Electrostatic Ion Beam Trap for the Study of Molecular Reaction Dynamics

ROBERT E. CONTINETTI
Department of Chemistry and Biochemistry
University of California San Diego

Fundamental Interactions with Atom and Ion Traps
Weizmann Institute, December 3, 2012
Overview

- Dissociative Photodetachment – Probing Transient Neutrals using Coincidence Spectroscopy
- Photoelectron-Photofragment Coincidence – O_4^-
- Experimental Techniques – Electrostatic Ion Beam Trap
- HOCO^-, HOCO and the $\text{OH} + \text{CO} \rightarrow \text{H} + \text{CO}_2$ reaction
- Photoelectron Spectroscopy
 - Electron Affinities and Vibrational Spectra of HOCO
- Experimental determination of the tunneling barrier
 - $\text{HOCO/DOCO} \rightarrow \text{H/D} + \text{CO}_2$

Future
Neutralization Probes of Dissociative States

Direct Dissociative Photodetachment (DPD)

\[AB^- + h\nu \rightarrow A + B + e^- \]
Photoelectron-Photofragment Coincidence Experiments

- Create precursor anion of interest
- Detach a single electron, collect it and resulting neutral fragments in coincidence (Dissociative Photodetachment)
- Full kinematic measurement of dissociation event

\[
AB^- + h\nu \rightarrow A(KER) + B(KER) + e^- (eKE)
\]
Dissociative Photodetachment of O_4^-

$O_4^- + h\nu \rightarrow O_2 (^3\Sigma_g^-) + O_2 (^3\Sigma_g^-) + e^-$

*$O_4^- + h\nu \rightarrow O_2^- (^2\Pi_g) + O_2 (^1\Delta_g)$

532 nm (2.33 eV)

Diagonal bands:

O_2 product vibrations
Low rotational excitation

Vertical Spots:

2-photon signal –
Photodissociation
followed by
Photodetachment

Hanold, Garner and Continetti
Photoelectron-Photofragment Coincidence Spectrometer

- Electron and multiparticle neutral imaging detectors (in coincidence)
- High duty cycle, trapping for many seconds, cryogenic
- Requires ion bunching, synchronization with external laser
Linear Electrostatic Ion Beam Trap

Zajfman and co-workers (1997)

Beam Environment: ~ 20 K
Background Pressure: ~ 10^{-11} torr
Beam Lifetimes: Many seconds
Beam Energies: 4 – 16 keV
Ion Frequency: 50 – 500 kHz

C.J. Johnson et al., Rev. Sci. Instrum. 82, 105105 (2011)
Ion Bunching and Synchronization

- Clock source for experiment is laser fiber oscillator
- Phase lock function generator to laser fiber frequency
- Bunch ions with small RF voltage from generator
- Simple phase control
Ion Bunching and Synchronization

Fast Beam – Significant Photoelectron ‘Doppler’ Effect
Vinoxide – $C_2H_3O^-$ photodetached at with 3.2 eV photons

Unbunched – Doppler Shift
(Multi-mass experiments)

Bunched and phase-locked to laser

Neutral particle coincidence can be used to clean-up unbunched mode (with a loss of duty cycle)
Important source of heat in hydrocarbon combustion.

Mediates CO, CO$_2$, and OH concentrations in lower atmosphere.

Kinetics, spectroscopy, quantum chemistry and dynamics studies

Previous studies: Sequential DPD of HOCO$^-$

Cold, Vibrationally Resolved Photoelectron Spectra

Revised adiabatic electron affinities (AEA’s) \(^{(2)}\)

- cis-HOCO: \(1.43 \text{ eV}^{(1)} \rightarrow 1.51 \text{ eV}\)
- trans-HOCO: \(1.30 \text{ eV}^{(1)} \rightarrow 1.37 \text{ eV}\)

‘Hot’ data: Lu and Continetti, PRL 99, 113005 (2007)

(1) Clements, Continetti and Francisco 2002
CCSD(T) / 6-311++G(3df,3pd)
(2) Harding and Stanton – HEAT procedure
CCSD(T) / ANO basis set
Photoelectron-Photofragment Coincidence Spectroscopy

- Record photoelectron spectra in coincidence with stable HOCO; H + CO₂; OH + CO

\[\text{TOF} \approx 7.8 \mu s \]
Isotope Effects – Tunneling Below the Barrier

• Turnover towards $E_T = 0$ – onset of long-lived HOCO/DOCO radicals
• Tunneling rate drops dramatically in DOCO: ≈ 0.2 eV higher in the well
• $E_{\text{int}} \approx 0.2 - 0.3$ eV
Product Branching Fractions

- Processes occurring over > 6 orders of magnitude of time
- Extract lifetimes as a function of E_{int}?
Model for Tunneling HOCO → H + CO₂

Approximations:

