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Abstract – We study the effect of uniaxial pressure on the magnetic hysteresis loops of the single-
molecule magnet Mn12-Ac. We find that the application of pressure along the easy axis increases
the fields at which quantum tunneling of magnetization occurs. The observations are attributed
to an increase in the molecule’s magnetic anisotropy constant D of 0.142(1)%/kbar. The increase
in D produces a small, but measurable increase in the effective energy barrier for magnetization
reversal. Density-functional theory calculations also predict an increase in the barrier with applied
pressure.

Copyright c© EPLA, 2013

Introduction. – Single-molecule magnets (SMMs) are
fascinating systems in which each molecule behaves as a
single rigid, high-spin object. Most SMMs have a large
magnetomolecular anisotropy that impels the spin to point
along a particular axis, the so-called easy axis. Thus, the
spin’s energy landscape can be described by a double-
well potential, with an energy barrier between “up” and
“down” orientations, as shown in fig. 1.
Much of SMMs’ behavior can be understood from the

simple Hamiltonian [1]

H=−DS2z −AS
4

z − gµ0µBS ·H+H′. (1)

Here the first and second terms create the double-well
potential. The spin vector minimizes its energy by pointing
along or antiparallel to the easy z -axis. The constants D
and A give the strength of the anisotropy, producing a
classical barrier of height U =DS2+AS4 at zero field.
The third term is produced by the Zeeman interaction,
with g= 1.96. When a field is applied along the z -axis, the
potential is tilted, making, say, the “up” direction lower
in energy than the “down” direction. H′ contains terms
that do not commute with Sz and can therefore induce
tunneling.
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Fig. 1: (Colour on-line) Double-well potential diagram illustrat-
ing the energy levels for an S = 10 system. A magnetic field tilts
the potential. When the field brings levels in opposite wells into
alignment, the spins reverse via a process of resonant tunnel-
ing. At temperatures above ∼0.5K, this process is thermally
assisted and tunneling occurs between levels near the top of
the barrier, as indicated by the arrow.

Because SMMs have a finite spin S (∼10), there are
2S+1 magnetic orientation states, m=−S,−S+1, . . . S,
associated with the spin (levels in fig. 1). As the field along
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the easy axis is increased, levels in one well move down
while levels in the other well move up. At certain fields [1],

HN =−H−N =
N

gµ0µB

[

D+A(m2+m′2)
]

, (2)

where N =−(m+m′) = 0,±1,±2, . . . , levels m and m′ in
opposite wells align, allowing the spin to tunnel between
wells and consequently producing a dramatic increase in
the rate at which the spins come to equilibrium [2]. This
effect, which is manifested by the appearance of steps in
the hysteresis loops of most SMMs, has now been seen in
hundreds of molecules and some rare-earth ions [1].
Mn12 acetate (henceforth referred to as Mn12) is the

most studied SMM. Crystals of Mn12 typically contain
two species [3,4]: a fast relaxing minority species and
a slower relaxing majority species. Here we exclusively
study the latter, which has a spin S = 10, a large energy
barrier of ∼70K, and is well described by eq. (1) with
D= 0.556K and A= 1.13mK [5]. Each magnetic molecule
in a crystal is isolated from its neighbors, resulting in a
total magnetic moment that is, to good approximation,
an ensemble average of that of a single Mn12 molecule.
At temperatures above ∼0.5K, the relaxation between the
two wells is thermally assisted, with tunneling taking place
from excited levels that are thermally populated. In this
regime, the magnetic relaxation rate Γ is well described
by an Arrhenius law [1]:

Γ = ω0e
−Ueff/T , (3)

where Ueff is the effective barrier, defined as the energy
difference between the lowest level in the metastable well
and the level m where the preponderance of tunnel-
ing takes place, i.e., Ueff =D(S

2−m2)+A(S4−m4)+
gµ0µBHz(−S−m); ω0, the Arrhenius prefactor, is a
constant of order 107 rad/ s.
There have been numerous hydrostatic pressure exper-

iments on Mn12 and related molecules [6–15]. Inelas-
tic neutron scattering experiments have shown a few-
percent increase in D when pressure of the order of a
dozen kbar is applied [7]. In contrast, Levchenko et al. [8]
reported that pressure increases the measured magnetic
relaxation rate, consistent with a decrease in D. In addi-
tion, studies have found that pressure converts some of
the molecules between the fast and slower relaxing vari-
eties, although the precise behavior of this change remains
unclear [6,8,11,15]. In the present work, we apply uniaxial
pressure along the easy axis of a single crystal of Mn12 and
examine the energy-level structure through measurements
of the sample’s hysteresis loops. We find that the pres-
sure alters the field at which tunneling occurs, an effect
we interpret as due to an increase in D. We also find
a slight decrease in Γ with pressure, which we attribute
to the increase in Ueff brought about by the increase
in D. Our technique allows us to vary the pressure in
situ at low temperature so that the sample is never
under high pressure at room temperature, minimizing any

epoxy pellet with sample
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Fig. 2: (Colour on-line) Top: cross-section schematic of our
uniaxial-pressure cell. Bottom: exploded view of the cell core,
showing the Hall detector chip mounted on the circuit board,
the bracket, G10 fingers, and the epoxy pellet containing the
embedded sample.

structural distortions and deformations that may occur at
such temperatures.

