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Figure 5.7: The diagrams which present the Fermi-momenta of the 2D model as a function of
the wire index (labeled by (i,α), where i and α are indices enumerating the unit cells and the
position within the unit cell, respectively) for (a) ν = 1 , and (b) ν = 1/3. Notice that only the
modes with spin-up are presented here.

insulator. Writing these terms using the η bosonic fields, we have:

Ht = ∑
i

[∫
dxt̃y cos

(
η

i,R
4,↑−η

i+1,L
1,↑

)
+R←→ L,↑←→↓

+
∫

dxt̃y cos
(

η
i,R
2,↑−η

i,L
3,↑

)
+R←→ L,↑←→↓

+∑
s

∑
ρ=R,L

∫
dxt̃ ′y cos

(
η

i,ρ
1,s −η

i,ρ
2,s

)
+∑

s
∑

ρ=R,L

∫
dxt̃ ′y cos

(
η

i,ρ
3,s −η

i,ρ
4,s

)]
. (5.28)

Similar to the integer case, if t̃ ′y < t̃y the first two terms in Eq. (5.28) dominate. Assuming
they are made relevant, it is evident that the bulk becomes gapped and that the two modes
η

i,L
1,↑ and η

i,R
1,↓ remain decoupled. Each of these modes is similar to the edge mode of a ν = 1/m

Laughlin QHE state.
The above analysis suggests that the fractional analog of a given integer topological phase

can be realized if we manage to construct the integer phase from an array of coupled wires.
Once this is done, we can obtain a fractional phase by considering an analogous system where
the ψ-fields are replaced by the ψ̃-fields (or equivalently, φ is replaced by η), as demonstrated
above.

This motivates us to use a similar approach in the construction of fractional phases in 3D.
Toward this goal, in the next section we will construct a non-interacting strong topological
insulator from an array of wires. Then, in Sec. 5.4.3 we will study the fractional phase
obtained by reducing the filling to ν = 1/m, and constructing a strong topological insulator in
terms of the composite ψ̃-fields.
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5.4.2 Strong topological insulators from weakly coupled wires

In order to construct a strong topological insulator we stack 2D layers, each made of the wire
construction presented in Sec. 5.4.1, and tune the system such that ν = 1. The resulting 3D
system is made of an array of wires, as illustrated in Fig. (5.1a). For simplicity, we assume
that the distance between adjacent layers is a as well. The goal of this section is to engineer a
time-reversal invariant system with a single Dirac cone near the first and last layers.

To do so, we start by tuning each layer to the critical point between the topological and the
trivial phase, such that the 2D bulk contains two Dirac modes. This can be achieved by taking
ty = t ′y, in which case the Bloch Hamiltonian describing a single layer is given by

H xy = 2tx [(cos(ksoa)− cos(kxa)cos(ksoa))σzτz− szτz sin(ksoa)sin(kxa)]

− tyτx−
ty
2
(τyσy + τxσx)−

ty
2
(τxσx− τyσy)cos(4kya)−

ty
2
(τxσy + τyσx)sin(4kya) .

(5.29)

To create a topologically non-trivial gapped 3D phase, we perturb the above gapless Hamilto-
nian by an inter-layer term of the form

Hz =
1
2
[(

m′−2tz cos(kza)
)

τx +2t ′z sin(kza)syτz
]
(1−σx) (5.30)

with m′, tz, t ′z ≪ ty ≪ t̄x. Unless otherwise noted, we implicitly assume that all the coupling
constants are positive.

To see under which circumstances this model forms a strong topological insulator, we
now show that if the system is cut at the z = 0 plane, a single Dirac mode is localized near
the resulting surface. It is clear that as long as the inter-layer coupling terms are small, the
important degrees of freedom are those close to the Dirac points in each layer. We therefore
project the Hamiltonian onto the low-energy subspace of the intra-layer Hamiltonian (Eq.
(5.29)).

The two Dirac cones are located at kx = ky = 0. Therefore, to identify this low-energy
subspace we solve the equation

Hxy(kx = ky = 0)ψ0 = 0 (5.31)

for the vectors ψ0. The resulting subspace can be spanned by the four vectors |±1,s⟩ ≡
|σx =−1,τx =±1,s⟩, defined such that σx |±1,s⟩=−|±1,s⟩ ,τx |±1,s⟩=±|±1,s⟩ ,Sz |±1,s⟩=
s |±1,s⟩. In what follows, the basis vectors are ordered as {|1,↑⟩ , |−1,↓⟩ , |1,↓⟩ |−1,↑⟩}. As
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expected, the xy Hamiltonian, projected onto the low-energy subspace and expanded to first
order in momenta, takes the form of two Dirac cones. To be specific, in the above basis the
intra-layer Hamiltonian takes the form

Hxy =

(
0 hDirac

h†
Dirac 0

)
, (5.32)

where

hDirac =

(
0 −2tx sin(ksoa)kxa+2itykya

2tx sin(ksoa)kxa−2itykya 0

)
. (5.33)

Once the inter-layer part of the Hamiltonian is projected onto the same low energy subspace,
it takes the form

Hz =

(
h1D(kz) 0

0 h∗1D(kz)

)
, (5.34)

where h1D(kz) = d⃗ · σ⃗ , with d⃗ =
(
0,2t ′z sin(kza) ,m′−2tz cos(kza)

)
, can be thought of as the

Hamiltonian of a 1D model.
If m′ < 2tz, the planar vector d⃗ winds once around the origin as kz winds around the Bril-

louin zone, indicating that the 1D model is topologically non-trivial. Indeed, in this regime
the model can be shown to have zero-energy end modes.

Since the ẑ part of our 3D Hamiltonian consists of the two decoupled models h1D and h∗1D,
it produces two zero-energy modes on the z = 0 surface. It is clear that the full low energy
Hamiltonian, projected onto the subspace spanned by these two end modes, must be that of a
single Dirac cone.

To see this explicitly, we need an analytic form for the two end modes. This becomes
simple if we restrict ourselves to the regime where 2tz is close to m and the gap is small. In
this limit, focusing again on the low energy properties, we can expand Eq. (5.34) in small kz,
and get a continuum model. The model h1D then takes the form

h1D ≈

(
m′−2tz− tz∂ 2

z −2t ′za∂z

2t ′za∂z −
(
m′−2tz− tz∂ 2

z
) ) (5.35)

in the position basis.
Assuming that the system ends at z = 0, we look for localized zero-energy eigenstates of

this Hamiltonian and its complex conjugate, which vanish at z = 0. Plugging in an exponen-
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tially decaying function as an ansatz, we find two such solutions

|1⟩= 1√
2


1
1
0
0

 f (z), |2⟩= 1√
2


0
0
1
−1

 f (z), (5.36)

with f (z) =
√

2λ+λ−(λ++λ−)
λ+−λ−

(
e−λ+z− e−λ−z

)
, and λ± =

t ′z±
√

t ′z2+(m′−2tz)tz
atz

.
Projecting the xy part of the Hamiltonian (Eq. (5.32)), onto the subspace spanned by the

two end modes (Eq. (5.36)), we find a single anisotropic Dirac cone on the surface. The
corresponding Hamiltonian takes the form

Hxy-surface = 2a [kytyσy + kxtx sin(ksoa)σx] . (5.37)

Two remarks are in order: first, one can derive the topological nature of the model from the
bulk wavefunctions. In fact, recognizing that the system has an inversion symmetry, generated
by the operator σ xτx, we can implement the procedure introduced in Ref. [13] (relating the Z2

invariant to the parity of the occupied states at the time-reversal invariant points) and easily
evaluate the Z2 invariant. We have verified that the results of this analysis are consistent with
the above derivation, where the surface was studied directly.

Second, we note that since the system is guaranteed to preserve its topological nature as
long the gap remains finite, the various parameters are not restricted to the values given above.
In particular, the strict requirement ty = t ′y can be relaxed.

In the next section we study the fractional analog of the model introduced in this section.

5.4.3 Fractional strong topological insulators from weakly coupled wires

In Sec. 5.4.1, when constructing the Laughlin-like ν = 1/m state in 2D, we saw that one
can define the η-fields, in terms of which the problem is mapped to the simple ν = 1 case.
Reversing the logic, we see that by taking a topological state with ν = 1, and replacing the φ

fields by the η fields, we expect to get a fractional state.
In this Section, we follow this approach in generalizing our strong topological insulator

to its fractional analog. To do so, we start by writing the Hamiltonian of the ν = 1 case,
discussed in the previous section, in terms of the bosonic φ -fields. Then we write the same
Hamiltonian with the η-fields, and tune the system to filling ν = 1/m, where such terms
conserve momentum.

We note that all the fields which are not around kx = 0 are trivially gapped by the intra-layer
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terms, as seen most clearly in Fig. (5.7a). Consequently, the topological properties involve
only the modes around kx = 0. In what follows, we therefore write only the operators acting
on these fields. In addition, we omit the indices R/L, which are fully determined by the spin
indices for the kx = 0 modes.

We define the vector

Ψ̃i,n =
(

eiη i,n
1,↑e iη i,n

2,↑ eiη i,n
3,↑ eiη i,n

4,↑ eiη i,n
1,↓ eiη i,n

2,↓ eiη i,n
3,↓ eiη i,n

4,↓

)T
, (5.38)

where i is the index enumerating the unit cells in each layer, and n counts the layers. In these
notations, the low energy Hamiltonian takes the form

Hx = ∑
n,i,α,s

v
2πm

∫
dx
(

∂xη
i,n
α,s

)2
, (5.39)

Hy =−ty ∑
n,i

∫
dx
[

Ψ̃
†
i,n

(
τx +

1
2
(τyσy + τxσx)

)
Ψ̃i,n +

(
1
4

Ψ̃
†
i+1,n (τx + iτy)(σx + iσy)Ψ̃i,n +h.c.

)]
,

(5.40)

Hz =
1
2 ∑

n,i

∫
dx
[(

Ψ̃
†
i,n+1

(
−tzτx + it ′zsyτz

)
(1−σx)Ψ̃i,n +h.c

)
+ Ψ̃

†
i,nm′τx (1−σx)Ψ̃i,n

]
.

(5.41)

For simplicity, we do not consider the effects of density-density interactions between the var-
ious modes.

We emphasize that analyzing the problem directly in terms of the bosons is essential in the
fractional case. Unfortunately, the bosonic form makes it difficult to see that the above set of
non-commuting terms results in a gapped system with a gapless surface. In the ν = 1 case,
we can of course refermionize the above Hamiltonian and repeat the analysis of Sec. 5.4.2 to
show this explicitly. In the fractional case, where refermionization does not result in a solvable
model, the situation is more subtle as the various inter-wire terms are irrelevant in the weak
coupling limit. To avoid additional complications that arise from that, we work in the regime
where the bare amplitudes are large and assume that the inter-wire terms flow to the strong
coupling limit.

Indeed, in this strong coupling limit, we can neglect the intra-wire terms and the physics
becomes practically independent of m because the inter-wire Hamiltonian is quadratic in the
fermionic ψ̃-fields. Since we know from the fermionic language that the system is gapped in
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Figure 5.8: A diagrammatic representation of the reduced 2D tight binding model, describing
the inter-wire part of the full 3D model. Here, each “lattice point” corresponds to a linearly
dispersing mode in the x direction, with a well defined y and z coordinates. The horizontal axis
describes the layer and spin indices (n,s), and the vertical axis describes the position within
each layer (i,α). Again, the symbol

⊗
(
⊙
) represents a right (left) mover. The green arrows

represent the terms in the intra-layer Hamiltonian Hy, and the brown arrows represent inter-
layer terms which couple the spin-up modes, and take the form −2tz cos(kza)τx in k-space.
We emphasize that the reduced model defined in Eq. (5.40)-(5.41) contains additional terms
which are not depicted here. If all the terms are considered, the full 3D model is topologically
non-trivial if the reduced model forms a 2D topological insulator. Thus, the analysis of some
aspects of the strongly interacting 3D phase is reduced to the analysis of the 2D non-interacting
topological phase.

the m = 1 case, the same is expected to be true for m > 1 in the strong coupling limit. This
result is expected to remain true for moderately large bare amplitudes as well.

In what follows, the topological nature of the Hamiltonian is revealed again with the aid
of diagrammatic representations. We depict the η modes which are not gapped by intra-layer
terms (i.e., the modes near kx = 0) by diagrams of the form shown in Fig. (5.8).

As before, the symbol
⊗

(
⊙
) represents a right (left) mover, and colored arrows connect-

ing two modes represent coupling between them. The horizontal axis represents the layer and
spin indices (n,s), and the vertical axis represents the intra-layer position (i,α).

Forgetting for a moment that the symbols represent dispersing 1D modes, if they are treated
as states localized on the corresponding lattice points, the diagram presents the 3D problem
as a 2D tight-binding model, defined in real space by Eqs. (5.40)-(5.41). The 2D lattice
model describing the inter-wire coupling terms is referred to as the reduced 2D model. The
usefulness of the reduced tight binding model description is revealed by noting that the full
3D model is topologically non-trivial if the reduced model forms a 2D topological insulator.

If the system is infinite (or periodic) in the ŷ and ẑ directions, the corresponding momenta
are good quantum numbers. We therefore write the problem in terms of its Fourier components
ky and kz. We note that in order to take advantage of the bosonization description, we do not
perform a Fourier transform in the x direction. Consequently, the Hamiltonian takes the form

H = Hx +∑
k

∫
dxΨ̃

†
k(x)(hy (k)+hz (k))Ψ̃k(x), (5.42)
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with k = (ky,kz), and

Ψ̃k(x) =
1√
NyNz

∑
j,n

e−i(4 jkya+nkza)Ψ̃ j,n(x), (5.43)

hy (k) =−tyτx−
ty
2
(τyσy + τxσx)−

ty
2
(τxσx− τyσy)cos(4kya)−

ty
2
(τxσy + τyσx)sin(4kya) ,

(5.44)

hz (k) =
1
2
[(

m′−2tz cos(kza)
)

τx +2t ′z sin(kza)syτz
]
(1−σx) , (5.45)

where Ny is the number of wires in each layer, and Nz is the number of layers (cf. Eqs. (5.29)
and (5.30)).

If the 3D model is finite in the ŷ or ẑ direction, the reduced 2D model has an edge. For
m′ < 2tz, it can be checked that the reduced model forms a 2D topological insulator, and
has counter propagating edge modes. Recalling that each lattice point in the reduced model
represents a linearly dispersing η-mode, we argue that these edge states correspond to the
gapless surface modes of the original 3D model. Therefore, we can get the surface modes by
diagonalizing the reduced tight binding model and finding the corresponding edge states.

In order to get an explicit analytic form, we focus again on the regime where 2tz is close to
m′, and the gap becomes small. If the system terminates at the z = 0 plane, the reduced model
has two edge modes which take the form

ξβ (x,ky) =
1√
Ny

∑
j,n

√
a f (a ·n)e−i jkyaAβ · Ψ̃ j,n(x), (5.46)

where β = 1,2 labels the two counter-propagating edge modes, f (z) is the function defined
after Eq. (5.36), and the vectors Aβ are

A1 =
1
4

(
1+ i ,1− i ,−i−1 , i−1 −i+1 ,−i−1 ,−1+ i ,1+ i

)
,

A2 = A∗1. (5.47)

In the integer case, where m = 1, Eq. (5.46) can be thought of as a bosonic description
of the Dirac mode localized near the z = 0 surface (we point out the similarity between the
fields defined in Eqs. (5.46) and (5.36), up to a different choice of basis). In the fractional
case, where m > 1, the above gapless modes cannot be described by Dirac’s theory of free
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fermions. As before, we refer to these more general modes as fractional Dirac modes.
The part of the inter-wire Hamiltonian describing the edge modes of the reduced model

(which correspond to the surface mode of the original 3D model) takes the form

Hedge = 2tya∑
ky

∫
dxkyξ⃗

†(x,ky)τ̄zξ⃗ (x,ky)

=−2tyi
∫

dxdyξ⃗
†(x,y)τ̄z∂yξ⃗ (x,y), (5.48)

where ξ⃗ =
(

ξ1 ξ2

)T
, and τ̄z is a Pauli matrix acting on this basis. To simplify the analysis

presented in the next section, the second line of Eq. (5.48) was written in the continuum limit.
In the next section we will use the reduced 2D model formalism to study the properties

of the surface once it is gapped by breaking its protecting symmetries. We will see that the
resulting gapped fractional Dirac modes have unique properties which distinguish them from
massive Dirac fermions.

