
resistance of multilayers depends on the magnetic coupling, a small
external ®eld can be registered.

Finally, we note that although the basic idea behind this work is
that new non-collinear magnetic con®gurations of multi-layer
systems can be stabilized, the actual numbers calculated here for
appropriate thicknesses are connected to some uncertainties. We
have assumed, for instance, that the contribution given by the MAE
in Fig. 1 is insensitive to the in¯uence of the spacer layer. In
addition, we have neglected the magnetic dipole contribution5

(which is indeed small for this system). The largest cause of error
presented here is the calculated value of the interlayer exchange
coupling, since previous work shows that the calculated strength is
typically overestimated, compared to experimental measurements,
by a factor of 5±10. In order to mimic an experimental situation as
closely as possible we therefore reduced the calculated strength of
the interlayer exchange coupling by a factor of 5. In order to analyse
how different values of the interlayer exchange coupling in¯uences
the proposed multilayer we show in Fig. 2 the difference in angle,
Df, as a function of V thickness, for calculations with different
strengths of the interlayer exchange coupling. The most conspic-
uous feature of the behaviour of Df as a function of spacer thickness
is not modi®ed by the strength of the exchange coupling; merely, the
damping strength is in¯uenced. Also, without the in¯uence of the
MAE the magnetization simply oscillates between ferro- and anti-
ferromagnetic, whereas a non-negligible MAE produces a smoother
behaviour in the coupling between different layers. Hence, these
sources of error do not change the basic idea put forward here, that
non-collinear, essentially perpendicular magnets may be grown, and
that this is caused by a competition between interlayer exchange
coupling and the MAE. This competition produces a magnetization
pro®le that varies more smoothly with spacer thickness, and also
reduces the energy between different magnetic con®gurations. We
note here the difference from a conventional exchange-coupled
sensor, that in theory could be tuned to a small coupling energy by
getting close to a node in the oscillating exchange coupling curve.
Owing to the large sensitivity to the exact thickness, such a set-up is
useless in reality and has not been realized experimentally. In our
proposed device, we suggest tuning the spacer-layer thickness to a
local maximum in coupling strength; this is done in practice in
conventional sensors.

The suggested multilayer sensor has, in certain aspects, a similar
performance to conventional sensors, but with increased sensitivity,
and from a technical process viewpoint we can draw on the
experience of these systems. The precise number of atomic layers
needed to optimize the proposed device must be determined
experimentally. An extensive experimental study is needed to ®ne-
tune the optimal choice of materials combinations and thicknesses.
Other candidates of interest, in the sense that they have MAE
stabilizing perpendicular magnetism in a strained state, are Ni
and Co separated by an fcc spacer layer such as Cu, Pd or Pt. In
addition, Pt has a large spin-orbit coupling the enhances the MAE
values. M
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General arguments1 suggest that ®rst-order phase transitions
become less sharp in the presence of weak disorder, while
extensive disorder can transform them into second-order transi-
tions; but the atomic level details of this process are not clear. The
vortex lattice in superconductors provides a unique system in
which to study the ®rst-order transition2±6 on an inter-particle
scale, as well as over a wide range of particle densities. Here we use
a differential magneto-optical technique to obtain direct experi-
mental visualization of the melting process in a disordered super-
conductor. The images reveal complex behaviour in nucleation,
pattern formation, and solid±liquid interface coarsening and
pinning. Although the local melting is found to be ®rst-order, a
global rounding of the transition is observed; this results from a
disorder-induced broad distribution of local melting tempera-
tures, at scales down to the mesoscopic level. We also resolve local
hysteretic supercooling of microscopic liquid domains, a non-
equilibrium process that occurs only at selected sites where the
disorder-modi®ed melting temperature has a local maximum. By
revealing the nucleation process, we are able to experimentally
evaluate the solid±liquid surface tension, which we ®nd to be
extremely small.