Experimental setup. – Our uniaxial pressure appa-
ratus is based on a design by Campos et al. [16]. A diagram
of the low-temperature portion of the apparatus is shown
in fig. 2. Pressure is applied through a pneumatic piston
connected to a nitrogen gas cylinder, and is transferred to
the sample cell at the end of the probe by non-magnetic
stainless steel rods, capped by a small aluminum plug.
This plug and the bottom cap of the cell press on two G10
phenolic “fingers” that transmit the pressure to a single
crystal of Mn12, which is encased in a small (non-circular)
cylindrical piece of epoxy (Stycast 1266), as shown in fig. 2.
The sample was prepared by placing it in freshly mixed

epoxy within a Teflon mold. A 3 tesla field was applied to
align the crystal’s easy axis (crystallographic c-axis) with
the axis of the cryostat’s field. Once cured, the epoxy was
machined to make the top and bottom horizontal faces flat
and to create a flat vertical face with the sample close to
the surface, allowing coupling to a Hall bar detector.
The bottom portion of fig. 2 illustrates the bracket that

holds the Hall sensor chip and its mounting board, the
G10 fingers, and the epoxy “pellet” containing the sample.
When everything was in place, one edge of the sample was
aligned with one Hall sensor; another sensor relatively far
from the sample was used to measure background signals.
The signals from the two Hall bars were subtracted using
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Fig. 3: (Colour on-line) Detail of the N = 4 step with fit. The
data was taken at 2.0K and with no pressure applied. The inset
shows the full hysteresis loop from which the detail was taken.

an analog circuit in order to cancel out common back-
ground signals. A regulated thermometer was placed close
to the epoxy-sample pellet for temperature measurement
and control.

Results and analysis. – We acquired magnetic
hysteresis loops from the sample at temperatures between
1.8K and 2.2K in 50mK increments and with applied
pressures, P , as high as ∼1.8 kbar. For all loops, the field
sweep rate was dH/dt= 3.0mT/s. A typical hysteresis
loop (taken at 2.0K and with no applied pressure) is
shown in the inset of fig. 3. The magnetization steps
characteristic of resonant tunneling are apparent. The
loop also displays features near zero field, which are the
paramagnetic response of the fast-relaxing species as well
as of some magnetic impurities in the apparatus’ materi-
als. The main figure shows a closeup of the N = 4 step for
this loop. For every tunneling step clearly visible in each
loop, we empirically fit the data with a hyperbolic tangent
plus a straight line (to adjust for residual background
effects) to determine HN (T, P ), the field center for step
N (the field at which the tunneling rate is maximum).
The main part of fig. 3 shows an example of such a fit,
superimposed on the data. For a given N and T , the step
centers generally shift toward higher field with increasing
pressure. Figure 4 shows HN as a function of pressure
for the N = 4 step at 2.0K. With the exception of cases
where the step is very small, with a correspondingly
small signal-to-noise ratio, HN appears to depend linearly
on pressure over the range of pressures studied. The
results show no apparent baric hysteresis as evidenced by
the fact that some of the data at ∼0.45 kbar and all of
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Fig. 4: (Colour on-line) Step center field values as a function
of pressure for the N = 4 step at 2.0K. The line is the result
of a linear fit of the data.

the data at 0 and ∼0.67 kbar were taken after applying
the highest pressure.
The values of HN depend on both pressure and temper-

ature. The latter dependence, involving both changes in
tunneling levels (m and m′ in eq. (2)) [17,18] and the
effects of mean dipolar fields [19], is significantly stronger
than the effect of pressure. To determine the effect of pres-
sure, we take HN for each step to be a linear function of
pressure with a different zero-pressure intercept for each
temperature:

HN (T, P ) =HN (T, 0)+
∂HN
∂P
P. (4)

For each step N , we simultaneously fit all obtained values
of HN (T, P ) (for all values of T and P ) to eq. (4), to
obtain a value of ∂HN/∂P for that step. Figure 5 shows
the values of ∂HN/∂P as a function of N . (Here and
below we have grouped together data for N and −N .)
The figure also shows a fit to a line with zero intercept.
This result suggests that the anisotropy parameter D
is increasing linearly with applied pressure, consistent
with eq. (2), which predicts ∂HN/∂P =