5.4.4 Gapping the surface

5.4.4.1 Breaking time-reversal symmetry: Halved fractional quantum Hall effect on
the surface

Having written a low energy effective surface Hamiltonian using the reduced model, we turn
to study what happens when the surface is gapped by breaking time reversal symmetry.

To do so, we introduce a Zeeman field B on the surface. We examine a configuration
where B changes sign as we cross the line y = 0. By studying the properties of the gapless
mode attached to the boundary, we will be able to deduce the surface Hall conductance.

Within the reduced 2D model formalism, the problem of finding the 1D channel attached
to a magnetic domain wall on the surface is converted into that of finding the localized zero-
energy mode associated with a similar domain wall on the edge of a 2D topological insulator.
To be concrete, we use the continuum model described by Eq. (5.48) and add a space de-
pendent perturbation of the form B(y)⃗ξ †τ̄xξ⃗ , where B(y) = B0sign(y). This Hamiltonian, and
hence the full inter-wire Hamiltonian, has a zero-energy solution of the form

ξB(x) =
√

λBa∑
j,n

f (n ·a)e−λB| j|aβ · Ψ̃ j,n(x), (5.49)

with
β =

1
2

(
0 1 0 −1 1 0 −1 0

)
, (5.50)
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and λB = B0
2tya .

Notice that this mode, being a combination of right movers, is a right moving mode. Fur-
thermore, we argue that it is identical to the chiral mode that resides on the edge of a ν = 1/m
Laughlin QHE state.

To see this, we calculate the electron propagator characterizing this 1D channel, defined
as GB(x− x′, t− t ′) =

〈
ξ̃B(x′, t ′)ξ̃

†
B(x, t)

〉
. Recall that ξB(x) is an exact zero-energy solution

of the Inter-wire Hamiltonian for any x. Therefore, we can calculate the expectation value
with respect to the quadratic intra-wire Hamiltonian shown in Eq. (5.39) . This results in the
propagator

GB(x, t) ∝
1

(x− vt)m . (5.51)

This can be derived rigorously by writing the exact equations of motion for ξ̃B, which indicate
that it remains a right mover in the presence of the inter-wire Hamiltonian (i.e., GB(x, t) =
GB(x− vt)). Then, using the known transformation properties of the various fields under the
conformal symmetry of the kinetic Hamiltonian, one can rigorously prove Eq. 5.51 with-
out additional assumptions. This procedure is shown explicitly in Appendix A.2 (note that
while the system discussed in Appendix A.2 is different, the analysis follows the above line
of arguments).

The propagator in Eq. 5.51 is identical to the one characterizing the edge of a ν = 1/m
QHE edge state [77]. Invoking the bulk edge correspondence, we therefore find that σxy =

± 1
2m

e2

h , in agreement with Sec. 5.3.

5.4.4.2 Coupling the surface to a superconductor: The emergence of a fractional Ma-
jorana mode

Next, we turn to ask what happens when the surface is gapped by breaking charge conserva-
tion. This is done by proximity coupling the surface to an s-wave superconductor. It was found
in Ref. [14] that when the surface of a strong topological insulator is gapped in this fashion, the
resulting phase resembles a spinless px+ ipy superconductor, but has time-reversal symmetry.

In our model, this problem corresponds to understanding what happens to the edge of the
reduced 2D topological insulator when it is coupled to an s-wave superconductor. This moti-
vates us to write a proximity term of the form ∆

(
ξ

†
1 ξ

†
2 +h.c.

)
, coupling the two edge modes

of the reduced model. Using the enlarged basis, ξ⃗N =
(

ξ1(x,y) ξ2(x,y) ξ
†
2 (x,y) ξ

†
1 (x,y)

)T
,

we rewrite the edge Hamiltonian in the form

1
2

∫
dxdyξ⃗

†
N

(
−2ityτzσz∂y +

∆

a
τzσx

)
ξ⃗N . (5.52)
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In order to reveal the topological nature of the superconducting phase, we consider the
boundary between a region with a non-zero B and a region with a non-zero ∆. Studying
non-interacting strong topological insulators, the authors in Ref. [14] have found that such a
boundary contains a chiral Majorana mode. We now examine what happens in the fractional
case.

In the presence of time-reversal breaking and superconducting terms, the edge part of the
reduced Hamiltonian takes the form

1
2

∫
dxdyξ⃗

†
N

[
−2ityτzσz∂y +

B(y)
a

τxσz +
∆(y)

a
τzσx

]
ξ⃗N . (5.53)

We consider a simple situation, where B(y) = B0Θ(y) and ∆ = ∆0Θ(−y) (to be concrete, we
assume ∆0 > 0,B0 > 0).

The Hamiltonian given by Eq. (5.53) has a zero energy solution of the form

1√
2

(
ξB∆ +ξ

†
B∆

)
, (5.54)

with

ξB∆ =

√
2λBλ∆

λB +λ∆

a∑
j,n

e−iπ/4 f (n ·a)β · Ψ̃ j,n(x)g( ja), (5.55)

g(y) =

{
e−λBy,y > 0
eλ∆y,y < 0

, (5.56)

λ∆ = ∆0
2tya and λB = B0

2tya . For m = 1, we find a self-Hermitian combination of right moving
fermions, making it a chiral Majorana mode, in agreement with Ref. [14]. If m > 1, we find
again a self-Hermitian chiral mode. However, in this case it cannot be described by a free
Majorana theory. In particular, the tunneling density of states associated with this mode is
proportional to ωm−1, as opposed to the free Majorana case, where the density of states is
constant. This is in fact similar to the tunneling density of states characterizing the edge of a
ν = 1/m Laughlin QHE states. To find this result, one can repeat the process that led to Eq.
(5.51) and write the propagator of the above fractional Majorana mode. The above results are
in agreement with Sec. 5.3, where we have used a modified time-reversal symmetry to directly
model the surface.



Chapter 6

Fractional chiral superconductors

This chapter presents the results of our fourth project, presented in Ref. [71]. In previous
chapters, we focused on applying the coupled-wire approach for studying fractional insulating
phases in 2D and 3D. In this chapter, we extend this approach to superconducting phases, and
construct the simplest fractional analog of the chiral p+ ip superconductor: a fractional chiral
superconductor.

6.1 Introduction

In this work we propose new strongly interacting superconducting phases that are natural
fractional counterparts of the non-interacting px + ipy chiral superconductor: fractional chiral
superconductors (FCSC).

A non-interacting px + ipy superconductor hosts a chiral Majorana mode, or equivalently
a Z2 parafermion theory, at the edge. In contrast, the edge of the FCSC phases we find is
described by non-trivial Z2m parafermion conformal field theories (CFTs), where m can be any
odd integer. This makes the FCSC phases close relatives of the well-known Z2m Read-Rezayi
quantum Hall states, whose edge theories have identical non-Abelian components. In addition,
while an h/2e vortex in a px + ipy superconductor binds a Majorana zero mode, a vortex in
the FCSC phases binds Z2m parafermion zero modes. Unlike the px + ipy superconductor,
however, an FCSC phase generally contains a rich set of deconfined non-Abelian excitations
even in the absence of vortices.

Using the coupled-wire approach, we present an analytically tractable model realizing
these strongly interacting phases. This allows us to explicitly study their properties and exper-
imental signatures in detail.

By considering a Corbino geometry, we are able to study h/2e vortices in the system. We
show that these vortices host non-Abelian parafermion zero-modes by mapping our configu-
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ration to domain walls on the edge of a 2D fractional TI [127–129].

6.2 Topological superconductor from an array of coupled
wires

We start by reviewing the construction of a px + ipy superconductor, presented in Ref. [52].
In section 6.3, the construction of the fractional phases will proceed in parallel to that of the
px + ipy phase, replacing the electron operators in the non-interacting case with the ψ̃-fields,
similar to previous sections.

The starting point is an array of decoupled Rashba wires. Similar to Refs. [17, 18], each
wire is subjected to a Zeeman field and proximity coupled to an s-wave superconductor,

H =∑
n

∫
dxψ⃗

†
n (x)

[
−(∂x− iuMσz)

2

2M
−µ +Bσx

]
ψ⃗n(x)

+
∫

dx
[
∆ψ

†
n↑(x)ψ

†
n↓(x)+h.c.

]
. (6.1)

Here, ψ⃗n =
[
ψn↑(x) ψn↓(x)

]T
, where ψns(x) represents the electron annihilation operator at

wire number n with spin s (see Fig. 6.1a). The matrices σi are Pauli matrices operating on
the spin degrees of freedom. The parameters u,B, and ∆ are the Rashba spin-orbit coupling
(SOC), the Zeeman field, and the induced superconducting pairing potential, respectively.

Figure 6.1b presents the spectrum of a single wire in the absence of superconductivity and
a Zeeman field (B = ∆ = 0). We define the Fermi momentum k0

F =
√

2Mµ in the absence of
SOC, and the shift kso = Mu of the parabolas due to SOC. In terms of these, the filling fraction
of the system is defined as

ν = k0
F/kso. (6.2)

To study the low energy physics, we linearize the spectrum near the Fermi level, and de-
compose the fermionic modes into right- and left-moving modes: ψns(x) = ψnsR(x)+ψnsL(x),
with ψnsρ(x) =ψ0

nsρ(x)e
iksρ x. Here, ψ0

nsρ are the low energy degrees of freedom near the Fermi
momenta ksρ = ρk0

F − skso (where ρ =±1 denotes a right/left moving mode).
The px+ ipy superconductor corresponds to ν = 1. Focusing on the low-energy excitations

for |∆−B|≪ B,∆, the Zeeman term HB =
∫

dx
[
Bψ

†
n↑R(x)ψn↓L(x)+h.c.

]
and the pairing term

H∆ =
∫

dx
{

∆

[
ψ

†
n↑R(x)ψ

†
n↓L(x)+ψ

†
n↑L(x)ψ

†
n↓R(x)

]
+h.c.

}
gap out the wires (see Fig. 6.1b).

Indeed, the second term in H∆ fully gaps the high-momentum degrees of freedom ψn↑L and
ψn↓R, and the low-momentum degrees of freedom, ψn↑R and ψn↓L, are coupled by the Zeeman
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Figure 6.1: (a) A schematic view of the system we use to construct a two-dimensional frac-
tional chiral superconductor (FCSC). The system is composed of an array of N weakly coupled
wires with strong Rashba spin-orbit coupling. We demonstrate that the interplay of the Zee-
man field, proximity to an s-wave superconductor, and strong interactions can result in FCSC
phase with a chiral parafermion CFT at the edges of the sample and parafermionic bound
states at the core of vortices. (b) The spectrum of an individual wire in the absence of interac-
tions, Zeeman field, and proximity coupling. The dashed lines specify the chemical potentials
corresponding to the situations ν = 1 and ν = 1/3. (c) A Corbino geometry, used in order
to study h/2e vortices and the anomalous Josephson effect. By connecting the internal and
external parts with a superconducting wire, through which flux can be inserted, the relative
phases between the two superconducting regions can be controlled. It is argued that in the
quasi-one-dimensional regime this configuration is equivalent to the effective junction shown
in Fig. 6.2f, leading to a 4πm-periodic Josephson effect.

term HB as well as the first term of H∆. The fully gapped phases for ∆ > B and ∆ < B are
topologically distinct - the first is a 1D trivial phase while the second is a topological super-
conductor. For B = ∆, the inter-mode part of the Hamiltonian, given by H∆ +HB, commutes
with the operators

αn(x) = ψn↑R(x)+ψ
†
n↑R(x),

βn(x) =−i
[
ψn↓L(x)−ψ

†
n↓L(x)

]
, (6.3)

so the system is gapless.
Tuning to this transition point, we introduce an inter-wire term of the form

H⊥ = it⊥∑
n

∫
dxαn(x)βn+1(x). (6.4)

This term arises naturally in the system of Fig. 6.1a due to a combination of inter-wire hop-
ping, superconductivity, and spin-orbit interaction [52]. It gaps out the bulk degrees of free-
dom, yet it leaves the Majorana fields β1(x) and αN(x) decoupled, thus stabilizing a px + ipy

phase. This construction can be considered the anisotropic limit of the system studied by Refs.
[16, 130]. While it relies on a fine-tuned relation between parameters, the resulting phase is
independent of these assumptions, remaining qualitatively identical as long as the bulk gap
remains open.
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Figure 6.2: A schematic depiction of the line of arguments used in order to identify the zero-
modes localized at the center of h/2e vortices. (a) We start by placing our FCSC phase in an
annular geometry, through which a magnetic flux may be inserted. Without altering the essen-
tial characteristics of the system, we cut a thin trench through the annulus. (b) As the presence
of zero-modes should not depend on the precise geometry as long as the topological structure
is preserved, we focus on the edge theory and fold our system inside-out to a bone shaped
geometry. (c) The independence on the precise geometry allows us to shrink the outermost
regions. (d) We examine an auxiliary model which has twice as many degrees of freedom, but
whose low energy sector coincides with our model. We then show that the auxiliary model
in (d) can be adiabatically deformed into a system composed of ν = 1/m fractional quantum
Hall edges coupled by ferromagnetic and superconducting terms. (e) If the flux ϕ is an even
multiple of 2π , we get effective superconducting term throughout the system, meaning there
are no zero modes. (f) For odd multiples of 2π , the superconductor in the physical region is
replaced by a ferromagnet. The domain walls of the resulting configuration, representing the
edges of the original configurations, give rise to parafermionic bound states [127–129].

6.3 Fractional chiral superconductors

To construct a FCSC phase at filling ν = 1/m, where m is an odd integer, we consider the
effects of strong interactions, within a bosonized description of the 1D degrees of freedom.
Using the standard Abelian bosonization technique, we describe the Hilbert space in terms of
bosonic fields φnsρ via ψnsρ ∝ ei(φnsρ+ksρ x).

For ν = 1/m, the analysis of the previous chapter motivates us to define new chiral fermion
operators ψ̃nsρ = ei(ηnsρ+qsρ x), with

ηnsρ =
m+1

2
φnsρ −

m−1
2

φnsρ̄ . (6.5)

The ψ̃nsρ fields carry momenta qsρ = m+1
2 ksρ − m−1

2 ksρ̄ . Note that the momenta qsρ carried
by the new fields ψ̃nsρ match those of a ν = 1 wire. In particular, the operators ψ̃n↑R and
ψ̃n↓L now have vanishing oscillatory components, allowing us to couple them in various ways
without breaking translational symmetry.

Once the Zeeman term is dressed by intra-wire 2kF -interactions, it induces a term of the
form H̃B =

∫ dx
a2

[
B̃ψ̃

†
n↑R(x)ψ̃n↓L(x)+h.c.

]
(where a is the short distance cutoff). We assume

that B̃ is large enough such that this term gaps out the small momentum fields ψ̃n↑R and ψ̃n↓L.
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We may also write dressed pairing terms of the form

H̃∆ =
∫ dx

a2

{
∆̃

[
ψ̃

†
n↑R(x)ψ̃

†
n↓L(x)+ ψ̃

†
n↑L(x)ψ̃

†
n↓R(x)

]
+h.c.

}
. (6.6)

As in the ν = 1 case, the second term in H̃∆ involves high-momentum degrees of freedom and
does not compete with the Zeeman term, H̃B. It fully gaps out the fields ψ̃n↑L and ψ̃n↓R. The
first term in H̃∆ competes with the Zeeman field H̃B. For ∆̃ = B̃ = λ , one obtains a critical
theory, similar to the ν = 1 case, which in this case is described by a β 2 = 4πm self-dual
Sine-Gordon model (see Appendix A.1):

H =
∫

dx
[
(∂xθ)2 +(∂xϕ)2 +

λ

a2

{
cos
(√

4πmϕ

)
+ cos

(√
4πmθ

)}]
, (6.7)

where we have defined ϕ =
ηn↑R−ηn↓L

2
√

πm and θ =
ηn↑R+ηn↓L

2
√

πm .

It is, however, a priori unclear whether the critical line B̃ = ∆̃ is dominated by the B̃ and ∆̃

terms. In the weak-coupling limit, both B̃ and ∆̃ flow to zero, giving a trivial Luttinger-liquid
fixed point. However, it turns out that when B̃ and ∆̃ are equal and large enough, a non-trivial
multicritical point is encountered.