We ®rst discuss the expected vortex-lattice melting process in the
absence of disorder. Under equilibrium magnetization conditions in
platelet-shaped samples in perpendicular applied ®eld Hakz, the
internal ®elds B(x,y) and H(x,y) across the sample have a dome-
shaped pro®le with a maximum at the centre7. This is because in the
absence of bulk pinning, the equilibrium shielding currents ¯ow
only along the sample edges. As Ha or temperature T is increased,
the ®eld H in the central part of the sample reaches the melting ®eld
Hm(T) ®rst, and thus a small round `puddle' of vortex liquid should
be formed in the centre, surrounded by vortex solid. Because of the
®rst-order nature of the transition, the vortex-lattice melting is
associated with a discontinuous step in the equilibrium
magnetization6, 4pDM = D(B - H). Because in our geometry H is
continuous across the solid±liquid interface, the ®eld B in the liquid
is enhanced by DB relative to the solid. In Bi2Sr2CaCu2O8 (BSCCO)
crystals DB is typically6 0.1±0.4 G. Conventional magneto-optical
(MO) imaging techniques8±10 (Fig. 1 legend) cannot resolve such
small ®eld differences. We have therefore devised the following
differential method.

An MO image is acquired by averaging typically ten charge-
coupled device (CCD) images at some Ha and T. Then Ha is
increased by dHa p Ha, or T is increased by dT p T, a second
averaged image is obtained, and subtracted from the ®rst. This
process is averaged typically 100 times, yielding a differential ®eld
resolution of about 30 mG, approximately two orders of magnitude
better than the standard MO method. By recording the differential
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images in a sequence of ®elds or temperatures a `movie' of the
melting process is obtained.

As Ha is increased by dHa, the radius of the vortex-liquid puddle
should ideally increase by dR, determined by the gradient of the
dome-shaped pro®le H(x,y). The differential image in this case
should show a bright ring on a dark background, which indicates
the location of the expanding solid±liquid interface. In the rest of
the image almost no change in the ®eld should occur, except the
uniform background signal of dHa. The intensity of the ring is DB
above the background11, independent of dHa, whereas the width of
the ring re¯ects the distance dR over which the interface expands
due to dHa. This is the expected equilibrium coexistence of the solid
and liquid phases due to an intrinsic gradient of the internal ®eld,
similar to the phase separation of water and ice in the presence of a
gravitational ®eld. However, we ®nd that the phase separation is
governed by the disorder, and the dome-shaped ®eld pro®le merely
delays the melting process near the edges.

Figure 1a presents differential MO images from the vortex-lattice
melting `movie' in one of the smaller BSCCO crystals, which is
initially in the vortex solid phase. At 159.5 Oe a small liquid puddle
is nucleated, seen as a bright spot in the upper-right corner. In
contrast to expectations, the puddle is not in the centre of the
sample, nor is it round; instead, a rather rough shape of the liquid
domain is observed. As Ha is further increased a ring-like bright
object is obtained, which is the solid±liquid interface separating the
liquid from the surrounding vortex solid. Both the shape and the

width of the ring are highly non-uniform. At 165 Oe a `tongue' of
the liquid protrudes sharply to the left side. Figure 1b shows the
corresponding outer contours of the liquid phase at 0.5 Oe intervals
of Ha. The interface is often pinned, resulting in overlapping
contours, and then bursts out to more remote locations by a
sequence of irregular local protrusions with a high degree of
corrugation.

We now show that the observed complexity of the melting process
is the result of disorder. Theoretical arguments1 suggest that
disorder in solids causes local variations in the melting ®eld Hm,
resulting in a rough Tm(x,y) or Hm(x,y) `landscape', and the
distribution function of the local melting ®eld fm(H) develops
characteristic tails on both sides of the mean ®eld H0

m. In high-
temperature superconductors, point disorder as well as anisotropy
are known to shift12 H0

m, and therefore local variations in these
parameters13, quenched during crystal growth, should be the main
source of the roughening of the Hm(x,y) landscape and the broad-
ening of fm(H), as illustrated in Fig. 2a.

In order to analyse this process quantitatively, Fig. 2b shows a
partial set of melting images in a large BSCCO crystal with three
visible crystallographic defects. The vortex-liquid phase of a very
irregular shape is formed initially at 91.5 Oe in the lower left corner
(blue). At 92.5 Oe a separate liquid region appears along one of the
defects. With increasing Ha very complex patterns of intermixed
solid and liquid regions are formed. The dominant effect of the
crystallographic disorder is clearly visible here because the melting

Figure 1 Vortex-lattice melting process in a small BSCCO crystal. Magneto-optical

(MO) imaging8±10 is achieved by placing a garnet indicator ®lm on a sample. Linearly

polarized light undergoes Faraday rotation in the indicator and is re¯ected back through a

crossed polarizer, resulting in a real-time image of the magnetic ®eld distribution.

