Investigating α time variation with cold highly charged ions

Oscar O. Versolato
Max-Planck-Institut für Kernphysik, D-69117 Heidelberg
Experimental Few-Particle Quantum Dynamics
The collaboration

- Highly charged ions
- Electron beam ion traps (EBITs)
- EBIT spectroscopy
- Coulomb crystals
- Linear Paul trap design
- Molecular ions
- Quantum logic readout
- High-accuracy clocks
- Frequency comb
• Highly charged ions for metrology and fundamental physics
• Cryogenic Paul trap for sympathetic cooling of HCl ions
• Ir17+ and time variation of fine structure constant
• Outlook
Highly charged ions, scaling laws

• Ionization energy $\sim Z^2$

• Fine structure $\sim Z^4$

• Bohr radius $\sim Z^{-1}$; electron density at nucleus $\sim Z^3$

• Weak matrix element (parity violation) $\sim Z^5$

• QED contributions $\sim (Z\alpha)^n$
Laser spectroscopy of HClIs

\[
\text{Ar}^{13+} \text{ } ^2\!P_{3/2} - ^2\!P_{1/2} @ 441 \text{ nm by pulsed dye laser}
\]

Evaporatively cooled from 240 to 28eV (12eV achieved!)

Limited by Doppler line width! Need cooling...

K. Schnorr et al., in preparation
Sympathetic Cooling of HCl's

- RETRAP (LLNL):
 cryogenic Penning trap
 Be\(^+\) cools Xe\(^{34+}\)
 L. Gruber et al., PRL 86, 636 (2001)

- Proposals:
 M. Bussmann et al., Int. J. Mass Spectr. 251, 179 (2006)

- SPECTRAP @ GSI
 Resistive cooling &
 \(^{24}\)Mg\(^+\) ion cloud laser cooled in Penning trap
Sympathetic Cooling of HClIs

in a Paul trap

Coulomb crystal

- Can store many ions
- Temp. < 100mK
 (compare: 10^5K!)
 ...micromotion
- Be$^+$ as sympathetic coolant; optimal q/m

2 single-ion Coulomb crystal

- Only 1 HCl for highest accuracy
- Need quantum logic readout
Sympathetic Cooling of HCIs in a cryogenic Paul trap

- Cryogenic linear Paul trap at T=4K
- Injection of HCIs from EBIT at MPIK
- Sympathetic cooling of HCIs with Be+
- Quantum logic readout with PTB for highest accuracy
Cryogenic Paul Trap Experiments

A cryogenic linear RF ion trap for sympathetic laser cooling of HCl ions and molecular ions

Cryogenic Paul Trap Experiments

A cryogenic linear RF ion trap for sympathetic laser cooling of HCl ions and molecular ions

- UHV vacuum < 10^{-14} mbar (H$_2$ @ 4K)
- Low exposure to 300K blackbody fields
- Plentiful optical access ports
- Commissioned with Mg$^+$ and MgH$^+$ in Aarhus (Michael Drewsen’s Ion Trap group)
Experiments with cooled MgH+

intermezzo

Preparing externally and internally ultra-cold molecular ions
with the ion trap

Experiment with exciting results. Stay tuned...

Extr. and injection beamline*

Last week:
First extraction and deceleration!

*Slide by Lisa Schmöger
Be\(^+\) laser systems

Highly charged ions for metrology

- Strongly bound electrons
- Low susceptibility to certain external field shifts:
 - Second order Zeeman shift
 \[\sim 1/Z_h^2 \text{ (BUT: linear shift } \sim \text{MHz/G)} \]
 - Stark shifts (BBR, light shift, trap induced, quadrupole)
 \[\text{BBR } \sim 1/Z_a^4 \]
Variation of alpha

- Quasar absorption spectra
 - “Australian dipole” at 4σ
 - $\alpha/\alpha \sim 10^{-19}/\text{year}$
 - Webb et al., PRL 107, 191101 (2011)