To show this, we follow the analysis in Ref. [131], and employ an ε-expansion, with
m = 2+ ε . In this approach, the scaling dimensions of the B̃ and ∆̃ terms are small, thus
pushing the competition between the first and higher order terms of the RG equations to the
region in which the perturbative RG analysis applies. As we show in Appendix A.1, the RG
equation describing the flow of λ = B̃ = ∆̃ takes the form

dλ

dl
=−ελ +π

2
λ

3. (6.8)

When λ >
√

ε/π , a flow to large coupling ensues and the low energy theory is no longer
capable of describing the model. The point λ =

√
ε/π is a multicritical point separating the

B̃-dominated phase, the ∆̃-dominated phase, and the gapless phase. Extrapolating to ε of order
unity, we assume that such a critical point persists. For completeness, we study the full phase
diagram of the system in Appendix A.1.

To uncover the nature of the CFT describing the multicritical point, it is useful to review the
physics of classical 2D Zk (clock or Potts) models. As discussed in detail in Refs. [132–134],
such models possess self-dual lines. For k ≤ 4, there is a self-dual critical point that separates
the disordered and ordered (Zk symmetry broken) phases. For k > 4, some regions of the
self-dual line are contained in gapless phases, while others consist of first order transitions.
The different regions of the self-dual line are separated by multicritical points [132, 134]. It
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was argued in Ref. [135] that these are described by a Zk parafermion CFT. In addition, it
is well known that the low energy physics of self-dual Zk models is described by β 2 = 2πk
self-dual Sine-Gordon models [97, 136]. The above prompts us to identify the finite-coupling
multicritical point in our self-dual Sine-Gordon models with those of the Zk models. This
indicates that our model at the multicritical point is described by a Z2m parafermion CFT.

In what follows, we assume that each wire is tuned to the multicritical point, and is there-
fore described by a Z2m parafermion theory. At this critical point, the fields

α̃n(x) = eiηn↑R(x)+ e−iηn↑R(x)

β̃n(x) =−i
[
eiηn↓L(x)− e−iηn↓L(x)

]
(6.9)

commute with the inter-mode Hamiltonian H̃B + H̃∆. As we demonstrate in Appendix A.2,
the propagators describing this low energy theory take the form ⟨α̃n(z)α̃n(z′)⟩ ∝ (z− z′)−m

and
〈

β̃n(z̄)β̃n(z̄′)
〉

∝ (z̄− z̄′)−m, with z = x+ iτ . We identify these fields with the ψm and ψ̄m

primary fields of the Z2m theory, which indeed have conformal dimension m/2 [135].
Similar to the non-interacting case [see Eq. (6.4)], we introduce the inter-wire term

H̃⊥ = it̃⊥∑
n

∫ dx
a2 α̃n(x)β̃n+1(x). (6.10)

Since the inter-wire Hamiltonian in Eq. (6.10) has the same form as the self-dual intra-wire
Hamiltonian and is composed of fields which commute with the intra-wire coupling terms,
t̃⊥ flows according to the RG equation (6.8). Therefore, if t̃⊥ is large enough, a flow to large
coupling ensues and this Hamiltonian leaves the fields β̃1 and α̃N gapless. These fields rep-
resent the local electron operators on the edges. In fact, a full chiral Z2m parafermion CFT is
expected to reside on each edge. Using the propagator of the α̃ and β̃ fields, we find that the
electrons’ tunneling density of states N(ω), associated with the edge, scales with an anoma-
lous exponent: N(ω) ∝ ωm−1.

Similar to the non-interacting case, the strict constraints on the various parameters may be
lifted as long as the bulk gap does not close.

6.4 Non-Abelian defects and 4πm-periodic Josephson effect

To study the non-Abelian defects residing at the core of vortices, we examine the configuration
presented in Fig. 6.2a. The FCSC is shaped like an annulus, and the flux threading the annulus
is given by an odd multiple of h/2e. In analogy to the non-interacting case [137], we expect
to find zero modes on the two edges of the system. It will prove useful to cut a thin trench in
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the annulus. In this case, the flux through the center of the annulus can be chosen to enter in
the coupling across the trench, and we can deform our system in such a way that connects it
with the configuration studied in Refs. [127–129] (see Fig. 6.2f).

Given that we are only interested in finding zero energy modes, we have a large amount
of freedom in deforming the geometry of the problem while preserving its topology. We first
fold the edge “inside-out” leading to the bone-shaped configuration depicted in Fig. 6.2b. We
may then shrink the outermost regions without introducing inter-edge coupling. This leads to
the simple 1D geometry presented in Fig. 6.2c, in which the counter-propagating edge modes
α̃R and β̃L (defined in the region 0 < x < l) are connected at x = 0, l.

The zero-mode properties are solely encoded in the low energy edge theory. We therefore
have the additional freedom of changing the Hamiltonian governing the gapped degrees of
freedom. One must only ensure that the modes α̃R and β̃L, and the other primary fields of the
parafermion CFT, remain gapless, while the other microscopic degrees of freedom, such as α̃L

and β̃R, remain gapped.
An auxiliary model, in which the latter fields are coupled directly, while bulk degrees of

freedom are projected out, satisfies this condition. The corresponding Hamiltonian is given by

Hauxiliary = it̃a
∫ l

0
dxβ̃R(x)α̃L(x)

= t̃a
∫ l

0
dx
[
ψ̃R(x)ψ̃L(x)− ψ̃

†
R(x)ψ̃L(x)+h.c.

]
, (6.11)

where we have used α̃ρ = ψ̃ρ + ψ̃
†
ρ and β̃ρ =

(
ψ̃ρ − ψ̃

†
ρ

)
/i. While it gaps α̃L and β̃R, this

Hamiltonian leaves the fields α̃R, β̃L gapless. Notice that strictly speaking, t̃a must be tuned
to a multicritical point for the low-energy theory to remain identical. However, since we will
soon break the self duality of the problem, this will not be important.

The auxiliary model simplifies our analysis, as it allows us to formulate the problem in
terms of the chiral bosonic modes ηR and ηL, such that ψ̃ρ = eiηρ . Mathematically, the Hamil-
tonian in Eq. (6.11) describes two edge modes of a ν = 1/m fractional quantum Hall state,
coupled by a specific combination of ferromagnetic and superconducting terms.

Next, we include the physical coupling between the edge modes across the trench,

Htrench = it̃ (ϕ)
∫ l

0
dxα̃R(x)β̃L(x)

= t̃ (ϕ)
∫ l

0
dx
[
ψ̃R(x)ψ̃L(x)+ ψ̃

†
R(x)ψ̃L(x)+h.c.

]
, (6.12)

where ϕ = 2π
Φ

h/2e , and Φ = nh/2e is the flux through the center of the annulus. In the gauge
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in which the flux only enters into t̃ (ϕ), we have t̃ (ϕ) = t̃0 cos
(

ϕ

2

)
.

Finally, it is necessary to introduce the correct boundary conditions, such that α̃R→ β̃L at
x = 0 and β̃L→ α̃R at x = l (see Fig. 6.2c). This can be implemented by extending the model
to−∞ < x < ∞, and strongly coupling αR and βL beyond the ends of the physical system, such
that they acquire a large gap in these regions. Within the auxiliary model, formulated in terms
of the two η fields, we can do this by introducing strong superconducting terms for x < 0 and
x > l:

Hbc = ∆bc

∫
x<0,x>l

dx [ψ̃R(x)ψ̃L(x)+h.c.] . (6.13)

The full auxiliary model is depicted in Fig. 6.2d. Alternatively, note that one can also use a
ferromagnetic term. This would not change our conclusions regarding the existence of zero
modes.

While the choice of coupling constants t̃a and (∆bc) seems arbitrary, unphysical zero en-
ergy degrees of freedom may appear if these are not properly chosen. In order to avoid these,
we first choose the auxiliary coupling constant such that sign(t̃a) = sign(∆bc) (otherwise the
coefficient of the term iβ̃Rα̃L changes sign at x = 0, l).

An additional consistency condition is obtained by noting that no physical zero-energy
modes should appear in the absence of flux. This leads to the constraint sign(∆bc)= sign [t̃ (ϕ = 0)].

To be consistent with these constraints, the coefficients of our auxiliary model must satisfy

sign(t̃a) = sign(∆bc) = sign(t̃0) . (6.14)

Clearly, the gap does not close as long as the various coupling constants do not change sign.
In particular, the presence (or absence) of zero-modes in not affected by varying the various
parameters without altering their signs. We may therefore choose t̃0 = t̃a

∣∣cos
(

ϕ

2

)∣∣−1, in which
case the Hamiltonian in the region 0 < x < l takes the form

Htrench+Hauxiliary =

t̃a
∫ l

0
dx
{

ψ̃R(x)ψ̃L(x)
[
1+ sign

(
cos

ϕ

2

)]
− ψ̃

†
R(x)ψ̃L(x)

[
1− sign

(
cos

ϕ

2

)]
+h.c.

}
(6.15)

While the trench allows us to continuously vary ϕ , we take the discrete values ϕ = 2πn,
where n counts the number of h/2e vortices. As Eq. (6.15) implies, if ϕ is an even multiple of
2π , the Hamiltonian reduces to superconducting terms throughout space, thus preventing the
existence of zero energy modes (see Fig. 6.2e). On the other hand, if ϕ is an odd multiple of 2π

it is clear that the superconductor in the region 0 < x < l is replaced by a ferromagnet, and we
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end up with the S-F-S configuration studied in Refs. [127–129] (see Fig. 6.2f). Notice that if
we had chosen to implement the boundary conditions in Eq. (6.13) using ferromagnetic terms,
we would end up with an F-S-F configuration for odd multiples of 2π , and ferromagnetic terms
throughout space for even multiple of 2π .

Following the results of Refs. [127–129], we conclude that the S-F-S and F-S-F con-
figurations found above give rise to parafermion zero-modes ξi, with i = 1,2, located at the
interfaces x = 0, l. These operators satisfy

ξ1ξ2 = ξ2ξ1ei π

m , (6.16)

and ξ 2m
i = 1. Eq. (6.15) implies that the spectrum is 4π-periodic as a function of ϕ .

We note that the interfaces correspond to the circular edges of the original annulus, so
that this line of arguments indicates that h/2e vortices in the FCSC system bind protected
parafermionic zero-modes.

Once our annular system is transformed into the setup presented in Fig. 6.2f for an odd
number of vortices, it is natural to ask whether we can control the relative phase between the
two effective superconducting order-parameters and measure the Josephson effect, which was
previously shown to be 4πm-periodic [128, 129].

Recall that the superconductors shown in Fig. 6.2f were introduced to impose the boundary
conditions, and in particular, do not correspond to the physical superconductor in proximity to
our system. Nevertheless, we argue that such an effective Josephson junction can be generated
by creating a physical Josephson junction in our system. This is done by considering a physical
weak link cutting the physical s-wave superconductor at a fixed radial coordinate into two
concentric annuli (see Fig. 6.1c). This allows us to control the relative superconducting phases
between the external and the internal parts of our system by connecting the two edges with an
external superconducting wire, through which flux is inserted. Notice that coupling between
electrons across the cut can effectively stitch the two parts of system, leading to a gapped
FCSC phase throughout the system (including the area above the cut).

Since the edges of our annular system correspond to the interfaces in the auxiliary config-
uration, we effectively control the relative phases between the two auxiliary superconductors
shown in Fig. 6.2f 1. Examining the quasi one dimensional regime, in which coupling be-
tween the two edge modes of our annular system is induced, the arguments above indicate that
the junction shown in Fig. 6.1c gives rise to a 4πm-periodic Josephson effect. Notice that the
radial width of the junction must be comparable to the correlation length in the bulk, allowing

1Notice that the phase differences in the effective and the physical Josephson junctions play a similar role
in changing the wave function of the low energy electron operators. This indicates that changing the phase
difference in the physical junction results in a phase difference in the effective junction as well.
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anyons to tunnel between the inner and the outer edges.

6.5 Bulk excitations

Clearly, the FCSC phase we construct is topologically ordered. While we leave the detailed
study of the bulk excitations to future studies, we anticipate that the topologically distinct bulk
excitations will be associated with the various low-energy sectors of the parafermionic edge
theory through the bulk-edge correspondence. The low energy sectors are generated by the
primary fields of the parafermion CFT, which can be labeled by Φ[k,k̄] [135], where the integers
k and k̄ are defined mod 4m, and k+ k̄ is even. In terms of these, the parafermion fields are
given by ψn = Φ[2n,0] and ψ̄n = Φ[0,2n] (with n = 1, · · · ,2m−1), and the spin operators σn are
given by σn = Φ[n,n].

However, in identifying the deconfined bulk excitations with the primary fields of the edge
CFT, we must exclude the operators which acquire a non-trivial phase as they wind around
the electron, which in our case is identified with the field ψm (or ψ̄m). In particular, since the
electron acquires a phase of π as it winds around a vortex, the corresponding field must be
associated with a confined excitation (i.e., the energy of two such excitations diverges as we
separate them 2 ). More generally, the phase associated with winding Φ[k,k̄] around the electron
ψm (ψ̄m) is given by γ[k,k̄] = πk (γ̄[k,k̄] = π k̄) [135]. This shows, for example, that while the
parafermion fields ψn are all deconfined in the bulk, the spin operators σn, with odd n, must
be confined.

2Notice that such confined excitation can be introduced to the system externally. For example, a vortex in a
px + ipy superfluid is confined, but it can be induced by applying an external effective magnetic field.



Chapter 7

Composite Weyl semimetal as a parent
state for three dimensional topologically
ordered phases

This chapter presents the results of our fifth project, presented in Ref. [73]. In this project, we
leverage the recently discovered duality between the 2+ 1-dimensional Dirac theory and the
theory of quantum electrodynamics (QED3) to propose strongly correlated fractional states in
3+1 dimensions.

7.1 Introduction

It has recently been discovered that a single (2+1) dimensional Dirac cone of weakly interact-
ing electrons is dual to the strongly interacting gauge theory QED3 for a single flavor of dual
fermions [138–142]. Subsequently, this fermionic duality was realized to be part of a larger
‘web of dualities’ [143–150]. A natural application of the fermionic duality is the study of
possible surface phases of 3D TIs, which feature a single electronic Dirac cone and can thus
equivalently be described as QED3 for dual fermions. This dual description is a natural ‘parent
state’ of various topologically ordered phases, such as the ‘T-Pfaffian’ which arises when dual
fermion form a BCS superconductor [151–154].

In this work, we leverage these insights to develop a strongly correlated parent state in
(3+1) dimensions, where emergent fermions couple to a dynamical gauge field, similar to the
(3+1) dimensional theory of quantum electrodynamics—QED4. This is achieved by combin-
ing the (2+1) dimensional duality with the mechanism of spontaneous interlayer coherence
of the emergent fermions[155, 156], which deconfines them in the third dimension. Conse-
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Figure 7.1: (a)A schematic depiction of the superlattice we study. The system is composed
of alternating topological and normal insulators. Each interface contains a single Dirac cone,
known to be dual to a QED3 theory describing neutral fermions coupled to an emergent gauge
field. We demonstrate that interactions can deconfine the neutral fermions, leading to a QED4
theory, from which non-trivial three-dimensional phases descend. (b) The phase diagram
describing the properties of the system as a function of the mass m and the amplitude ∆ of
the dual pairing terms. We show that the QED4 theory serves as a parent state for the dual
Weyl semimetal state and topologically ordered gapped phases. If the mass is large enough,
the system is in a Weak topological phase, with the dual fermions forming a band insulator
which is adiabatically connectable to a stack of Chern insulators.

quently, this emergent QED4 only arises as a consequence of strong interactions, unlike the
QED3 that constitutes an equivalent (dual) description of free Dirac fermions.