a, Differential MO images of the melting process in a BSCCO crystal (Tc = 60 K) of

area 0.35 ´ 0.27 mm2 at T = 60 K and Hakc-axis. (The full movie is available at

http://www.weizmann.ac.il/home/fnsup). The grayscale from black to white spans a ®eld

range of 0.2 G. The region outside the sample is bright. The differential images are

obtained by subtracting the image at ®eld Ha from the image at Ha + dHa, with dHa =

1 Oe. At 159.5 Oe a small liquid droplet is nucleated within a solid resulting in the bright

spot. Increasing Ha to 161.5 and 163.0 Oe, the liquid phase expands, seen as a dark

region surrounded by a bright ring. The local width of the ring re¯ects the extent of the

propagation of the solid±liquid interface due to the ®eld modulation dHa. The entire upper

part is in the liquid phase at 168.0 Oe. b, Contours of the liquid phase at

Ha = 159.5, 160.0, 160.5, 161.0, 161.5 and 162.0 Oe. The propagation of the solid±

liquid interface is characterized by pinning and local protrusions resulting in a rough

structure. The contours can be viewed as equipotential lines of Hm(x,y) landscape (see

Fig. 2a). Overlapping contours indicate an interface which is pinned due to steep

variations in Hm(x,y). As Ha is increased from 159.5 Oe (red) to 160.0 Oe (yellow) the

interface remains pinned at the right and left edges, but expands upwards and

downwards. The upper part remains pinned at 160.5 Oe (green) and 161.0 Oe (cyan),

then expands abruptly at 161.5 Oe and gets pinned again at 162.0 Oe.

b
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Figure 2 Melting process in the presence of disorder. a, Schematic plot of Hm(x) landscape

and the distribution function fm(H), for various values of the ®eld H. When H = H1 in the low-

®eld tail of fm(H), a small liquid droplet (blue) is nucleated at the minimum of Hm(x). As H is

increased to H2, large liquid domains are formed. A small solid island is present within the

liquid at H3, in the high-®eld tail of fm(H). After complete melting and upon reduction of the

®eld to H4 = H3, the solid island is found to be absent, giving rise to a supercooled

liquid domain and hysteretic local behaviour. b, Melting process in a large BSCCO crystal of

1.1 ´ 1.2 ´ 0.025 mm3 at T = 70 K and dHa = 1 Oe, demonstrating the effects of disorder.

(The full movie is available at http://www.weizmann.ac.il/home/fnsup). The solid and liquid

regions are shown in brown and blue, respectively. At 91.5 Oe an irregular liquid droplet is

formed in the lower left corner. On the right-hand side three parallel crystallographic defects

are visible. The crystallographic disorder in the sample has characteristic directions aligned

parallel and perpendicular to the crystal growth direction, inducing corresponding

features in the Hm(x,y) landscape. As a result, complicated melting patterns are resolved at

93.5, 94.5 and 95.5 Oe with numerous solid and liquid domains. At 96.5 Oe a large liquid

region is present in the centre, with a few solid islands in the top part. c, Liquid volume

fraction versus Ha obtained from the full melting sequence, showing the global rounding of

the melting transition with characteristic tails above and below the mean ®eld H 0
m. The

dashed line shows the calculated liquid fraction in the absence of disorder, due to the

dome-shaped internal ®eld pro®le. d, The experimental distribution function of the melting

®eld fm(H) obtained by taking the derivative of the vortex liquid volume in c with respect to

the ®eld H. The solid line is a guide to the eye.
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patterns have well de®ned preferential directions aligned parallel
and perpendicular to the defects. Figure 2c presents the volume
fraction of the liquid versus Ha, which allows a derivation of the
distribution function fm(H) shown in Fig. 2d. Although locally the
melting is a sharp ®rst-order transition, the global solid±liquid
transformation is completely rounded, and fm(H) displays pro-
nounced tails extending both below and above H0

m. This general
form of fm(H), which we observe in all the samples, is in agreement
with the theoretical predictions1. The dashed line in Fig. 2c shows
for comparison the calculated melting behaviour in the absence of
disorder, resulting from the ®t to the experimental dome-shaped
®eld pro®le across the sample. In this case the melting should set in
abruptly, and most of the volume should melt within a few Oe from
H0

m. Thus the disorder is dominant in the observed rounding of the
transition and in the development of fm(H) tails.