N
gµ0µB

dD/dP

when dA/dP = 0. From the fit, we obtain a pressure-
induced relative change of D of +0.142(1)%/kbar. This
value differs somewhat from those found in experiments
employing hydrostatic pressure [8,11]. The difference may
be due to the uniaxial nature of the applied pressure in
our study.
We determined the values of m (and m′ =N −m) for

each step by carefully ascertaining the values of HN at
zero pressure and, after correcting for dipole-field effects1,

1Explicitly, we used HcorrectedN =HmeasuredN +αM(HN )/Msat,
where Msat is the saturation magnetization and α= 515 Oe [19].
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Fig. 5: (Colour on-line) ∂HN/∂P as a function of step number.
The line is the result of a linear fit with fixed zero intercept.

employing eq. (2). From this analysis we find that the pair
of levels (m,m′) between which tunneling occurs are three
levels below the top of the classical barrier for all three
steps (N = 3, 4, 5) that we measured2.
As a consistency check of the above interpretation that

pressure is inducing a change in D, we looked at how the
pressure changes the effective barrier height Ueff . To do
this, we also measured the maximum slope dM/dH for
each step and the corresponding value of M at that point
in the step. Under the approximation that the system has
a single relaxation rate Γ, the relaxation is governed by
the simple differential equation

dM

dt
=
dM

dH

dH

dt
=−Γ (M −Meq) , (5)

where the field sweep rate dH/dt is constant for our
experiments. Meq is the equilibrium magnetization and is
nearly equal to the saturation magnetization Msat for the
values of N and T investigated. With that approximation,
Γ can be determined from eq. (5) and the measured values
of dM/dH and M for each step:

Γ =−
dM
dH

(M −Meq)

dH

dt
, (6)

2To be precise, we find that for N = 3, 4, 5, respectively, the values
of the pairs of levels involved in tunneling (m,m′) are (−4, 1), (−5, 1)
and (−5, 0). The pair of tunneling levels for Mn12 can depend on
temperature [17,18]; however, over the narrow temperature range in
our study, we do not expect this effect to be very significant. In any
case, a change of the N = 4 pair, for example, from (5,−1) to, say,
(4, 0) would not have much effect on our findings. Such a change
has no effect on the results for ∂HN/∂P under the assumption that
dA/dP = 0 and has very modest effects on the analysis of dU/dP ,
raising the expected value in fig. 6 (middle panel) from 0.043 to
0.047K/kbar.

At the same time, assuming a linear pressure depen-
dence of Ueff (i.e., Ueff =Ueff,0+U

′

effP ), eq. (3) yields

Γ= Γ0 (H,T ) e
−U ′effP/T , (7)

where the prime indicates differentiation with respect to
P and Γ0 (H,T ) is the relaxation rate at P = 0. We neglect
the small P -dependence ω0 may have.
For each N and T , we determine Γ (P ) using eq. (6)

and then fit the pressure dependence to eq. (7) to deter-
mine U ′eff . The results are shown in fig. 6 as a function
of T . The horizontal dashed lines are the expected values
of U ′eff =dD/dP (S2−m2) using the value of dD/dP
determined from the results in fig. 5 and the value of
m we determined from the values of HN for each N
(see footnote 2).
The N = 3 data are very scattered and we can only

conclude from those results that the value of U ′eff agrees
on average with the sign and order of magnitude of
the prediction. For N = 4, the scatter is smaller (note
the change in vertical scale) and the agreement with
the prediction is better, although there is an unexpected
decrease with increasing T . For N = 5, the data is consis-
tently below the predicted value, but, again, of the same
order of magnitude. The disagreements most likely arise
from the assumptions of a single relaxation rate Γ (eq. (5))
and monodispersed values of D and A. It is well known
that Mn12Ac has a distribution of relaxation rates due to
a distribution in anisotropy parameters as well as tilts of
the easy axis away from the crystallographic symmetry
axis [20–24]. These effects result in a broadening of the
tunneling steps that effectively creates a maximum value
of dM/dH. Thus, when the steps are large (higher-T data
for N = 4 and all data for N = 5), the value of Γ esti-
mated using eq. (6) is nearly saturated, suppressing its
P -dependence.
While it is hard to draw strong conclusions from the