Despite this difference, pairing of emergent fermions has an analogous effect to that oc-
curring in (2+ 1) dimensions. In both cases, the emergent gauge field acquires a gap, lead-
ing to various fractionalized phases. Specifically, we will discuss gapless composite Weyl
semimetals, gapped topologically ordered phases, and symmetry-enriched topological phases
(SETs). The first of these—the ‘composite’ Weyl semimetal—is an electric insulator that fea-
tures Majorana-Weyl nodes of emergent fermions in the bulk. The composite Weyl semimetal
phase should be contrasted with the fractional chiral metal proposed in Ref. [64], which is not
insulating. Merging the Majorana-Weyl nodes results in a fully gapped phase with fractional
point-like and line-like excitations. In fact, the resulting phase is the 3D analog of the toric
code [157]. Finally, by carefully tracing the action of electronic symmetries onto these de-
grees of freedom, we can use the understanding of free fermion topological superconductors
to distinguish SETs, which may carry symmetry protected fractional surface states.
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7.2 The model

Our model consists of alternating thin layers of topological and normal insulators, as shown
in Fig. 7.1a. Such a configuration was previously used in Ref. [158] to construct a Weyl
semimetal phase [35–45]. The interfaces between adjacent layers are enumerated by the inte-
ger index z. In the simplest case, each interface contains a single Dirac cone, described by the
continuum action

S = i∑
z

∫
d2xdt Ψ̄zγµz (∂

µ − iAµ)Ψz , (7.1)

where Ψz =
(

ψz↑ ψz↓

)T
are Dirac electrons; Aµ are components of electromagnetic potential

with space-time index µ = 0,1,2; γ-matrices are represented as γ0z =σ1, γ1z =−i(−1)zσ2,γ2z =

i(−1)zσ3; and Ψ̄ = Ψ†γ0z. The theory possesses anti-unitary time reversal and particle-hole
symmetries of the form T ΨT −1 = iσ2Ψ and C ΨC−1 =σ1Ψ†, which are broken by non-zero
magnetic flux ∇⃗× A⃗ and chemical potential A0, respectively.

Each (2+1) dimensional Dirac theory can be equivalently described by a dual QED3 [138–

142], with dual Dirac fermions Ψ̃z =
(

ψ̃z↑ ψ̃z↓

)T
coupled to an emergent U(1) gauge field

aµ . The dual action for our multi-layer system is given by Sdual = ∑z
∫

d3xLdual,z

Ldual,z = iΨ̄zγµz
(
∂

µ − iaµ
z
)

Ψ̃z +
aµ,zεµνκ∂νAκ,z

4π
+ . . . , (7.2)

where the ellipsis denotes ‘generic’ terms such as a Maxwell action for a and short-range in-
teractions between the dual fermions. Importantly, the roles of particle-hole and time reversal
symmetries are interchanged in the dual formulation: T Ψ̃T −1 = σ1Ψ̃† and C Ψ̃C−1 = iσ2Ψ̃.
The single electron of the original theory corresponds to a 4π monopole in the gauge field,
which in turn binds two fermionic zero modes [143], one of which is occupied. In the contin-
uum, the 4π monopole therefore binds a dual fermion, in analogy to the familiar attachment
of two flux quanta in the conventional composite-fermion approaches.

Next, we couple the layers to form 3D phases, similar to the layer construction presented in
Ref. [121]. The simplest such coupling, direct inter-layer tunneling of electrons, involves the
insertion of 4π monopoles in the various layers, and therefore confines the gauge field, leading
to free fermion phases. We initially tune such couplings to zero and will allow them back at a
later stage. Non-trivial phases could easily arise if dual fermions (instead of electrons) were
able to tunnel between different layers. However, these are not local excitations and there is
no microscopic process that allows them to transfer between layers, i.e., dual fermions are
confined in the z direction. They may, however, become liberated when interactions between
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different layers generate strong inter-layer correlations.

7.3 Inter-layer coherence

To illustrate this mechanism we follow Ref. [155] and consider a simple density-density inter-
action term of the form Sint = ∑z

∫
d2xdtLint,z with Lint,z = u∑α=↑,↓ Ψ̃

†
z,αΨ̃z,αΨ̃

†
z+1,αΨ̃z+1,α .

Next, we use (dynamical) Hubbard-Stratonovich fields χα to decouple the interaction as

Lint,z = ∑
α=↑,↓

(
χz,αΨ̃

†
z,αΨ̃z+1,α +H.c.

)
+
|χz,α |2

u
. (7.3)

Notice that under a gauge transformation Ψ̃z→ Ψ̃zeiφz and aµ

j → aµ
z +∂µφz. Imposing gauge

invariance then requires that χz,α transforms as χz,α → χz,αei(φz−φz+1). It is convenient to write
χz,α = χ0

z,αe−ia3
z such that a3

z → a3
z +φz+1−φz under gauge transformations and the magnitude

χ0
z,α = |χz,α | is gauge invariant. For sufficiently strong interactions the system may enter

a phase with ⟨χ0
z,α⟩ = χ0 ̸= 0 where fluctuations of the magnitude

∣∣χ0
z,α
∣∣ are massive while

phase fluctuations remain gapless. The effective Lagrangian of Eq. (7.3) then becomes

Lint,z = χ0

(
e−ia3

z Ψ̃
†
z Ψ̃z+1 +H.c.

)
+

1
κ
(∂µa3

z )
2 , (7.4)

where the precise value of the coupling κ depends on details and is unimportant here. The
density-density interaction term thus induces coherence between the layers and generates dual
fermion tunneling. In Appendix B.1, we demonstrate this explicitly in a tractable coupled-
wire model. We note that since we no longer have independent gauge symmetries for each
layer, the gauge-field should be thought of as a 3D gauge field, with a3 defined above acting
as its z-component.

It is instructive to first analyze the system in a mean-field approximation where all four
components of a vanish. In this case, the model is non-interacting and the problem is reduced
to studying the band structure of the dual fermions. Since the band structure is equivalent to
the one studied in Ref. [158] (at the time-reversal and inversion symmetric point), we expect to
have a (3+ 1)-dimensional Dirac theory at low energies. Therefore, reintroducing the gauge
degrees of freedom, we expect to obtain the (3+ 1)-dimensional theory of Dirac fermions
coupled to a U(1) gauge field—QED4—described by the action

SQED4 = i
∫

d3xdt Ψ̄
′
Γµ (∂

µ − iaµ)Ψ̃
′+ . . . , (7.5)

where µ = 0, . . . ,3 is the spacetime index, Ψ̃′ is a 4-dimensional Dirac spinor, and Γµ are
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4×4 matrices satisfying the Clifford algebra. Notice that despite the isotropic appearance of
Eq. (7.5) the physical properties of this system are highly anisotropic. The coupling of the
physical electromagnetic field Aµ is the same as in Eq. (7.2) and A3 completely decouples
from SQED4 . A detailed derivation of this low-energy description is provided in Appendix
B.2. In what follows we turn to investigate the properties of this non-trivial fixed point and its
instabilities.

7.4 Inter-layer tunneling of electrons

While the QED4 state is not expected to describe a stable state, it is nevertheless natural
to ask about its fate upon including tunneling of electrons between neighboring layers. On
general grounds, we expect that building up the correlations required for inter-layer tunneling
of dual fermions will simultaneously suppress the electronic Green function. On the other
hand, QED4 is weakly coupled at long distances and the Green function of dual fermions is
essentially free. Following this reasoning, the dual fermion has a smaller scaling dimension
than the electron and we expect that the inter-layer coherent state is unstable against weak
electron tunneling, at least in some parameter range.

To support this expectation, recall that an operator that creates physical charge ne corre-
sponds to a 4πn monopole insertion Mn in the gauge theory [139–141, 143, 144]. Making use
of the fact that QED4 is free in the infrared, we find the monopole propagator〈

Mn(x)M†
n(0)

〉
∼ |x|−q2n2/4π2

. (7.6)

(See Ref. [159] and the Appendix B.4 for an alternative derivation.) The value of the non-
universal number q is set by the short-range interactions of the microscopic electrons. We take
this result to indicate that the scaling dimension of the physical electron in the emergent QED4

varies continuously, analogous to the case of Luttinger liquids in 1+1 dimensions. Hence, we
expect to find a range of parameters for which inter-layer tunneling of electrons is irrelevant.

The electronic conductivity of the QED4 state can easily be computed. In the absence
of electronic tunneling between layers, charge in each layer is conserved and the action is
independent of A3. Again assuming that dual fermions decouple from the gauge field, we
integrate out a to obtain the effective action ∝ ∑

2
α=0 (Aα)

2 for the electromagnetic vector
potential. It follows that the QED4 state is superconducting in each plane and insulating in
the z direction. Including irrelevant electron tunneling allows inter-layer currents and thus
reintroduces A3. The conductivity in the z direction then vanishes as ω → 0 with a non-
universal power law that is again related to the coupling q.



7.5 Composite Weyl semimetal 91

7.5 Composite Weyl semimetal

The QED4 fixed point described above holds only at a fine-tuned point in parameter space.
We now turn to study the phases resulting from perturbing this theory. First, we introduce the
perturbation

Sm = m∑
z

∫
d2xdt ¯̃

Ψ
′
zΨ̃z = m∑

z

∫
d2xdt Ψ̄zΨz , (7.7)

which acts as a mass term in the decoupled layer limit χ0 = 0. This term matches the
time-reversal breaking terms introduced in Ref. [158], which was shown to stabilize a Weyl
semimetal phase as long as m/χ0 is small enough. We therefore expect to obtain a low-energy
theory consisting of two Weyl fermions coupled to a gauge field. As we demonstrate in Ap-
pendix B.3, this is indeed the case, and the low energy action is given by

SWeyl = i
2

∑
β=1

∫
d3xdt Ψ̃

†
β

σ
β

µ

(
∂

µ − iaµ

j

)
Ψ̃β , (7.8)

where β enumerates the two Weyl cones, the Ψβ -fields are Weyl spinors, σ
β

µ = σµ for µ =

0, . . . ,2 and σ
β

3 = (−1)β σ3. Notice that while the two Weyl theories are technically equiva-
lent to a single Dirac theory, they are associated with degrees of freedom located at different
momenta kz =±cos−1

(
|m|
2χ0

)
, prompting us to regard them as separate theories.

Furthermore, notice that the dual fermion number is not a microscopically conserved quan-
tity, meaning that pairing terms are naturally generated. The simplest of these takes the form

S∆ = ∆∑
z

∫
d2xdt

(
Ψ̃ziσ2Ψ̃z +H.c.

)
. (7.9)

Such a term has two important effects: First, it provides a Higgs mass to the gauge field. In
addition, the low energy Weyl fermions are shifted to kz = ±cos−1

(√
m2−∆2

2χ0

)
. This means

that the composite Weyl semimetal phase survives as long as |∆| ≤ |m| and m2 ≤ 4χ2
0 +∆2

(see Fig. 7.1b for the phase diagram). We note that in the more generic case, where ∆ is not
the same in all layers, each Weyl cone splits into two Majorana-Weyl cones [160]. In such
cases, one can access an additional Majorana-Weyl semimetal phase, where two of the four
cones couple and become massive, resulting in only two gapless Majorana-Weyl cones.

Once the dynamical gauge field a⃗ is gapped, the electric current J⃗ ∝ ∇⃗× a⃗ is suppressed,
and the system becomes electrically insulating. However, there are still gapless neutral exci-
tations in the bulk whose contribution to the thermal transport is the same as for the original
electrons. We would like to compare this composite Weyl semimetal phase to the ‘composite
Dirac liquid’ (CDL), proposed to arise on the surface of a 3D topological insulator [61]. The
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CDL state arises from QED3 when the gauge degrees of freedom are gapped by the formation
of a dual-fermion superconductor, leaving behind a Dirac cone of neutral fermions. The Dirac
point is not protected by any symmetries and the CDL thus requires a certain amount of fine
tuning. In contrast, the composite Weyl semimetal represents a stable phase of matter.

7.6 Topologically ordered and symmetry enriched phases

Starting with the composite Weyl semimetal, one can readily access two distinct fully gapped
phases. The first phase, represented by the blue regions in Fig. 7.1b, is obtained when the two
Weyl nodes meet on the edge of the Brillouin zone and annihilate. The second phase, depicted
by the green regions in Fig. 7.1b, is obtained when the two Weyl points coincide at the origin.
As we demonstrate in Appendix B.5, the above indicates that the two phases are distinguished
by their topological properties, with one of them having a completely trivial band structure and
the other forming a 3D stacked quantum Hall state of dual fermions, referred to as a thermal
Hall insulator.

Regardless of the properties of band structure, when the system exhibits a pairing gap,
the gapped excitations consist of the dual fermions and vortex lines. As usual, when a dual
fermion encircles a vortex line, it acquires a phase of π . Therefore, our system hosts decon-
fined point- and line-like excitations, with non-trivial mutual statistics, i.e., it exhibits topolog-
ical order. In fact, it realizes the three-dimensional incarnation of the toric code [157], where
the two types of point-particles exhibit the same mutual statistics.

The topological order is correct for any gapped superconducting state. It is therefore nat-
ural to ask whether we can also stabilize phases associated with strong topological band in-
dices and non-trivial surface states. We note that the only topological class in 3D allowing
for topologically non-trivial superconducting phases is class DIII [47, 48], with time rever-
sal symmetry satisfying T 2 = −1. In the non-interacting limit, this class exhibits infinitely
many distinct topological phases, each of which is described by an integer valued topological
invariant. Interactions reduce the number of topologically distinct phases, leading to a Z16

classification [161–164]. The topologically ordered state discussed above has a ground state
degeneracy of eight on a three-dimensional torus. This degeneracy is consistent with time-
reversal symmetry, hinting that it might indeed be possible to enrich it with a DIII topological
band index.

In our case, the original time-reversal symmetry acts as an effective anti-unitary particle-
hole (or chirality) symmetry in the dual formulation. The presence of pairing terms leads to an
additional unitary particle-hole symmetry. Multiplying the two symmetries, we obtain an anti-
unitary time-reversal symmetry T̃ satisfying T̃ 2 = −1. Thus, as long as the physical time-
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reversal symmetry is preserved, the dual action indeed belongs to class DIII, and symmetry
enriched phases can arise.

If the system is in a phase with a non-zero strong invariant, the surface hosts an integer
number of symmetry protected Majorana cones, comprised of dual fermions.

7.7 QED4 at finite density

Finally, we want to briefly mention the possibility of ‘doping’ the emergent fermions to a non-
zero density by applying a magnetic field along the stacking direction. The (2+1)d duality
maps physical magnetic flux onto dual-fermion density and thus each layer features a Fermi
surface of dual fermions—essentially the composite Fermi liquid (CFL) that arises in the
half-filled Landau level. Upon forming inter-layer coherence, these two-dimensional CFLs
turn into a single three dimensional Fermi surface which may be more stable against various
instabilities than the Dirac theory. A closely related three-dimensional state of composite
Fermions (but without a Dirac dispersion) was envisaged in Ref. [155] as a possible description
of layered semimetals such as graphite under a strong magnetic field. Within our model, such
a state corresponds to introducing a gap to the emergent Dirac fermions that is smaller than
their chemical potential.



Chapter 8

Spin liquids from Majorana Zero Modes
in a Cooper Box

This chapter presents the results of our last project, presented in Ref. [74]. In this project, we
propose a path for realizing interacting spin models with semiconductor nanowires. We show
that these ideas can be used to realize systems with non-trivial criticality, as well as spin-liquid
phases.

8.1 Introduction

Quantum spin models are of paramount importance in condensed matter physics. While spin-
models were traditionally devised to study magnetically ordered materials, they are nowadays
known to exhibit highly non-trivial behavior, such as diverse critical phenomena and topolog-
ical order.

An important mathematical tool used to uncover these non-trivial properties is the fermion-
ization of the spins to Majorana degrees of freedom, which in a few notable cases leads to exact
solutions. Important examples are the Jordan-Wigner transformation [165], which allows for
exact solutions of spin-1/2 models, such as the XXZ and Ising models [166–168], as well as
the two-dimensional Yao-Kivelson (YK) model [169]. A more recent example is the Kitaev
transformation [170], originally used to solve the Kitaev honeycomb model and demonstrate
the emergence of non-Abelian spin-liquid behavior.

Recent strong evidence indicate the emergence of Majorana zero modes (MZMs) on the
edges of semiconductor nanowires with spin-orbit coupling, which are in proximity to an s-
wave superconductor [16–25]. When a few such MZMs are placed in a quantum dot with
strong Coulomb interactions, a so called Majorana-Cooper-Box or MZM island, is formed.
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Figure 8.1: (a) The basic hexon building block, consisting of three semiconductor nanowires.
The wires are assumed to the in the topological regime, in which each edge has a protected
Majorana zero mode. In the presence of strong charging energy, we demonstrate that each
hexon is equivalent to two spin-1/2 degrees of freedom. (b) By forming an array of hexons,
we effectively model spin chains. (c) The hexons can also be arranged in a 2D structure, giving
rise to the Yao-Kivelson model shown in Fig. (d).