We present several examples of the melting features in various
crystals. Figure 3a shows an enlarged view of nucleation of two
liquid droplets in the low-®eld tail of fm(H). The width of the

smaller droplet is below 6 mm (close to our resolution limit), which
means that this droplet is less than seven vortices wide. This image is
a striking demonstration that the disorder-nucleated melting occurs
on a mesoscopic level. Furthermore, it shows that the solid±liquid
surface tension is very low, as addressed below. Such liquid droplets,
formed at local minima of Hm(x,y) (see Fig. 2a), are found to behave
reversibly with ®eld, in contrast to solid islands at maxima of
Hm(x,y), as described below. Another example of liquid nucleation
in a different BSCCO crystal is shown in Fig. 3b. Here the nucleation
occurs simultaneously in three adjacent regions, demonstrating
speci®c correlations in the disorder distribution quenched during
crystal growth. The characteristic width of the solid and liquid
patterns is about 25 mm (34 vortices), further indicating low surface
tension. High surface tension would prevent such proximity of
microscopic domains, favouring formation of a single larger liquid
region. With increasing Ha large liquid domains of irregular shape
are formed, as demonstrated in Fig. 3c. Here a highly irregular ring
separates the vortex liquid from the surrounding solid. The local

Figure 3 Four examples of melting features in various BSCCO crystals shown in a three-

dimensional representation. The ®eld scale from blue to magenta is about 0.3 G. Only

selected parts of the samples are shown for clarity. a, Two liquid droplets (magenta)

surrounded by vortex solid (blue). The smaller droplet on the left is only about seven

vortices wide, demonstrating that disorder-assisted melting occurs on the scale of the

inter-vortex distance. Image area 0.07 ´ 0.14 mm2, Ha = 25.75 Oe, dHa = 0.5 Oe, and

T = 84 K. b, Vortex liquid nucleation (magenta) occurring simultaneously in three

adjacent ®nger-like regions. The image size is 0.24 ´ 0.31 mm2, Ha = 38.5 Oe,

dHa = 1 Oe, and T = 80 K. The top right side of the image shows one of the sample edges

(green). c, An irregular vortex liquid region surrounded by vortex solid. The solid±liquid

interface (magenta) is highly corrugated. In some regions the interface appears to be very

wide due to its high mobility during the ®eld modulation by dHa. At other points the

interface appears to be discontinuous due to interface pinning, which results in a lack

of differential signal during ®eld modulation. Outer edges of the sample are seen

along the top sides of the image. Ha = 83 Oe, dHa = 0.5 Oe, and T = 70 K. Image area is

0.26 ´ 0.34 mm2. d, A small vortex-solid island surrounded by vortex liquid. The liquid

phase is in turn surrounded by vortex solid along the sample edges. The solid±liquid

interface near the edges (magenta rim) appears highly non-uniform and discontinuous

due to the alternating regions of mobile and pinned interface. The melting and freezing

process of this solid island is characterized by a high degree of hysteresis, as shown in

Fig. 4. Image area 0.68 ´ 0.68 mm2, Ha = 69.5 Oe, dHa = 0.5 Oe, and T = 75 K.
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width of the ring is a direct measure of the distance the interface
expands due to dHa. In some parts the ring is very broad, showing
the locations where Hm(x,y) has smooth, gradual behaviour (see
Fig. 2a), resulting in a very mobile interface. In contrast, in other
places where the ring appears to have discontinuities, the solid±
liquid interface is effectively pinned due to steep Hm(x,y). As the
liquid domains expand with Ha, the peaks in Hm(x,y) melt last,
forming solid islands within the liquid (see Fig. 2a). Figure 3d
depicts such a small solid island completely surrounded by vortex
liquid, which in turn is surrounded by vortex solid along the edges
of the crystal. In this con®guration non-equilibrium phenomena
are found to be present, as described below.