results in fig. 6, it is clear that this data is generally
consonant with the interpretation that pressure is induc-
ing a change in D and consistent with the hypothesis
that dA/dP = 0. If we consider that A is also changing
with pressure, it is difficult to devise a situation with
significantly better agreement with the data. For exam-
ple, allowing d lnA/dP = (dA/dP )/A= 0.5%/kbar (reduc-
ing d lnD/dP to 0.116(1)%/kbar) results in a very modest
improvement in the fit in fig. 5, but roughly doubles the
predicted values of U ′eff in fig. 6. If we take an extreme
case and fix dD/dP = 0, then a fit of the data in fig. 5
results in d lnA/dP = 2.73(1)%/kbar, which predicts U ′eff
to be in the range 0.27–0.29K/kbar, clearly inconsistent
with the results in fig. 6. We cannot rule out that pressure
is inducing small changes in A, but the only cases in which
changes in A would produce significant effects require that
its relative change be larger than the relative change in D,
a somewhat unlikely scenario.
To complement the experimental findings, we performed
ab initio calculations of the pressure dependence of the
energy barrier of Mn12. We calculated the electronic
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Fig. 6: (Colour on-line) U ′eff as a function of T for N = 3, 4, 5,
as labeled. The horizontal dashed lines are the expected values
of U ′eff using the value of dD/dP determined from the results
in fig. 5. Note that the three panels have different vertical
scales.

structure and magnetic properties of the molecule using
density-functional theory (DFT) including spin-orbit
coupling (SOC). We used the plane-wave-based DFT code
VASP [25,26] and, for the exchange-correlation potential,
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Fig. 7: (Colour on-line) Calculated energy barrier as a func-
tion of uniaxial pressure. Calculations were performed using
density-functional theory including spin-orbit coupling, as
described in the main text. The line shows the result of a linear
fit to the calculated values.

we used the Perdew-Burke-Ernzerhopf generalized-
gradient approximation [27]. Projector-augmented-wave
pseudopotentials were used. The kinetic-energy cutoff
was set to 580 eV. For our calculations, we used a unit
cell of dimensions 24× 24× 24 Å3 containing one Mn12
molecule. We performed self-consistent DFT calcula-
tions including SOC until the total energy converged
to within 0.5µeV. To simulate the effect of uniaxial
pressure, we assumed uniform strain along the z-axis
of the molecule. This was implemented by contracting
all z coordinates of the molecule by a given factor
(up to 1.5%) while leaving the x and y coordinates
unchanged. For each value of strain, we computed the
magnetic anisotropy barrier U in zero magnetic field. We
converted strain to applied pressure using the method
discussed in [28,29] (tantamount to a Young’s modulus
of 137.1 kbar). The results of these calculation are shown
in fig. 7.
These calculations indicate a qualitatively similar

increase in U with pressure as observed experimentally.
Fitting the data in fig. 7 to a straight line yields a slope
of dU/dP = 0.30(4)K/kbar, about a factor of four larger
than expected from the change in D deduced from the
data in fig. 5: dU/dP = S2dD/dP = 0.0790(5)K/kbar.
The discrepancy is not surprising: It indicates that most
of the induced strain is intermolecular, which is explicitly
not considered in the theoretical model. In other words,
Young’s modulus for the crystal is significantly smaller
than that for the molecule itself.

Summary. – We found that by applying uniaxial
pressure along the easy axis of Mn12 acetate we were able
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to increase the magnitude of the applied field values at
which resonant tunneling occurs. We explain this as an
increase in the anisotropy parameter D in the system’s
spin Hamiltonian. We determine that pressure causes
a change in D of 0.142(1)%/kbar. This interpretation
is consistent with the pressure-induced changes in the
relaxation rate Γ as well as with ab initio calculations of
the effect of pressure on the barrier height U.
While in this experiment, the pressure was applied

along the molecule’s symmetry axis, one could also apply
pressure along a perpendicular direction, which could
affect the tunneling rate by breaking the symmetry of
the molecule. In fact, a theoretical calculation predicts
that pressure applied along the hard axis of a fourfold
symmetric molecule could modulate the tunneling rate
via a geometric-phase effect [30]. Future experiments may
attempt to observe this effect.

∗ ∗ ∗

We would like to acknowledge the valuable program-
ming and analysis contributions of D. Wadden, as well
the contributions of C. Mochrie, J. Rasowsky and
D. K. Kim for their work on previous versions of this
experiment. We are also indebted to R. Cann and D.
Krause for their essential aid in the design and construc-
tion of the apparatus, and J. Kubasek for his help in
producing fig. 2. Support for this work was provided by
the National Science Foundation under grant Nos. DMR-
0449516 and DMR-1006519, and by the Amherst College
Dean of Faculty.

REFERENCES

[1] Friedman J. R. and Sarachik M. P., Annu. Rev.
Condens. Matter Phys., 1 (2010) 109, and references
therein.

[2] Friedman J. R., Sarachik M. P., Tejada J. and Ziolo
R., Phys. Rev. Lett., 76 (1996) 3830.

[3] Sun Z., Ruiz D., Dilley N. R., Soler M., Ribas
J., Folting K., Maple M. B., Christou G. and
Hendrickson D. N., Chem. Commun. (1999) 1973.

[4] Wernsdorfer W., Sessoli R. and Gatteschi D.,
Europhys. Lett., 47 (1999) 254.

[5] Bircher R., Chaboussant G., Sieber A., Güdel
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