The MZMs in the island can be mapped onto spin degrees of freedom. For example, consid-
ering four MZMs in an islands, each pair forms a fermion, thus generating four degenerate
states. Including the constraint on the total number of particles in the box due to the strong
Coulomb interactions, an effective two-level system–or a spin 1/2–is formed. Indeed, similar
ideas have been used to study the so-called "topological Kondo effect" [171–176], and realize
spin-liquid models [177–179]. Such models are of interest due to their promise as platforms
for fault tolerant quantum computing.

This approach is reciprocal to the common fermionization of spin models: instead of start-
ing with physical spins and mapping them to Majorana degrees of freedom through mathe-
matical transformations, we begin with physical MZMs and map them onto spins.

In this work we propose a different setup, where each box is made of three semiconducting
wires, and demonstrate that in the presence of a strong charging energy, two effective spin
degrees of freedom emerge at low energies. Due to the presence of six MZMs, we refer to
our building block as an “hexon” [180]. The hexon building blocks are shown to be highly
tunable, and in fact, controlling the coupling between different MZMs (e.g., by tuning local
chemical potential) allows us to fully determine the coupling between different spins and the
effective magnetic field they experience. If many such building blocks are arranged in a one-
dimensional (1D) line, or cover the two-dimensional (2D) plane, this allows us to simulate a
plethora of spin models in 1D and 2D.

To demonstrate the above, we present explicit realizations of 1D SU(2)-invariant models,
the XXZ model, the transverse field Ising model, and the 2D Yao-Kivelson spin-liquid model.
By modulating the distance between a specific pair of MZMs as a function of time and mea-
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suring the induced charge at a distance, we propose measurable imprints of gapless points in
these systems.

8.2 The hexon

The basic building block in our construction is the so-called hexon [180], illustrated in Fig.
8.1a. Each hexon is composed of three semiconductor nanowires with strong spin-orbit cou-
pling. The wires are proximity coupled to an s-wave superconductor. Applying a strong
Zeeman field drives the wires into the topological regime, in which protected MZMs reside
near the ends of each wire [16–25]. The Majorana zero modes are conveniently denoted by
the operators aα ,bα , with the indices α = x,y,z, as illustrated in Fig. 8.1a. The presence of
six Majorana zero modes leads to a degeneracy of 8.

Taking Coulomb blockade into account, and assuming that the charging energy EC is the
largest energy scale in play, we fix the charge, and therefore the parity, of the entire hexon by
controlling a back-gate voltage. At low energies, the parity of the entire hexon can be written
in terms of the MZMs as

P = ia1a2a3b1b2b3. (8.1)

Thus, by controlling the back-gate voltage, we can effectively apply the constraint P = 1 (or
similarly, P =−1), thus reducing the ground state degeneracy to 4.

To find a useful parametrization of the remaining 4-dimensional low energy subspace, we
define spin-1/2 operators according to [181]

Sx
a = iayaz, Sy

a = iaxaz, Sz
a = iaxay (8.2)

Sx
b = ibybz, Sy

b = ibxbz, Sz
b = ibxby. (8.3)

It can easily be checked that these are in fact spin-1/2 operators (i.e., they satisfy the relation
SlSm = iεklmSk + δlm), which commute with the total parity [Eq. (8.1)], and therefore do not
violate the parity-fixing constraint. The number of states indeed coincides with the degeneracy
of a two-spin system, and we find that at low energies the six MZMs are reduced to two
effective spin-1/2 degrees of freedom. In what follows, the effective spin degrees of freedom
will be used to design non-trivial spin models by engineering the coupling between different
MZMs.
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8.3 Coupling the spins

We start by studying the terms that arise from coupling the MZMs within the hexon. The first
of these arises when the lengths lα of the wires (see Fig. 8.1b) are made short enough such
that the Majorana wavefunctions at the two ends overlap. In this case we get terms of the form

H1 = i ∑
α=x,y,z

Jαaαbα , (8.4)

where the coupling constants Jα are controlled by the lengths lα . Notice that the sign of Jα

can also be tuned as the overlap between the MZM wave-functions generically changes sign
as a function of lα . Alternatively, by tuning the chemical potential in the wire, one controls the
localization length of the MZMs and therefore their coupling. Taking the constraint P = 1
into account, and using Eqs. (8.2) and (8.3), we can write these as

H1 = ∑
α=x,y,z

JαSα
a Sα

b . (8.5)

One can also generate a different set of terms by coupling MZMs of the same type (a with
a and b with b), e.g., by changing the distance between wires. This generates coupling terms
of the form

H2 = i ∑
αα ′

t̃αα ′ (aαaα ′+bαbα ′) . (8.6)

In terms of the spin operators, H2 can be written as

H2 = ∑
α

Bα (Sα
a +Sα

b ) , (8.7)

with Bα ∝ εαβγ t̃βγ .
To recapitulate, we find that each hexon is equivalent to two spins degrees of freedom, and

that the effective coupling between the two spins, as well as coupling to an external magnetic
field, can be controlled by tuning the coupling between the MZMs (for example, with gate
potentials). In what follows we use these hexon building blocks to form 1D and 2D interacting
spin models.
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8.4 Realizing SU(2)-invariant spin chains

Consider the array of hexons depicted in Fig. 8.1b. As we discussed above, these are equiva-
lent to an array of spins, labeled by S⃗ j,γ , where j enumerates the different hexon unit cells and
γ = a,b differentiates between the two spins in each unit cell.

We start by assuming that the distance between different wires is large such that the effec-
tive Zeeman field [Bα in Eq. (8.7)] vanishes, yet the lengths lα are small enough to generate
H1-type terms of the form

H1 = ∑
j

∑
α=x,y,z

JαSα
j,aSα

j,b, (8.8)

Coupling terms of the form Sα
j,bSα

j+1,a can additionally be generated by bringing different
hexons close to each other. This generates tunneling terms of the form

Htunneling = i ∑
α=x,y,z

t̃ ′α ∑
j

bα jaα j+1. (8.9)

These terms, however, alter the parity of the hexons and therefore do not commute with the
constraint. Under our assumption that the charging energy EC is the largest energy scale, the
tunneling terms in Eq. (8.9) thus scale down to zero. Nevertheless, we can form combina-
tions of these terms that commute with the constraint. The lowest order terms generated in
perturbation theory take the form

H ′1 = ∑
α=x,y,z

J′α ∑
j

Sα
j,bSα

j+1,a (8.10)

where J′α ∝
Π

α ′ ̸=α
t̃ ′
α ′

EC
.

At low energies, our model is therefore given by a combination of Eqs. (8.8) and (8.10).
For simplicity, we start by assuming that the system was tuned to be SU(2)-invariant, i.e.,
Jα = J, and J′α = J′. We further assume that J,J′ > 0.

Clearly, if J > J′, we get a fully gapped dimerized phase, in which the two spins corre-
sponding to each hexon form a singlet state. In the opposite regime where J′> J, the system is
again in a dimerized phase, now with adjacent spins originating from different hexons forming
singlet states.

The two above phases are topologically distinct, with the second state giving rise to a
protected decoupled spin on each edge. As such, we expect to find a critical point if we tune
J = J′. Indeed, at this point our model becomes the spin-1

2 Heisenberg model, known to be
dual to a 1D model of interacting fermions. The latter is described by the Luttinger-liquid
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fixed point Hamiltonian

HLL =
v

2π

∫
dx
[

K (∂xθ)2 +
1
K
(∂xϕ)2

]
, (8.11)

with the Luttinger parameter K = 1
2 [182], the spin operator Sz(x) = 1

π
∂xϕ , and [θ(x),ϕ(x′)] =

iπΘ(x− x′). The Luttinger parameter can be varied if the SU(2) symmetry is broken to U(1),
i.e., if one of the components Jα is not the same as the other two. Indeed, mutual capacitance
terms generically renormalize the Luttinger parameter [183]. Notice that we neglected higher
order tunneling terms as a renormalization group analysis indicates they are irrelevant.

8.5 Experimental signature

The above constitutes an example of realizing a critical spin model from the physical MZMs.
It is natural to ask whether one can measure imprints of the gapless spin model in the current
realization. Such an imprint is required to distinguish between gapless and gapped states, as
well as between gapless states described by different conformal field theories (CFTs).

Clearly, given that the charge degrees of freedom are gapped, one cannot use electronic
transport measurements. A possible route is then to use thermal conductance measurements
instead. While such measurements are possible, and were in fact used recently to detect im-
prints of the non-Abelian nature of the quantum Hall plateau at filling 5/2 [148, 184, 185],
they are difficult in practice.

Instead, we propose an alternative experiment in which a time-dependent gate modulating
the coupling between two specific MZMs is applied. If we choose these to be ax j0 and ay j0 (or
similarly bx j0 and by j0) in a specific unit cell, we obtain a time-dependent Hamiltonian of the
form Hpert = f (t)Sz(x0), where for simplicity we assume that f (t) =V0 cos(ωt +φ0).

To find imprints of the gapless nature of the underlying state, we propose to measure the
expectation value of Sz

j,a = iax jay j (or similarly Sz
j,b = ibx jby j) in a distant unit cell j, at later

times. We refer to this quantity as the induced parity of these MZMs. Performing linear
response, the value of Sz(x, t), i.e., the induced parity of the appropriate pair of MZMs at point
x and time t, is given by

⟨Sz(x, t)⟩=
∫

dt ′ f (t ′)χ(t− t ′,x− x0), (8.12)

with χ being the dynamic susceptibility: χ(t− t ′,x− x′) = i⟨[Sz(x, t),Sz(x′, t ′)]⟩Θ(t− t ′). As
we demonstrate in Appendix C, in a non-chiral critical point, where the (time-ordered) corre-
lation function takes the form G ∼ α4h/(x2− v2t2)2h (with α being the short distance cutoff,
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and h the conformal dimension), we obtain

⟨Sz(x, t)⟩= V0α4h

v2h+ 1
2

(
ω

|∆x|

)2h− 1
2

×ℜ

{
Bei(ωt+φ0)K1

2−2h

(
i
ω |∆x|

v

)}
(8.13)

where ∆x = x− x0, B is a complex dimensionless constant, and Kn(z) is the modified Bessel
function of the second kind. Using the asymptotic form Kn(z)∼

√
π

2ze−z, we obtain ⟨Sz(x, t)⟩∝
V0α4h

v2h
ω2h−1

|∆x|2h cos
[
ω

(
t− |∆x|

v

)
+ϕ0

]
at large distances, where ϕ0 is a constant phase. By mea-

suring the induced parity at a distance from the perturbation, we can thus get an imprint of
the critical nature of the transition, and in particular, directly measure the critical exponent h.
Moving away from the critical point, Eq. (8.13) becomes an exponential decay.

In our case, the Luttinger-liquid description in Eq. (8.11) implies that the Sz−Sz time or-
dered correlation function is described by h= 1/2, leading to ⟨Sz(x, t)⟩∝ V0α2

v|∆x| cos
[
ω

(
t− |∆x|

v

)
+φ0

]
(see Appendix C for details).

8.6 The transverse field Ising model

The flexibility of altering the various length scale in our setup allows us to realize a large set of
spin models which goes beyond the above SU(2) invariant chains. In what follows we provide
an explicit construction of another prominent spin chain - the transverse field Ising model -
defined by the Hamiltonian

HIsing = ∑
j

[
−JSz

jS
z
j+1 +hSx

j

]
. (8.14)

The first term can be generated similarly to the above: by making the length lz of the z-
type wires short enough and simultaneously bringing x and y type wires coming from adjacent
hexons closer to each other. If these terms are taken to have identical amplitudes, they generate
the first term in Eq. (8.14). In addition, assuming the distance between the y- and z-wires in
each hexon is made short, we generate H2-type terms, giving rise to the second term in Eq.
(8.14).

As is well known, the transverse field Ising model possesses two different phases. For
J > h, the ground state of the system spontaneously breaks the Sz→−Sz symmetry and the
spins collectively point in the ±z direction. In the opposite regime, where h > J, the state is
not in a symmetry broken phase, and is connectable to the state in which all the spins form an
eigenstate of Sx with eigenvalue -1. The above two phases are separated by a gapless critical
point at h = J, in which case the effective spin chain is described by an Ising fixed point with
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central charge c = 1
2 [186].

To probe this critical point, we can repeat the above experiment where a local time depen-
dent gate modulates the z component of the magnetic field at point x0, and a charge probe at
point x effectively measures the induced Sz(x, t). Since Sz can be identified with the σ primary
field of the Ising CFT at low energies, its correlation function scales with h = 1/16. We can
find the induced parity by plugging this into Eq. (8.13). The dependence of the parity on the
distance and frequency provides a direct imprint of the non-trivial CFT.

8.7 The 2D Yao-Kivelson spin liquid

In the above analysis, we have demonstrated that the hexon building blocks provide a fruitful
playground for realizing 1D spin chains. As we argue now, the same ideas can be applied
to 2D spin models. To demonstrate this, we explicitly construct the so-called Yao-Kivelson
model [169], which realizes a non-Abelian spin-liquid state.

To do that, we sort the hexons in structures similar to Fig. 8.1c. Notice that the labels x,y,z
of the MZMs are now alternating. In each hexon, we assume that the colored wire is made
short and therefore induces Sα

a Sα
b -type terms. Correlated tunneling terms between different

hexons also generate Sα
a Sα

b -type terms, with α determined by geometry - i.e., α is chosen
such that Πα ′ ̸=α t̃ ′

α ′ is maximized. The resulting dominating terms are shown in Fig. 8.1c in
terms of the MZMs and in terms of the spin degrees of freedom in the inset.

If many such building blocks are connected in a way that covers the 2D plane, we obtain
the decorated honeycomb lattice geometry, shown in Fig 8.1d, where each link is given a label
α , stating the dominating SαSα term. The resulting spin Hamiltonian is identical to the YK
Hamiltonian, known to generate a non-Abelian spin liquid state in the so-called B-phase (as
long as the coupling at the x′,y′, and z′ links is not too large), which in addition spontaneously
breaks time reversal symmetry. The Abelian A-phase of the Kitaev honeycomb model can
also be realized, for example, if we take the z′ coupling to be much larger than x′,y′. Other
proposals for realizing this phase were given in Refs. [178, 179]. The advantage of the current
proposal is the ability to control all the coupling terms with gate potentials.

Within the B-phase, the edge of the sample gives rise to a chiral Ising CFT, similar to the
edge of a p+ ip superconducting state, which can be constructed from arrays of Majorana
wires as well [52, 71]. As opposed to the p+ ip superconducting state, however, the resulting
state is topologically ordered, with the σ -particle being deconfined. We note that one can
obtain the above spin-liquid from the p+ ip superconducting state by condensing h/e vortices
[152].

In order to measure imprints of the gapless edge, we again repeat the experiment above on
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the edge. As shown in Appendix C, the induced Sz is given by

⟨Sz(x, t)⟩=V0
ω2h−1α2h

v2h cos
[

ω

(
t− ∆x

v

)
+ϕ0

]
, (8.15)

with h being the smallest dimension among the operators excited by Sz. In contrast to the 1D
case, here the perturbation operates on a chiral edge, and therefore cannot act as the σ primary
field on that edge alone.



Chapter 9

Discussion

Throughout this thesis, we have studied topologically ordered phases of matter. The inherent
role played by interactions makes these phases extremely difficult to analyze theoretically. In
particular, a complete classification of topologically ordered phases does not exist.

A central part of my PhD focused on the coupled-wire approach, which is an efficient
machinery allowing us to write tractable models for topologically ordered phases. As we have
demonstrated throughout this thesis, it can be used to write tractable models for a variety of
topologically ordered and symmetry enriched phases in two- and three-dimensions.

It would be interesting to ask whether the same approach can be used to more generally
classify topological orders in two-dimensions. This can be done if we start with an array of
electronic wires, and tune each unit cell to a critical point described by a general CFT, denoted
by C , with the set of primary fields O i

R/L (where i enumerates the primary fields associated
with C ).

To construct a topologically ordered state, we couple different wires such that a chiral ver-
sion of C resides on the edge. Such a coupling takes the form O∗†R, jO

∗
L, j+1, for some primary

field O∗ (see the lower section of Fig. 2.1 for a schematic depiction of these terms). An impor-
tant subtlety arises when we note that these terms must be made from local electronic terms,
which in most known cases means that the fields OR/L themselves represent local electron
fields. In such a case, to satisfy the fermionic anti-commutation relations, the chiral field OR/L

coupled between different unit cells must have a dimension of the form n/2, with n being an
odd integer.