Our experimental results allow evaluation of the surface tension
j of the solid±liquid interface. Theoretically, the surface tension
can be estimated as follows. At the ®rst-order transition the
discontinuous change in the internal energy is compensated by
a change in the entropy, such that the free energy remains
continuous. The jump in the energy density is roughly equal to
HmDB/4p. If the solid±liquid interface has a width of the order of
the inter-vortex spacing a0, then within this width the system is
neither liquid nor solid. Thus the energy cost per unit area of this
interface can be estimated as j = ha0HmDB/4p, where h is an
unknown numerical factor presumed to be of order unity. When
H exceeds a local minimum by h = H - Hm, a liquid droplet should
be formed in a solid, provided the energy gain in melting is larger or
equal to the energy cost of forming an interface. Assuming that the
droplet is of radius r and that it extends throughout the thickness d
of the sample, the energy gain is given approximately by
�]Fs=]H 2 ]Fl=]H�hpr2d �DBhr2d=4. Here ]Fs/]H and ]Fl/]H are

the derivatives of the free energies of the solid and liquid phases
respectively, and we have used the fact that ]Fs/]H - ]Fl/]H =
DB/4p at the melting transition. By comparing this gain with the
interface energy 2pjrd, we obtain the minimum nucleation radius
rmin < 2ha0Hm/h. The presented images show the existence of very
small liquid droplets with rmin < 3a0. By analysing the expansion of
the droplets due to dHa and upon varying Ha, we estimate the
superheating h to be less than 0.5 Oe for a typical Hm of 50 Oe, which
results in h # 10-2. Thus, assuming that Hm(x,y) exhibits smooth
local behaviour, our measurements indicate that j is two orders of
magnitude lower than rough theoretical estimates. Such a low
surface tension implies that the vortex melting process is completely
governed by disorder and that the stabilizing in¯uence of the
interface1 can be neglected. The origin of this phenomenon requires
further investigation.

Hysteretic supercooling and superheating is an inherent property
of a ®rst-order transition14, but the precise mechanism on a
microscopic level is not clear. We are able to spatially resolve this
unique feature, as shown in Fig. 4. We ®nd that the hysteresis occurs
only at the local maxima of Hm(x,y), indicating that disorder is an
important factor also in the non-equilibrium properties. In the top
left image, at 68.50 Oe, a few vortex-solid islands are visible within
the liquid in the upper part. As the ®eld is increased, these solid
islands split into smaller ones, and gradually shrink and disappear.
At 69.50 Oe only one small island is left, visible as a bright spot,
which fully melts at 69.75 Oe. A better view of the top-left corner of
the sample including this island is shown in Fig. 3d. Upon decreas-
ing Ha, the bright interface along the sample edges that separates the
large central liquid region and the outer solid strips behaves

Figure 4 Direct visualization of the local supercooling and hysteresis process. The top row

of images shows the melting sequence upon increasing the ®eld, while the bottom shows

the freezing process at the same values of decreasing ®eld. The central region of the

sample is in the liquid phase surrounded by vortex solid along the edges because of the

dome-shaped ®eld pro®le. The bright solid±liquid interface near the edges is highly

corrugated due to the disorder-induced variations in the local Hm(x,y), but it is completely

reversible upon melting and freezing. In contrast, the behaviour of the solid islands, visible

in the upper left part of the sample within the large liquid region, is highly hysteretic. In the

melting sequence the islands shrink gradually until the last of the islands fully melts at

69.75 Oe. In the freezing sequence, however, the islands are absent and suddenly

reappear only at 68.50 Oe, while the elongated central island nucleates at still lower ®eld

(not shown). In the four freezing images, 68.75 Oe through 69.50 Oe, in the areas where

the islands are absent relative to the corresponding melting images, the liquid phase is in

a supercooled state. These metastable supercooled liquid regions coexist with the

surrounding equilibrium liquid. Such local supercooling is found only at local maxima of

Hm(x,y). No corresponding superheating of the solid is found at the minima of Hm(x,y), and

no hysteresis is observed in the regions where Hm(x,y) varies monotonically. Sample size is

1.1 ´ 1.2 ´ 0.025 mm3, T = 75 K and dHa = 0.5 Oe. Small dark and bright spots that do

not vary with ®eld are defects in the MO indicator.
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completely reversibly (compare the melting and freezing images at
the same ®eld). The inner solid islands, in contrast, are absent upon
freezing, and then suddenly reappear at a lower ®eld of 68.50 Oe.
Once formed, the islands extend to their full size at the correspond-
ing ®eld, and proceed to behave reversibly as long as they are not
fully melted again.