• Reaction coordinate
 simple harmonic oscillator
 H-OCO D-OCO
• 1 dimensional dynamics
• \(f(E) \) – stable fraction
• \(N = \omega_{OH} \times TOF \)

\[
f(E) = (1 - T(E))^N
\]
Semiclassical Tunneling Model

\[f(E_{int}) = (1 - T(E_{int}))^N \]

\[E_{int} = E_{hv} - EA - eKE \]

\[N = \omega_{OH} \times TOF \]
Generating a Model Potential

Two interacting states

\[V_{a,b}(r) = \frac{V_1(r) + V_2(r)}{2} \pm \sqrt{\left(\frac{V_1(r) - V_2(r)}{2} \right)^2 + H_{12}(r)^2} \]

Adiabatic curve generated by a ‘predissociated’ Morse oscillator

\[V_1^0(r) = D_e \left[1 - \exp\{-\alpha(r - r_e)\} \right] \]
\[V_2^0(r) = A r^{-n} \]
\[H_{12}(r) = H_{12}^0 \exp\{-a |r - r_c|\} \]

Fix Morse well-depth \(D_e \) and \(r_e \)
\(D_e \): dissociation to \(\text{H} + \text{CO}_2 \) \(^1\text{B}_2 \) state (5.70 eV)
\(r_e \): 0.98 Å (CCSD/aug-cc-pVTZ)
Semiclassical Tunneling Model – WKB Approximation

Use WKB approximation - Works for arbitrary potentials $V(r)$

$$T(E_{int}) \approx \exp \left\{ -2 \int_{r_1(E_{diss})}^{r_2(E_{diss})} \sqrt{\frac{2\mu}{\hbar^2}} (V(r) - E_{diss}) \, dr \right\}$$

Not all internal energy is along the H-OCO reaction coordinate

- Assume reaction promoted by vibration in H-OCO
- Include some fraction of residual internal energy (quasi – 1D)

$$E_{diss} = (v_{max} + 1/2) \hbar \nu_{OH/OD} + \chi \left[E_{int} - (v_{max} + 1/2) \hbar \nu_{OH/OD} \right]$$

Equate WKB result to experimental tunneling coefficients - Optimize $V(r)$

Experiment

$$\ln \left[1 - f(E) \omega_{OH} t_{flt} \right] = -2 \int_{r_1(E)}^{r_2(E)} \sqrt{\frac{2\mu}{\hbar^2}} (V(r) - E) \, dr$$

Model
Tunneling Model Fit to the Experimental Branching Fraction

- $v_{\text{max}} = 2$ for DOCO
- $v_{\text{max}} = 1$ for HOCO

Best Fit Parameters
- $a = 0.05 \text{ eV}^{-1}$
- $\alpha = 1.96$
- $A = 4.02 \text{ eV}$
- $N = 2.27$
- $H_{12}^0 = 0.49 \text{ eV}$
- $\chi = 0.19$
Experimentally Extracted Barrier

- Simultaneous optimization of HOCO and DOCO experimental data
- $E_{\text{int},\text{prod}} \approx 0.3$ eV predicted, consistent with experiment!

Experimental
Minimum Energy (Fully relaxed)
CCSD/aug-cc-pVTZ

Tunneling Reaction Pathway

- Slice through PES at $r_{OC} = r_{CO} = 1.18$ Å

- Minimum energy path and tunneling path essentially orthogonal near transition state
Communication: A chemically accurate global potential energy surface for the HO + CO → H + CO₂ reaction

Jun Li,¹ Yimin Wang,² Bin Jiang,³ Jianyi Ma,¹ Richard Dawes,⁴ Daqian Xie,³ Joel M. Bowman,² and Hua Guo¹,ᵃ

Fit – CCSD-1/d Potential Energy Surface

Quantum Wavepacket Dynamics on an ab initio Potential Energy Surface

- 6-D (green) reproduces experimental photoelectron spectrum much better than 5-D (red)
- picosecond lifetime tunneling resonances observed below TS2 in 5-D simulations
- Difficult to capture microsecond time-scale deep tunneling observed in experiment

Conclusions

- Photoelectron-Photofragment Coincidence Spectroscopy in an Electrostatic Ion Beam Trap

- Photodetachment of HOCO$^-$ and DOCO$^-$: Three competing channels:
 - $\text{HOCO}^- \rightarrow \text{HOCO} + e^-$
 - $\text{HOCO}^- \rightarrow \text{H} + \text{CO}_2 + e^-$
 - $\text{HOCO}^- \rightarrow \text{OH} + \text{CO} + e^-$

- Vibrational frequencies; cis AEA = 1.51 eV, trans AEA = 1.37 eV

- The HOCO \rightarrow H + CO$_2$ tunneling pathway is significant: implications for high-pressure combustion / atmospheric oxidation?

- Effects of vibrational excitation? Future Experiments
Acknowledgments

Experiment
Dr. Chris Johnson
Dr. Berwyck Poad
Ben Shen

Ab Initio
Theory
Prof. John Stanton
Dr. Michael Harding

Univ. Texas, Austin

Support: U.S. Department of Energy