Once the phase has been constructed, the bulk excitations can be studied through the bulk-
edge correspondence, whereby the primary fields of the edge CFT can be associated with
bulk excitations. In addition, the statistics of these excitations can be deduced directly from
the edge CFT. Notice, however, that primary fields which have a non-trivial statistics with the
electron field must represent confined bulk excitations, otherwise the many-body wavefunction
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would be multi-valued.
As an example of this scheme, let us discuss the construction of two closely related, yet

very different, states of matter: the p+ ip superconductor and the Moore-Read quantum Hall
state. The first of these is not topologically ordered, and has a chiral Ising CFT on the edge.
The latter is a non-Abelian topologically ordered state, and also possesses an Ising edge theory
(in addition to a bosonic charge mode). One can then ask how two states with such similar
edge theories can have such diametrically different bulk properties, given the bulk-edge cor-
respondence.

The answer lies in the identification of the electron field. In the p+ ip superconductor,
the electron field is simply given by the ψ-operator of the Ising CFT. Noting that the other
non-trivial primary field of the Ising CFT - the σ operator - has a non-trivial statistics with ψ ,
it must then be confined in the bulk. In this case, the spectrum of deconfined excitations is
clearly not rich enough to result in topological order.

The Moore-Read state is different in that the ψ field does not represent the local electron.
Instead, the local electron can be written as Ψel = ψeiφ , where φ is the bosonic charge mode
satisfying [φ(x),φ(x′)] = 2πisgn(x− x′). While the σ operator again has a non-trivial statis-
tics with the electron, we can construct a primary operator of the form ξqh = σei φ

4 (describing
a quasihole excitation), whose statistics with the electron can be verified to be trivial. Such
operators are therefore associated with deconfined excitations which have a non-trivial statis-
tics and give rise to topological order. This demonstrates that very similar edge CFTs can be
associated with vastly different bulk properties, given different identifications of the electron
field.

The above discussion suggests that a classification of a large set of topological orders can
be reduced to classifying all CFTs containing candidate electronic fields (having the appropri-
ate conformal dimensions). In CFTs that contain more than one such candidate field, distinct
topological phases generally arise. Within the approach described above, the considerable
amount of knowledge on conformal field theories in 1D can be used to (partially) classify
topological orders.

Note that the above approach fails to describe topologically ordered phases which do not
have an electron operator, such as spin liquid states. For example, the Kitaev honeycomb
model, again gives rise to an Ising CFT on the edge, but now the electron does not appear in
the low energy edge theory. In this case, there are no limitations on the spectrum of deconfined
excitations, and the state is topologically ordered.
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Appendix A

Appendix: Fractional chiral
superconductors

A.1 The renormalization group equations of the self-dual
Sine-Gordon model

A.1.1 The ε expansion

The Hamiltonians describing either the inter- and intra- wire coupling terms, discussed in
chapter 6, can be written as

H =
∫

dx
[

1
2πm

(∂xη1)
2 +

1
2πm

(∂xη2)
2 +

B̃
a2 cos(η1−η2)+

∆̃

a2 cos(η1 +η2)

]
,

where η1 (η2) is a right (left) moving mode satisfying[
η j(x),η j(x′)

]
= mπi(−1) jsign

(
x− x′

)
,

and the units were chosen such that the Fermi-velocity is v = 1. Specifically, in chapter 6, the
coefficients were tuned to the self dual line, such that B̃ = ∆̃.

To write the Hamiltonian in a more convenient form, we define

ϕ =
η1−η2

2
√

πm

θ =
η1 +η2

2
√

πm
.
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The commutation relations of these fields are given by[
ϕ(x),θ(x′)

]
= iΘ(x− x′).

In terms of these, the Hamiltonian takes the form

H =
∫

dx
[
(∂xθ)2 +(∂xϕ)2 +

B̃
a2 cos

(
2
√

πmϕ
)
+

∆̃

a2 cos
(
2
√

πmθ
)]

.

We next wish to isolate the explicit cutoff dependence by writing the cosines in terms of
their normal-ordered versions:

cos
(
2
√

πmϕ
)
=: cos

(
2
√

πmϕ
)

: e−2mπ⟨ϕ2⟩

cos
(
2
√

πmθ
)
=: cos

(
2
√

πmθ
)

: e−2mπ⟨θ 2⟩,

where the averages are taken with respect to the quadratic part of the Hamiltonian.
Denoting the small distance cutoff by a and the large distance cutoff by L, we find that

e−2mπ⟨ϕ2⟩ = e−2mπ⟨θ 2⟩ =
(a

L

)m
.

Therefore, the Hamiltonian can be written in the form

H =
∫

dx
[
(∂xθ)2 +(∂xϕ)2 .

+
B̃
L2

(a
L

)m−2
: cos

(
2
√

πmϕ
)

: +
∆̃

L2

(a
L

)m−2
: cos

(
2
√

πmθ
)

:
]

In performing the renormalization group, we quantify the dependence of the coefficients
on l = log L

a .
At tree level, we simply use the explicit cutoff dependence of the coefficients to calculate

dB̄
dl ,

d∆̄

dl , with B̄ = B̃
( a

L

)m−2
, ∆̄ = ∆̃

( a
L

)m−2. The resulting tree level RG equations are given by

dB̄
dl

= (2−m) B̄

d∆̄

dl
= (2−m)∆̄,

giving a flow to weak coupling for m > 2. This is true in particular at the self-dual point
B̃ = ∆̃ = λ̃ we wish to focus on.

Clearly, if a flow to large coupling is to occur for large λ , it must result from higher order
terms. The next possible non-vanishing correction to the RG equation of λ is of order λ 3,
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as the second order correction vanishes at the self-dual line. Indeed, if the λ 3 term has a
positive coefficient, it induces a flow to large couplings for large λ . However, for such a term
to overcome the negative contribution of the first order term, λ should be of order 1 (assuming
the coefficients are of order 1 and recalling that in our model m = 3,5, etc.). Such a situation
steps beyond the range of validity of the perturbative RG analysis.

To overcome the above technical difficulty, we study the situation in which m is slightly
above its marginal value: m = 2+ ε , with ε ≪ 1. In this case, the negative first order contri-
bution is proportional to ε:

dB̄
dl

= −εB

d∆̄

dl
= −ε∆,

and therefore, if the third order contribution is positive, the critical point between the two
regimes is controlled by the small parameter ε and is therefore expected to be within the range
of validity of the perturbative RG analysis. Indeed, we will find such a critical point satisfying
λc ∝

√
ε.

The critical point found for small ε indicates that a similar critical point exists for ε = 1
as well, above which the coupling constants flows to large coupling (assuming no additional
critical points are induced as ε is increased from 0 < ε ≪ 1 to ε = 1).

We next turn to explicitly derive the form of the third order RG equations. The analysis
presented below closely parallels the analysis presented in Ref. [131].

A.1.2 Third order RG equations and the phase diagram

To calculate the higher orders of the renormalization group equations, we generally write the
partition function as

Z =
∫

Dϕe−S0−S1,

with

S0 = 1
2

∫
dτdx

[
(∂τϕ)2 +(∂xϕ)2

]
.

S1 =
∫ dτdx

L2

[
B̄ : cos

(√
8π (1+δB)ϕ

)
: +∆̄ : cos

(√
8π (+δ∆)θ

)
:
]
,
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where θ is related to ϕ according to the condition:

i∂µϕ = ε
µν

∂νθ . (A.1)

In addition, we have defined B̄ = B̃
( a

L

)2δB , ∆̄ = ∆̃
( a

L

)2δ∆ .
In order to follow the strategy outlined above, we assume δB and δ∆ are small. As these

parameters flow as well, we will write the third order RG equations for B̄, ∆̄,δB,δ∆. Once
these are derived, we will focus on the self-dual line defined according to B̄ = ∆̄ = λ̄ and
δB = δ∆ = ε

2 .
To derive the RG equations, we expand the partition function in orders of S1:

Z =
∫

DϕDθe−S0

(
1−SI +

1
2

S2
I −

1
6

S3
I + · · ·

)
. (A.2)

Next, we will use the Operator Product Expansions (OPEs) of the resulting high orders to get
corrections to the original action.

Taking only the first order into account, we get the contribution

dB̄
dl

= −2δBB̄

d∆̄

dl
= −2δ∆∆̄.

To second order, terms of the form B̄2 and ∆̄2 renormalize the Kinetic term. Notice that we
discard the non-singular term of order B̄∆̄, which results in an irrelevant term.

We first calculate the B̄2 component of S2 =−1
2S2

I :

− B̄2

2

∫
d2x1d2x2L−4 : cos

(√
8π (1+δB)ϕ (⃗x1)

)
:: cos

(√
8π (1+δB)ϕ (⃗x2)

)
: .(A.3)

In order to calculate the OPE [131], we use the definition of normal ordering to write

: cos
(√

8π (1+δB)ϕ (⃗x1)
)

:: cos
(√

8π (1+δB)ϕ (⃗x2)
)

:

=e8π(1+δB)⟨ϕ2⟩ cos
(√

8π (1+δB)ϕ (⃗x1)
)

cos
(√

8π (1+δB)ϕ (⃗x2)
)
.

This can be rewritten as

1
2

e8π(1+δB)⟨ϕ2⟩
[
cos
(√

8π (1+δB){ϕ (⃗x1)+ϕ (⃗x2)}
)
+ cos

(√
8π (1+δB){ϕ (⃗x1)−ϕ (⃗x2)}

)]
.

Writing the two cosines in terms of their normal ordered versions, we get
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1
2

[
: cos

(√
8π (1+δB){ϕ (⃗x1)+ϕ (⃗x2)}

)
:

1
c(⃗x1− x⃗2)

+ : cos
(√

8π (1+δB){ϕ (⃗x1)−ϕ (⃗x2)}
)

: c(⃗x1− x⃗2)
]

with

c(⃗x1− x⃗2) = e8π(1+δB)⟨ϕ (⃗x1)ϕ (⃗x2)⟩ =

(
|⃗x1− x⃗2|

L

)−4(1+δB)

.

The first term results in irrelevant terms, and is therefore ignored. The second term is domi-
nated by the region in which the two points x⃗1 and x⃗2 are close to each other. This allows us
to approximate

cos
(√

8π (1+δB){ϕ (⃗x1)−ϕ (⃗x2)}
)
≈ 1−4π(1+δB)(ϕ (⃗x1)−ϕ (⃗x2))

2

= 1−4π(1+δB)((⃗x1− x⃗2) ·∇ϕ (⃗x))2 ,

where x⃗ is the center of mass coordinate. Plugging this back into Eq. (A.3), and performing
the integral over the relative coordinate x⃗1− x⃗2, we get a correction of the form

2π
2 log

L
a

B̄2 (1+δB)

[
1
2

∫ (
(∂xϕ)2 +(∂τϕ)2

)
d2x
]
.

Similarly, the ∆̄2 terms

: cos
(√

8π (1+δ∆)θ (⃗x1)
)

:: cos
(√

8π (1+δ∆)θ (⃗x2)
)

:= (A.4)

1

4
(
|⃗x1−⃗x2|

L

)4(1+δ∆)

(
2−4π (1+δ∆) |⃗x1− x⃗2|2

[
(∂xθ (⃗x))2 +(∂τθ (⃗x))2

])
. (A.5)

Using Eq. (A.1) and integrating over the relative coordinate, we obtain the correction

−2π
2 log

L
a

∆̄
2 (1+δ∆)

[
1
2

∫ (
(∂xϕ)2 +(∂τϕ)2

)
d2x
]
.

Taken together, the second order corrections are given by

S2 = 2π
2 log

L
a

{
B̄2 (1+δB)− ∆̄

2 (1+δ∆)
}[1

2

∫ (
(∂xϕ)2 +(∂τϕ)2

)
d2x
]
.

The second order term clearly renormalizes the kinetic part of the action.
The third order contributions are given by a combination of Sa

3 =
1
6S3

1 and Sb
3 = S1S2 (the
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latter contribution arises when one re-exponentiates the partition function in Eq. A.2).
We first look at the Sa

3-term. The corrections of the type B̄3 and B̄∆̄2 renormalize the B-
term while terms of the form ∆̄3 and ∆̄B̄2 renormalize the ∆-term. Let us first look at the B̄3

order term:
1
6

B̄3
∫

Π
3
n=1

[
d2xn

L2 : cos
(√

8π (1+δB)ϕ (⃗xn)
)

:
]
.

Using the OPE and dropping the non-singular term, we get the correction [131]

B̄3

8L6

∫
d2x1d2x2d2x3 : cos

(√
8π (1+δB)(ϕ (⃗x1)+ϕ (⃗x2)−ϕ (⃗x3))

)
:

×

(
L2 |⃗x1− x⃗2|2

|⃗x1− x⃗3|2 |⃗x2− x⃗3|2

)m

.

Clearly, the most dominant contributions arise when two coordinates approach each other:
either x⃗1 → x⃗3, or x⃗2 → x⃗3. However, these divergences are disconnected and are therefore
discarded. Thus, the only singular contribution arises when the three different coordinates
approach each other. Taking this into account, we approximate

: cos
(√

8π (1+δB)
(

ϕ (⃗x1)+ϕ (⃗x2)−ϕ(x⃗3)
))

:≈: cos
(√

8π (1+δB)ϕ (⃗x)
)

:,

where x⃗ is the center of mass coordinate, and therefore

1
8L6

∫
d2x1d2x2d2x3 : cos

(√
8π (1+δB)ϕ (⃗x)

)
:

(
L2 |⃗x1− x⃗2|2

|⃗x1− x⃗3|2 |⃗x2− x⃗3|2

)2

.

Integrating over the relative coordinates, and subtracting disconnected terms, we find the cor-
rection [131]

2π2B̄3

L2

[
log
(

L
a

)]2 ∫
d2x : cos

(√
8π (1+δB)ϕ (⃗x)

)
: .

Similar considerations show that the B̄∆̄2 term provides a contribution of the form

π2B̄∆̄2

L2

[
log
(

L
a

)
−2
[

log
(

L
a

)]2
]∫

d2x : cos
(√

8π (1+δB)ϕ (⃗x)
)

: .
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The remaining contribution is of the form Sb
3. The contribution to the B-term is given by

2π
2 log

L
a

B̄
{

B̄2 (1+δB)− ∆̄
2 (1+δ∆)

}
×
[

1
2

∫
d2x1d2x2µ

2
(
(∂xϕ (⃗x1))

2 +(∂τϕ (⃗x1))
2
)

: cos
(√

8π (1+δB)ϕ (⃗x2)
)

:
]
.

Keeping only the third orders in the various scaling parameters, and using the corresponding
OPE, we get

−2π
2
(

log
L
a

)2

B̄
{

B̄2− ∆̄
2}∫ d2x : cos

(√
8π (1+δB)(ϕ (⃗x))

)
: .

Analogous corrections can be derived for the ∆-field.
Summing the above corrections, we find that the renormalized action is given by

S = SI +2π
2 log

L
a

{
B̄2 (1+δB)− ∆̄

2 (1+δ∆)
}[1

2

∫ (
(∂xϕ)2 +(∂τϕ)2

)
d2x
]

+
π2B̄∆̄2

L2 log
(

L
a

)∫
d2x : cos

(√
8π (1+δB)ϕ (⃗x)

)
:

+
π2∆̄B̄2

L2 log
(

L
a

)∫
d2x : cos

(√
8π (1+δ∆)θ (⃗x)

)
: .

Based on the above, the RG equations for the coefficients of the cosine terms are given by

dB̄
dl

= −2δBB̄+π
2B̄∆̄

2

d∆̄

dl
= −2δ∆∆̄+π

2
∆̄B̄2.

The correction to the Kinetic term can be eliminated by rescaling the ϕ and θ -fields. This
induces a change in the variables δB, δ∆, leading to the RG equations:

dδB

dl
= −2π

2(1+δB)
[
B̄2 (1+δB)− ∆̄

2 (1+δ∆)
]

dδ∆

dl
= −2π

2(1+δ∆)
[
∆̄

2 (1+δ∆)− B̄2 (1+δB)
]
.