- Hg+/Al+ Atomic clocks
 - $-1.6(2.3) \times 10^{-17}/\text{year}$
 - Rosenband et al., Science 319 (2008)
 - Need 100x improvement!
Highly charged ions for α-dot

Strong relativistic effects, enhanced sensitivity:

• High nuclear charge Z

• High ionization potential I_n

• Differences in the configuration composition (i.e. ν, j)

• Scaling even faster with *hole transitions* $q \sim I_n^{3/2}$

$\omega \approx \omega_0 + 2q\Delta \alpha / \alpha$

Berengut et al., PRL 105, 120801 (2010)

$\nu \approx -I_n \frac{(Z\alpha)^2}{\nu(j + 1/2)}$

Berengut et al., PRL 106, 210802 (2011)

BUT: need to keep transitions in optical regime...
Level crossings: optical transitions

neutral

hydrogen-like
Level crossings: optical transitions

Ir$^{17+}$

$q \sim 140,000 \text{ cm}^{-1}$

$q \sim 370,000 \text{ cm}^{-1}$

$q \sim 450,000 \text{ cm}^{-1}$

Compare: Hg$^+$ at

$q \sim 52,200 \text{ cm}^{-1}$

Berengut et al., PRL 106, 210802 (2011)

\({^{193}\text{Ir}^{17+}} \) partial level structure

\[
\begin{array}{c}
4f^{13}5s^1F_3 \\
4f^{13}5s^3F_2 \\
4f^{13}5s^3F_4
\end{array}
\]

\[
\begin{array}{c}
4f^{12}5s^2^3F_4 \\
4f^{12}5s^2^3H_6
\end{array}
\]

\(q = 24,183 \text{ cm}^{-1} \)

\(q = -385,000 \text{ cm}^{-1} \)

\(q = -367,000 \text{ cm}^{-1} \)

\(\Delta q \approx 730,000 \text{ cm}^{-1} \)

Accuracy of calculation: 6000 cm\(^{-1}\)

Berengut et al., PRL 106, 210802 (2011)

Slide courtesy of P.O. Schmidt
EBIT fluorescence spectroscopy

Orts et al., PRA 76, 052501 (2007)
Orts et al., PRL 97, 103002 (2006)

193Ir^{17+}
Electron impact excites all levels

Observe fluorescent decay with grating spectrometer and CCD

200 - 750 nm range observable

sub-ppm accuracy obtainable

Ti-like Ir^{55+}

Figure: Alex Windberger

EBIT fluorescence spectroscopy

$4f^{12}5s^2 3P_1$

$4f^{12}5s^2 3P_0$

$4f^{12}5s^2 1J_6$

$4f^{12}5s^2 1D_2$

$4f^{12}5s^2 3H_4$

$4f^{12}5s^2 3F_3$

$4f^{12}5s^2 3F_2$

$4f^{12}5s^2 1G_4$

$4f^{12}5s^2 3H_5$

$4f^{12}5s^2 3F_4$

$4f^{12}5s^2 3H_6$

$4f^{14} 1S_0$

193 Ir^{17+}
EBIT fluorescence spectroscopy

- Line identification by scanning electron beam energy

Figures: Alex Windberger, Hendrik Bekker
Summary & Outlook

- Highly charged ions for metrology and fundamental physics.

- Cryogenic Paul commissioned with MgH\(^+\) at Aarhus University

- Ir\(^{17+}\) excellent candidate. EBIT spectroscopy underway.

- Be\(^+\) cooling laser system operational. Construction of PI and spectroscopy lasers underway at PTB.
The crew & acknowledgements

Experiment\MPIK
- M. Schwarz
- A. Windberger
- L. Schmöger
- S. Bieling
- O. O. Versolato
- J. Ullrich
- J. Crespo López-Urrutia

Experiment\Aarhus University
- S. B. Kristensen
- A. Hansen
- A. D. Gingell
- L. Klosowski
- M. Drewsen

Experiment\PTB
- P. O. Schmidt (PTB)
- J. Ullrich

Funding
- MPG
- Aarhus University
- PTB
- COST-IOTA STSM