Reversible behaviour most probably re¯ects an equilibrium state
of the system. The above results therefore imply that there is no
supercooling or superheating when the solid±liquid interface is
located in a region where the Hm(x,y) landscape varies monotoni-
cally. The hysteretic behaviour occurs only when a new interface has
to be formed, but only if this new interface surrounds a solid rather
than a liquid. Hence, upon reducing H to below a local maximum of
Hm(x,y), the solid island is not readily formed (see lower panel of
Fig. 2a). In this regime a unique situation occurs: metastable
supercooled liquid domains, which are present instead of the
`missing' solid islands, coexist with the surrounding equilibrium
liquid. Only when the supercooling becomes suf®ciently large does
sudden nucleation occur, upon which the solid abruptly occupies
the entire volume of the supercooled domains. This non-equili-
brium process is observed only at local maxima of Hm(x,y). We
would expect a symmetric non-equilibrium mechanism to be
present at minima of Hm(x,y), where superheated solid would
transform hysteretically into a liquid droplet, but such hysteresis
is not found. The asymmetry between the supercooling and super-
heating on a macroscopic scale is usually ascribed to the surface
wetting process, which prevents solid superheating14. In our case
mesoscopic vortex droplets are formed within a solid and therefore
such an asymmetry should not be expected. Nevertheless, the tips of
the vortices near the top and bottom surfaces of the crystal
experience a reduced elastic con®nement potential due to the
absence of the lattice outside the sample. As a result, the vortex
tips may undergo a pre-melting transition similar to the surface
wetting in atomic solids, which may prevent the superheating of the
vortex solid. In contrast to atoms, however, each vortex tip is
attached to a solid vortex in the bulk, and therefore is restricted
in space and may not exhibit liquid properties. M
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Optimal geometrical arrangements, such as the stacking of atoms,
are of relevance in diverse disciplines1±5. A classic problem is the
determination of the optimal arrangement of spheres in three
dimensions in order to achieve the highest packing fraction; only
recently has it been proved1,2 that the answer for in®nite systems is
a face-centred-cubic lattice. This simply stated problem has had a
profound impact in many areas3±5, ranging from the crystalliza-
tion and melting of atomic systems, to optimal packing of objects
and the sub-division of space. Here we study an analogous
problemÐthat of determining the optimal shapes of closely
packed compact strings. This problem is a mathematical idealiza-
tion of situations commonly encountered in biology, chemistry
and physics, involving the optimal structure of folded polymeric
chains. We ®nd that, in cases where boundary effects6 are
not dominant, helices with a particular pitch-radius ratio are
selected. Interestingly, the same geometry is observed in helices in
naturally occurring proteins.

The problem of placing spheres in three dimensions in order to
attain the highest density was ®rst posed by Kepler and has attracted
much interest, culminating in its recent rigorous mathematical
solution1. The close-packed hard-sphere problem may be re-
stated in an alternative manner, more convenient for numerical
implementation, as the determination of the arrangement of a set of
points in a given volume that results in the minimum distance
between any pair of points being as large as possible6. It is notable
that the resulting `bulk' optimal arrangement exhibits translational
invariance in that, far from the boundaries, the local environment is
the same for all points.

Here we introduce a new problem pertaining to the optimal
shapes of compact strings. We consider a string (an open curve) in
three dimensions. We use a geometric measure7 of the curve, the
`rope length', de®ned as the arc length measured in units of the
thickness, which has proved to be valuable in applications of knot
theory7±12. The thickness ¢ denotes the maximum radius of a
uniform tube with the string passing through its axis, beyond
which the tube either ceases to be smooth, owing to tight local
bends, or it self-intersects. Our focus is on ®nding the optimal shape
of a string of ®xed arc length, subject to constraints of compactness,
which would maximize its thickness, or equivalently minimize its
rope length.

Following the approach of Gonzalez and Maddocks10, who
studied knotted strings, we de®ne a global radius of curvature as
follows. The global radius of curvature of the string at a given point
is computed as the minimum radius of the circles going through
that point and all other pairs of points of the string. It generalizes the
concept of the local radius of curvature (the radius of the circle
which locally best approximates the string) by taking into account
both local (bending of the string) and non-local (proximity of
another part of the string) effects. For discretized strings the local
radius of curvature at a point is simply the radius of the circle going
through the point and its two adjoining points. The minimum of all
the global radii then de®nes the thickness, that is, the minimum
radius of the circles going through any triplet of discrete points. This
coincides with the previous de®nition in the continuum limit,
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