Rescaling B̄′ = π2B̄, ∆̄′ = π2∆̄, we finally write the RG equations

dB̄′

dl
= −2δBB̄′+ B̄′∆̄′2

d∆̄

dl
= −2δ∆∆̄

′+ ∆̄
′B̄′2
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Figure A.1: The phase diagrams for (a) ε = 0.2 and (b) ε =−0.2. The red region corresponds
to a ∆-dominated phase, the blue region corresponds to a B-terms phase, and the green regions
correspond to gapless states.

dδB

dl
= −2(1+δB)

[
B̄′2(1+δB)− ∆̄

′2(1+δ∆)
]

dδ∆

dl
= −2(1+δ∆)

[
∆̄
′2(1+δ∆)− B̄′2(1+δB)

]
. (A.6)

Fig. A.1 presents the phase diagram resulting from the solution of the RG equations shown
in Eq. A.6. Specifically, the different colors represent different phases based on the flow
equations: The red regions represent a ∆-dominated phase, the blue region represents a B-
dominated phase, and the green regions represent a gapless state. Figure A.1a (A.1b) were
generated by studying the properties of the RG equations for various initial values of B̄′, ∆̄′

and δB = δ∆ = ε

2 , with ε = 0.2 (ε =−0.2) .

A.1.3 Studying the self-dual line

Focusing on the self-dual line B̄′ = ∆̄′ = λ̄ , δB = δ∆ = ε/2, we get a single RG equation

dλ̄

dl
=−ελ̄ + λ̄

3,

accompanied by dε

dl = 0.
We immediately find a critical point at λ̄ =

√
ε , above which a flow to large λ̄ ensues.

This shows that if the coupling constants in the self-dual theory studied in chapter 6 are
large enough, the cosine terms indeed flow to large coupling. In particular, a multicritical
point separates the two regimes.



A.2 The scaling dimension of the local electron fields 124

A.2 The scaling dimension of the local electron fields

In this section, we demonstrate that the scaling dimension of the electron fields α̃nR(x), β̃nL(x)
remains m/2 in the presence of the intra-wire interacting term, which is taken to the critical
point ∆̃ = B̃ = λ :

H̃∆ + H̃B = λ i
∫

dxβ̃nRα̃nL. (A.7)

We first note that since α̃nR(x) and β̃nL(x) commute with the above interacting Hamiltonian,
they remain right and left moving fields, respectively. To demonstrate this, we write the equa-
tions of motion of α̃nR(x):

∂

∂τ
α̃nR(x,τ) = [H, α̃nR(x,τ)] .

The Hamiltonian is composed of the kinetic chiral Luttinger liquid Hamiltonian and the inter-
acting Hamiltonian written in Eq. A.7. Since α̃nR(x) commutes with the latter, we only need
to calculate the commutation with the kinetic part,

HK =
v

4πm
lim
ε→0

∫
{∂ηnR(x)}{∂ηnR(x+ ε)} ,

where we have used point splitting regularization. Since, by definition, α̃nR(x)= eiηnR +e−iηnR ,
we calculate the commutation relation with each vertex operator separately:[

H,e±iηnR(x)
]

=
v

4πm
lim
ε→0

∫
dx′
[{

∂ηnR(x′)
}{

∂ηnR(x′+ ε)
}

e±iηnR(x)− e±iηnR(x)
{

∂ηnR(x′)
}{

∂ηnR(x′+ ε)
}]

= e±iηnR(x) v
4πm

lim
ε→0

∫
dx′
[
e∓iηn,R

{
∂ηnR(x′)

}{
∂ηnR(x′+ ε)

}
e±iηnR(x)−

{
∂ηnR(x′)

}{
∂ηnR(x′+ ε)

}]
.

Using the commutation relations[
ηnR(x),∂ηnR(x′)

]
=−2πimδ (x− x′)

and the Baker-Campbell-Hausdorff formula, we write

e∓iηn,R
{

∂ηnR(x′)
}

e±iηnR(x) = ∂ηnR(x′)∓ i
[
ηnR(x),∂ηnR(x′)

]
= ∂ηnR(x′)∓2πmδ (x− x′),

and therefore [
H,e±iηnR(x)

]
=∓ve±iηnR(x)∂ηnR(x) =−iv∂e±iηnR(x).
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This gives us the equation of motion

∂

∂τ
α̃nR(x,τ) =−iv

∂

∂x
α̃nR(x,τ).

Defining z = x+ ivτ, we may write the above as ∂

∂ z̄ α̃nR(x,τ) = 0.
This shows that α̃nR(z) remains a right mover in the presence of the interacting Hamilto-

nian A.7. Similarly, β̃nL satisfies ∂

∂ z β̃nL(x,τ) = 0, and is therefore a left mover. We note that
the above analysis cannot be repeated for the fields α̃nL and β̃nR which do not commute with
the interacting Hamiltonian, and are therefore not chiral.

Using the above result, we now turn to calculate the propagator of the remaining chiral
fields and show that all corrections to the λ = 0 limit vanish identically. For example, cal-
culating the propagator g(z− z′) = ⟨α̃nR(z)α̃nR(z′)⟩, and treating the interacting Hamiltonian
shown in Eq. A.7 perturbatively, we can write the correction to any order p as

δgp(z− z′) ∝ (λ i)p
〈

α̃nR(z)α̃nR(z′)Π
p
i=1

∫
d2ziβ̃nR(zi, z̄i)α̃nL(zi, z̄i)

〉
0
. (A.8)

Since the expectation value is done with respect to the Kinetic Hamiltonian, we can treat
α̃nL as a function z̄ only and β̃nR as a function of z. Furthermore, we can use the symmetries
of the Kinetic Hamiltonian: First, we know that under rotations, z→ zeiθ , z̄→ z̄e−iθ , the fields
transform as α̃nR(z)→ α̃nR(z)e−iθm/2, α̃nL(z̄)→ α̃nL(z̄)eiθm/2 (and the same relations for the
β -fields). This leads to the condition

δgp

[(
z− z′

)
eiθ
]
= e−iθm

δgp
[
z− z′

]
,

which is satisfied if δgp ∝ (z− z′)−m.

Under scale transformations, given by z→ zd, z̄→ z̄d, the fields transform as α̃nR(z)→
α̃nR(z)d−m/2, α̃nL(z̄)→ α̃nL(z̄)d−m/2 (and similarly for the β̃ -fields). In this case we get the
condition δgp [(z− z′)d] = d−m+p(2−m)δgp [z− z′] , which is satisfied if δgp ∝ (z−z′)−m+p(2−m).

Clearly, we have reached a contradiction, which can only be solved if δgp [z− z′] = 0 for any
p > 0. This shows that all corrections to the propagator calculated in the absence of the inter-
acting term vanish, and the scaling dimension of α̃nR and β̃nL therefore remains m/2.

We note that as the fields β̃nR and α̃nL are no longer chiral, the full propagator is not a
holomorphic (or antiholomorphic) function, and the entire argument fails, as expected.



Appendix B

Appendix: Composite Weyl semimetal as
a parent state for three dimensional
topologically ordered phases

B.1 Inter-layer coherence through a tractable model

B.1.1 The coupled-wire model

When constructing the QED4 state, we relied on the formation of spontaneous inter-layer
coherence, which in turn allowed us to write inter-layer tunneling of dual fermions. In this
section, we go beyond the mean-field approach presented in chapter 7 and demonstrate the
formation of inter-layer coherence through a tractable coupled-wire model.

The interfaces in our superlattice structure form two-dimensional planes, and will hence-
forth be referred to as layers. In what follows, each layer is modeled by an array of coupled
wires [142]. Each wire hosts a chiral electronic mode, allowed to tunnel between adjacent
wires. The interfaces form two-dimensional planes, and will henceforth be referred to as lay-
ers. The wires in each layer are enumerated by the index y, the interfaces are enumerated by
the index z (see Fig. B.1a), and the electronic annihilation operators are given by χy,z. The
Hamiltonian of the decoupled chiral wires is given by

Hwires =−iv∑
yz
(−1)y+z

∫
dxχ

†
y,z∂xχy,z, (B.1)
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Figure B.1: (a) A schematic depiction of our model, where the dual Dirac fermions in each
layer are represented by an array of coupled wires. Here, the symbol # denotes a left mover,
while ⊗ denotes a right mover. (b) Coherence between different layers is induced when〈

γ̃
†
yz+γ̃y,z+1,+

〉
(blue) and

〈
γ̃

†
yz−γ̃y,z+1,−

〉
(red) acquire expectation values for odd and even

z, respectively. Then, four-fermion terms of the form shown by the arrows yield tunneling of
χ̃ across layers.

and the tunneling terms within each layer take the form

Hhop = t ∑
yz
(−1)y+z

∫
dx
(

χ
†
y,zχy+1,z +H.c.

)
. (B.2)

Together, Hwires and Hhop generate a 2D Dirac dispersion in each layer, and can thus be
used to model our superlattice system. As demonstrated in Ref. [142], we can explicitly define
non-local dual fermion fields, χ̃y,z, minimally coupled to a dynamical U(1) gauge field, such
that each layer is described by a QED3 of dual fermions. For simplicity, we start by ignoring
the gauge field. It will be reintroduced in the end of the construction by imposing gauge
invariance.

In terms of the dual degrees of freedom, the Hamiltonian of the decoupled layers is given
by

Hwires = iṽ∑
yz
(−1)y+z

∫
dxχ̃

†
y,z∂xχ̃y,z, (B.3)

Hhop = t ∑
yz
(−1)y+z

∫
dx
(

χ̃
†
y,zχ̃y+1,z +H.c.

)
. (B.4)

The non-local nature of the dual fermions does not allow us to write inter-layer tunneling.
To simplify the derivation, it is expedient to artificially enlarge the unit cell [61, 142] such

that each mode in the original layers is replaced by three chiral fermion modes γ̃y,z,−, χ̃y,z,γ̃y,z,+

(see Fig. B.1a). The corresponding Hamiltonian is

Hhop = ∑
yz
(−1)y+z

∫
dx
[
−γ̃

†
y,z,−χ̃y,z + χ̃

†
y,zγ̃y,z,+− γ̃

†
y,z,+γ̃y+1,z,−+H.c.

]
.

As we now demonstrate, interaction terms for the γ̃-fields can induce coherence between
adjacent layers, which in turn generates inter-layer tunneling of the χ̃-fields.
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B.1.2 Inter-layer coherence

To make adjacent layers coherent, we introduce a local interaction of the form

Hcoh = ∑
odd z

Ho
coh,z + ∑

even z

He
coh,z,

with

Ho
coh,z = u∑

y

∫
dx
[
γ̃

†
yz+γ̃y,z+1,+γ̃

†
y+1,z+1,+γ̃y+1,z,++H.c.

]
,

He
coh,z = u∑

y

∫
dx
[
γ̃

†
yz−γ̃y,z+1,−γ̃

†
y+1,z+1,−γ̃y+1,z,−+H.c.

]
.

We start by treating the odd z case in details. To do so, we bosonize the wire degrees of
freedom by writing γ̃yzρ ∝ e−iφyzρ , in terms of which

Ho
coh,z = 2u∑

y

∫
dxcos

(
φy,z,+−φy,z+1,++φy+1,z+1,+−φy+1,z,+

)
= 2u∑

y

∫
dxcos

[
2∆yθ̃y,z,z+1

]
, (B.5)

where θ̃y,z,z+1 =
φy,z,+−φy,z+1,+

2 , and ∆y is the discrete derivative defined according to ∆yθ̃y,z,z+1 =

θ̃y+1,z,z+1− θ̃y,z,z+1.
If the terms in Eq. (B.5) flow to strong coupling, their arguments can be assumed to weakly

fluctuate around the minimum of the cosine. Expanding in these small fluctuations, we obtain
a quadratic term of the form u∑y(∆yθ̃y,z,z+1)

2. Taking this term together with the quadratic
Luttinger-liquid Hamiltonian, the operator e2iθ̃y,z,z+1 acquires an expectation value. We thus ob-
tain a spontaneous breaking of the U(1) symmetry θ̃ → θ̃ +const. Therefore, at low energies,
one can write θ̃y,z,z+1 = θ̃0 +

1
2a3

yz(x), where a3
yz is a slowly varying Goldstone mode.

For even z, we repeat the same analysis in terms of the γ̃−-fields. For these layers, we
define θ̃y,z,z+1 =

φy,z,−−φy,z+1,−
2 , and find

He
coh,z = 2u∑

y

∫
dxcos

[
2∆yθ̃y,z,z+1

]
. (B.6)

Following the same arguments as for the odd z case, we again achieve spontaneous symmetry
breaking.

Once all the layers are coherent, we generate inter-layer hopping terms for χ̃ . To do so,
we write local interaction terms involving correlated tunneling in adjacent layers, as shown in
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Fig. B.1b:

Hz = ∑
y,z

∫
dx

χ̃†
y,zχ̃y,z+1γ̃

†
y,z+1,+γ̃y,z,++H.c. odd z

χ̃†
y,zχ̃y,z+1γ̃

†
y,z+1,−γ̃y,z,−+H.c. even z

. (B.7)

Notice that these terms do not involve direct tunneling of dual fermions between different
layers. To effectively generate such tunneling, we use the inter-layer coherence and write

γ̃
†
y,z+1,+γ̃y,z,+ ∼ e−2iθ̃y,z,z+1 ∼ e−ia3

yz(x) for odd z

γ̃
†
y,z+1,−γ̃y,z,− ∼ e−2iθ̃y,z,z+1 ∼ e−ia3

yz(x) for even z.

Therefore, Hz takes the form

Hz = ∑
y,z

∫
dx
[
χ̃

†
yzχ̃yz+1e−ia3

yz(x)+H.c.
]
.

Thus, despite the non-local nature of the dual fermions, they can tunnel between the layers
through the phenomenon of inter-layer coherence.

As noted in chapter 7, the gauge degrees of freedom can be reintroduced by enforcing
gauge invariance. However, the inter-layer tunneling terms reduce the gauge symmetry from
an independent U(1) symmetry for each interface to a single U(1) symmetry for the entire
three dimensional system. This promotes the gauge degrees of freedom to form a truly 3+1
dimensional U(1) gauge theory, with the Goldstone mode a3 acting as the fourth component
of a.

In the next section, we demonstrate that the inter-layer tunneling terms generate a 3+ 1
dimensional Dirac theory, leading to the QED4 parent state.

B.2 Derivation of the QED4 fixed point

In this section, we demonstrate the emergence of the QED4 fixed point. In the absence of
coupling between the layers, the action takes the form

Sdual = ∑
z

∫
d2xdt

[
i ¯̃
Ψzγµz

(
∂

µ − iaµ
z
)

Ψ̃z +LMaxwell
[
aµ

z
]]

(B.8)

in the dual formulation, where LMaxwell denotes the 2+1-dimensional Maxwell term in each
layer.
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Upon inducing inter-layer coherence, we effectively generate tunneling terms of the form

Sint = χ0 ∑
z

∑
α=↑,↓

∫
d2xdt

(
e−ia3

z ψ̃
†
z,α ψ̃z+1,α +H.c.

)
. (B.9)

Next, we note that in the absence of gauge fluctuations the inter-layer action [Eq. (B.9)] is
associated with the spectrum E = 2χ0 coskz, which gives rise to low-energy fermion excita-
tions around kz =±π

2 . Focusing on these low energy degrees of freedom, we write

Ψ̃z = Ψ̃z,+ei πz
2 + Ψ̃z,−e−i πz

2 . (B.10)

Notice that in this mean field approximation the unit cell consists of two layers, meaning the
Brillouin zone is defined for kz between −π/2 and π/2, and the above low energy degrees of
freedom coincide at the edge of the Brillouin zone.

Inserting this into Eqs. (B.8) and (B.9) and dropping the spatially oscillating terms, which
do not affect the low energy description, we obtain

S =∑
z

∫
d2xdt

{
∑

ρ=±

[(
iχ0ρe−ia3

z Ψ̃
†
z,ρΨ̃z+1,ρ +H.c.

)
+iΨ̃†

zρ

(
∂

0− ia0
z
)

Ψ̃zρ

]
+ iΨ̃†

z+σ3
(
∂

1− ia1
z
)

Ψ̃z−+H.c.

+iΨ̃†
z+σ2

(
∂

2− ia2
z
)

Ψ̃z−+H.c.
}
. (B.11)

Defining the four-component spinor Ψ′=
(

Ψ↑+ Ψ↑− Ψ↓+ Ψ↓−

)
, we take the natural con-

tinuum limit and obtain

S = i
∫

d3x ¯dtΨ′Γµ (∂
µ − iaµ)Ψ

′, (B.12)

where Γ0 = σ1τ1,Γ1 =−iσ2,Γ2 = iσ3,Γ3 =−iσ1τ2, and the τi-matrices are the Pauli matrices
acting on the ρ = ± space. It can easily be verified that the Γ-matrices satisfy the Clifford
algebra, indicating that the action in Eq. (B.12) indeed describes Dirac fermions coupled to a
U(1) gauge field in 3+ 1-dimensions. Notice that in moving from Eq. (B.11) to Eq. (B.12),
we have rescaled spacetime to make the Dirac action appear isotropic.

The kinetic action of the dynamical gauge field aµ generically consists of all gauge in-
variant terms. The most relevant among these is the Maxwell term LMaxwell = − 1

4e2 FµνFµν

with µ,ν = 0, · · · ,3. Notice that due to the anisotropic nature of our realization, we generally
expect an anisotropic version of the Maxwell action.
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B.3 The composite Weyl semimetal phase

With the addition of the mass term

Sm = m∑
z

∫
d2xdt

(
ψ̃

†
z,↑ψ̃z,↓+H.c.

)
, (B.13)

it can easily be checked that the spectrum generated by Eqs. (B.9) and (B.13) hosts low-energy
excitations around four points of the form k⃗ = (0,0,kz). Defining k0 = cos−1

(
|m|
2χ0

)
, two of

these points are located at kz =±k0 and associated with the wavefunction 1√
2

(
1 −1

)T
, while

the other two, located at kz =±(π− k0), are associated with 1√
2

(
1 1

)T
.

We therefore write at low energies

Ψ̃z =
1√
2

[(
ψ̃z,++eik0z + ψ̃z,−+e−ik0z

)( 1
−1

)
(B.14)

+(−1)z
(

ψ̃z,−−e−ik0z + ψ̃z,+−eik0z
)(1

1

)]
.

Inserting this into the action in Eqs. (B.8),(B.9), and (B.13), we obtain

S =∑
z

∑
β=±

∫
d2xdt

{
∑
γ

[(
iχ̃0βγe−ia3

z ψ̃
†
z,βγ

ψ̃z+1,βγ +H.c.
)

+iψ̃†
zβγ

(
∂

0− ia0
z
)

ψ̃zβγ

]
+ iψ̃†

zβ−
(
∂

1− ia1
z
)

ψ̃z,β++H.c.

−ψ̃
†
zβ−
(
∂

2− ia2
z
)

ψ̃z,β++H.c.
}
, (B.15)

with χ̃0 =
√

χ2
0 −

m2

4 .
Taking the continuum limit by assuming ψ̃z,βγ to vary slowly in the z direction, we get the

low-energy action

S = i ∑
β=±1

∫
d3xdtΨ̃†

β
σ

β

µ

(
∂

µ − iaµ

j

)
Ψ̃β ,

where σµ are the Pauli matrices acting on the γ-indices, σ
β

µ =σµ for µ = 0,1,2 and σ
β

3 = βσ3.
The resulting theory indeed describes two separate Weyl theories coupled to a gauge field. As
pointed out in chapter 7, a generally acquires a mass through the Higgs mechanism, thus
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leaving only Weyl fermions at low energies. Notice that while these two Weyl theories are
technically equivalent to a single Dirac theory, they are associated with degrees of freedom
located at different points in the Brillouin zone, prompting us to regard them as separate
theories.

B.4 The monopole propagator

In Sec. B.2, we obtained an effective QED4 theory, with the action

SQED4 =
∫

d4x
(
− 1

4e2 FµνFµν + i ¯̃
Ψγ

µ
(
∂µ − iaµ

)
Ψ̃

)
. (B.16)

In what follows, we calculate the monopole propagator within this theory,

C(⃗x, t) =
〈

M(⃗xt , t)M†(⃗x0,0)
〉
, (B.17)

where M† is an operator that creates a 4π monopole. To calculate this propagator, we first
employ the asymptotic freedom of QED4 at low energies to neglect the coupling to the dual
Dirac theory. This allows us calculate Eq. (B.17) within the free Maxwell theory (i.e., the first
term of Eq. (B.16)). Second, we use the electromagnetic duality of the Maxwell theory to the
calculate the propagator of the electronic charge instead, and argue that the result should be
identical in the magnetic case.

Within the Maxwell theory, the charge propagator can be written as a path integral

C(⃗xf− x⃗i, tf− ti) =
∫ x⃗f(tf)

x⃗i(ti)
D x⃗

∫
DaµeiS (x,a),

where S =
∫ [
− 1

4e2 FµνFµν +aµJµ

]
, with Jµ = qvµδ (⃗x− x⃗(t)) and vµ = dxµ

dt = (1, d⃗x/dt).
We integrate over all the paths starting at x⃗i and ending at x⃗f, with the dynamics determined
only by the coupling to the electromagnetic field.

Defining the photon propagator Gµν(x), we integrate out the electromagnetic field and
obtain the effective action

C(⃗xf− x⃗i, tf− ti)≡
∫ x⃗f(tf)

x⃗i(ti)
D x⃗eSeff[x],
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where

Seff[x] = q2
∫

dtdt ′vµ(t)vν(t ′)Gµν
[⃗
x(t)− x⃗(t ′), t− t ′

]
.

Adopting the Feynman gauge, we have Gµν(x) ∝
e2ηµν

x2 ,with x a four-vector. Plugging this in,
we obtain

Seff =
(qe)2

8π2

∫
dtdt ′vµ(t)vν(t ′)ηµν

1

(t− t ′)2− (⃗x(t)− x⃗(t ′))2 (B.18)

=
(qe)2

8π2

∫
dxµdx′νηµν

1

(x− x′)2 , (B.19)

with x,x′ four-vectors.
The effective action can now be cast as

Seff =
(qe)2

8π2

∫
dτdτ

′dxµ

dτ

dx′ν

dτ ′
ηµν

1

(x(τ)− x(τ ′))2 , (B.20)

in terms of the (Lorentz invariant) proper time τ along the path. We now split the integral over
τ into infinitely many infinitesimal segments, each of which is Lorentz invariant. Therefore,
for each τ we can choose to write the corresponding segment in an inertial frame of reference
comoving with xµ(τ) (Notice that for each point τ on the path we use a distinct frame of
reference). In this case, dxµ

dτ
= (1,0,0,0), and we get

dxµ

dτ

dx′ν

dτ ′
ηµν =

dt ′

dτ ′
.

As can be seen by examining the denominator of Eq. (B.20), the dominant contributions
arise from the vicinity of τ ′ = τ . Therefore, to leading order in τ− τ ′ we take

xµ(τ)− xµ(τ ′) =
dxµ(τ)

dτ

(
τ
′− τ

)
= δ

µ

0
(
τ− τ

′)
dt ′ = dτ

′ = dτ.

This results in

Seff =
(qe)2

8π2

∫ T

0
dτ

∫ T

0
dτ
′ 1

(τ− τ ′)2 ,
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with T the proper time at the end of the path. To regularize the integral we introduce a cutoff:

Seff =
(qe)2

8π2

∫ T

0
dτ

∫ T

0
dτ
′ 1

(τ− τ ′+ iε)2

=
(qe)2

8π2

[
2log

ε

T
− log

(
1+
(

ε

T

)2
)]
≈ (qe)2

4π2 log
ε

T
.

This finally gives us the propagator

C(xf− xi) ∝ e
(qe)2

4π2 log ε

|xf−xi| ∝ (|xf− xi|)
− (qe)2

4π2 .

B.5 Distinction between gapped phases

In this section we comment on the distinction between the two gapped phases discussed in
chapter 7 (in the absence of additional discrete symmetries).

As discussed in chapter 7, for m = ∆ = 0, one finds two dual Weyl nodes located at the
edge of the Brillouin zone at kz =±π

2 (and kx = ky = 0), thus forming the parent Dirac theory.
Introducing m,∆ ̸= 0, the nodes are shifted to kz =±k0, with

k0 = cos−1

(√
m2−∆2

2χ0

)
. (B.21)

It is evident that m pushes the nodes toward the origin at kz = 0, while ∆ pushes them toward
the edge of the Brillouin zone. If the cones meet at either of these points, they generically
annihilate each other, leading to completely gapped phases. Depending on where the cones
meet, we obtain two distinct gapped phases.

One can understand the distinction between the two phases by examining the Bloch Hamil-
tonian at fixed values of kz: Hkz(kx,ky). Given kz, these two-dimensional Hamiltonians can be
associated with an integer Chern number C(kz). Notice that the Chern number is defined in
the BDG formulation, and therefore counts the number of chiral Majorana edge modes for the
effective two-dimensional models. In particular, C = 2 corresponds to a single chiral fermion
on the edge (i.e., two Majorana modes).

In our model, this Chern number is given by

C(kz) =

0 |kz|< k0

2 |kz|> k0
.
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Indeed, the points where the Chern number transitions from one value to another and the
gap must therefore close, correspond to the locations of the Weyl nodes.

From Eq. (B.21), we see that the Weyl cones survive as long as |∆|< |m| and m2 < 4χ2
0 +

∆2. If ∆ is increased such that |∆| = |m|, the nodes meet at the edge of the Brillouin zone.
As they move toward the edge of the Brillouin zone, the region of non-zero C shrinks, and
eventually vanishes, leaving us with C = 0 throughout the Brillouin zone when they meet. For
|∆|> |m|, the two cones gap out, leading to a trivially gapped state with C = 0 for all kz.

On the other hand, if we increase m instead of ∆, the nodes are shifted toward the origin
of the Brillouin zone, thus enlarging the non-trivial region of C = 2. Eventually, at m2 =

4χ2
0 +∆2, the two cones meet at the origin, and the non-trivial region of C = 2 covers the

entire Brillouin zone. For larger values of m, the cones annihilate out and we end up with a
gapped phase associated with a Chern number C = 2 for each kz. Such a phase is adiabatically
connectable to a stack of Chern insulators (with a single chiral fermionic edge mode) forming
a 3D quantum Hall state of dual fermions. While such a state has no electronic response, it
possesses a thermal Hall conductivity, and is thus referred to as a thermal Hall insulator.

As we discussed in chapter 7, additional scenarios arise where ∆ is not identical in all
layers. Generically, each of the Weyl cones splits into two Majorana-Weyl cones [160], located
at kz =−k2,−k1,k1,k2. In this case, the Chern number is given by

C(kz) =


0 |kz|< k1

1 k1 < |kz|< k2

2 |kz|> k2

.

A distinct gapped phase can be stabilized if k2 is shifted toward the edge of the Brillouin
zone, while k1 is shifted toward the origin. This results in a gapped phase associated with
C = 1 for all kz. Such a phase is adiabatically connectable to a stack of dual-fermion p+ ip
superconductors associated with each two-layer unit cell.



Appendix C

Appendix: Spin liquids from Majorana
Zero Modes in a Cooper Box

The Response Function

In chapter 8, we proposed that the critical nature of our 1D spin models can be revealed by
studying the effect of perturbations of the form Hpert = f (t)Sz(x0), with f (t)=V0 cos(ωt +φ0).
To do that, we would like to compute the average value of Sz at a distant point x and later times.

Performing linear response, this can be written as

⟨Sz(x, t)⟩=
∫

dt ′ f (t ′)χ(t− t ′,x− x0), (C.1)

with χ being the dynamic susceptibility: χ(t− t ′,x− x′) = i⟨[Sz(x, t),Sz(x′, t ′)]⟩Θ(t− t ′). In
our case, the function f is harmonic, meaning we may write

⟨Sz(x, t)⟩=V0ℜ

{
eiφ0

∫
dt ′eiωt ′

χ(t− t ′,x− x0)

}
=V0ℜ

{
eiωteiφ0 χ(ω,x− x0)

}
, (C.2)

where χ(ω,x) =
∫

dte−iωt χ(t,x) is the frequency domain form of the dynamic susceptibility.
The susceptibility can be written in terms of the time-ordered propagator as

χ(t,x) =−2Θ(t)Im{G(t,x)} .
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The time ordered propagators of one-dimensional CFTs can generally be written as

G(t,x) =
α2(h+h̄)

[x− vt + iεsign(t)]2h [x+ vt− iεsign(t)]2h̄
,

where h, h̄ are the conformal dimensions of the corresponding field. For a non-chiral field, we
have h = h̄. For a chiral field, one of these vanishes.

Non-chiral fields

For non-chiral fields, the susceptibility is given by

χ(t,x) =−2Θ(t)α4hIm

{
1

[x− vt + iε]2h [x+ vt− iε]2h

}
=−2Θ(t)α4hIm

{
e−2h logA

}
,

where we follow Ref. [182] in defining

A = (x− vt + iε)(x+ vt− iε)

= x2− v2t2 +2iεt.

If we put the branch cut of the log along the negative real axis, we get an imaginary part only
for x2− v2t2 < 0, i.e. t > |x|

v , and we get

e−2h logA = e−2h log|x2−v2t2|−2πihΘ(t+ x
v)Θ(t− x

v).

We therefore obtain

χ(t,x) =−2sin(2πh)α
4h Θ(t)Θ

(
t + x

v

)
Θ
(
t− x

v

)
(v2t2− x2)

2h . (C.3)

If h = 1/2, this expression vanishes. This result is non-physical, and indeed, the case
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h = 1/2 requires special attention. In this case, we can explicitly write

χ(t,x) =−2Θ(t)α2Im
{(

1
x− vt + iε

)(
1

x+ vt− iε

)}
=−2Θ(t)α2Im

{[
P

1
x− vt

− iπδ (x− vt)
][

P
1

x+ vt
+ iπδ (x+ vt)

]}
=−2πΘ(t)α2

[
1

x− vt
δ (x+ vt)− 1

x+ vt
δ (x− vt)

]
, (C.4)

where P denotes the principal value.
In order to evaluate Eq. C.2 for a general h, we wish to get the frequency domain form of

χ(t,x) in Eq. C.3:

χ(ω,x) = 2α
4h sin(2πh)

∫
∞

|x|
v

dt
e−iωt

(v2t2− x2)
2h

=
2α4h sin(2πh)

v |x|4h−1

∫
∞

1
dT

e−i ω|x|
v T

(T 2−1)2h ,

where we have defined T = vt
|x| . Performing the integral, we obtain

χ(ω,x) = Bα
4hv−2h− 1

2

(
ω

|x|

)2h− 1
2

K1
2−2h

[
i
ω |x|

v

]
, (C.5)

with B = 2sin(2πh)Γ(1−2h)(−2i)
1
2−2h

√
π

. Notice that while Eq. C.3 vanishes for h = 1/2, Eq. C.5
has a finite limit for h→ 1/2. In this case, since sin(2πh)Γ(1−2h)→ const as h→ 1/2, and
K− 1

2
[z] =

√
π

2
e−z
√

z , we get

χ(ω,x) ∝ α
2 e−i ω|x|

v

v |x|
.

We can obtain this result directly from Eq. C.4. In this case

χ(ω,x) =−2πα
2
∫

∞

0
dt
[

1
x− vt

δ (x+ vt)− 1
x+ vt

δ (x− vt)
]

e−iωt

=
πα2

v

[
−1

x
Θ(−x)eiω x

v +
1
x

Θ(x)e−iω x
v

]
=

πα2

v
e−iω |x|v

|x|
.
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Chiral fields

For chiral (right moving) fields, the susceptibility is given by

χ(t,x) =−2α
2h

Θ(t)Im

{
1

[x− vt + iε]2h

}
=−2α

2h
Θ(t)Im

{
e−2h logA

}
,

where now

A = x− vt + iε.

The same analysis as in the non-chiral case indicates that

e−2h logA = e−2h log|x−vt|−2πihΘ(t− x
v),

and therefore

χ(t,x) =−2sin(2πh)α
2h Θ(t)Θ

(
t− x

v

)
(vt− x)2h . (C.6)

Calculating the Fourier transform, we obtain

χ(ω,x) =
2α2h sin(2πh)

v · x2h−1

∫
∞

1
dT

e−i ωx
v T

(T −1)2h

=C
ω2h−1α2h

v2h e−i ωx
v ,

with C = 2sin(2πh) i2h−1Γ(1−2h).
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