Direct Reactions with Exotic Beams

Yorick Blumenfeld
Direct Reactions with Exotic Beams

<table>
<thead>
<tr>
<th>Experimental method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search for the tetra-neutron</td>
</tr>
<tr>
<td>Doubly magic oxygen isotopes: proton scattering from the O isotopic chain</td>
</tr>
<tr>
<td>Shell gaps far from stability: the power of transfer reactions</td>
</tr>
<tr>
<td>Improved beams and detectors: Towards lower cross sections.</td>
</tr>
</tbody>
</table>
A Typical Direct Reaction Experiment with RIB

MUST: Y. Blumenfeld et al., *NIM A366* (1999) 298

CATS1 | CATS2

CH₂ target

RIB²²O

CH₂ target
The ^{14}Be break-up experiment

FIG. 3. Distribution of the ratio of proton energy, E_p (MeV), to the energy derived from the flight time, E_n (MeV/nucleon), for data from the reaction (^{14}Be, $^{12}\text{Be}+n$)—histogram—and for simulations of elastic scattering of $^{1,3,4}n$—solid, dashed, and dotted lines, respectively—on protons. The experimental resolution has been included in the simulations.

FIG. 6. Scatter plot and the projections onto both axes of the particle identification parameter PID defined in Eq. (1) vs E_p/E_n for the data from the reaction ($^{14}\text{Be},X+n$). The PID projection is displayed for all neutron energies. The dotted lines correspond to $E_p/E_n=1.4$ and to the region centered on the ^{10}Be peak.

F. Marques et al, PRC 65; 044006 (2002)
“ I show that it does not seem possible to change modern nuclear Hamiltonians to bind tetraneutron without destroying many other successful predictions of those Hamiltonians. This means that, should a recent experimental claim of a bound tetraneutron be confirmed, our understanding of nuclear forces will have to be significantly changed…”

S. C. Pieper, PRL 90, June 2003
No evidence for a bound tetraneutron
- correlations between the 4 neutrons
Oxygen isotopic chain

Can we prove that these effects are due to a neutron shell closure? Through a proton scattering experiment. Protons are more sensitive to Neutrons.

P.G. Thirolf et al. PLB 485 (2000)16
M. Belleguic et al. NP A682, 136c (2001)
Results

$E_{2+} = 3.2 \pm 0.2 \text{ MeV}$

1000 pps
Phenomenological analysis

\[\beta_{(p,p')} = 0.26 \ (4) \]

\[\beta_{(p,p')} = 0.55 \ (6) \]

\[\beta_{(p,p')} = 0.37 \ (3) \]

E. Becheva PhD and PRL 96 (2006) 01250
M_n/M_p ratio

$Z=8$ closed shell
46Ar(d,p)47Ar at 10 AMeV with SPIRAL
Excitation energy spectrum for 47Ar

N=28 gap : 4.47(8)MeV

$L. Gaudefroy (PhD)$ and O. Sorlin

C2S$_{p_{3/2}}$ = 0.61
C2S$_{p_{1/2}}$ = 0.85
C2S$_{f_{7/2}}$ = 0.17
C2S$_{f_{5/2}}$ = 0.64
C2S$_{g_{9/2}}$ = 0.34

Experimential
SM calcul.
Decrease of the \(f \) and \(p \) spin-orbit splittings not predicted by mean field calculations.

The \(N=28 \) gap has decreased by 330(80) keV between Ca and Ar.

Decrease of the \(f \) and \(p \) spin-orbit splittings not predicted by mean field calculations.

First evidence of the tensor force in nuclei!

Courtesy of Olivier Sorlin
The MUST2 Array

Collaboration: IPNO, SPbN/Saclay, GANIL

MUST2: a major upgrade of MUST
- Increased angular coverage
 - Better efficiency
 - Measure several reactions in one shot
- Increased granularity (multiparticle events)
- New ASIC based electronics: more compact

ASICS 16 channels
E and T

DSSD 128+128
300μm

Si(Li) 4.5mm

CsI(PD) 4cm
MUVE II

- Plan Basics
 - Exp. Method
 - Inv Kinematics
 - MUST II
 - Geometry
 - MATE (ASIC)
 - Signals process
 - Slow Control
 - Data Acquisition
 - Trigger
 - Dead-Time

WHO

- 288 Energy Spectra
 - 150 KeV Threshold
 - 40 KeV FWHM

- 288 Time Spectra
 - 500 psec FWHM

MUVE

- 2.3K parameters
- 16 ADC14 bits
- Slow Control I2C
- 2 MHz

288 Energy Spectra

- 150 KeV Threshold
- 40 KeV FWHM

288 Time Spectra

- 500 psec FWHM
DEXON 2006 - 2012

Short-Term

BT D

ExoGam

TIARA

MUST II

VAMOS

E. C. Pollacco CEA Saclay
Neutron-proton pairing in N=Z nuclei through n,p transfer

- n-p pairing can occur in 2 different states: $T=0$ and $T=1$.

^{56}Ni, ^{48}Cr (p,t) $\Delta T = 0, 1$

^{56}Ni, ^{48}Cr (d,α) $\Delta T = 0$

Study of ^{68}Ni (d,p)

Study of ^{60}Fe (d,p) for astrophysics
The EURISOL Road Map

• Vigorous scientific exploitation of current ISOL facilities: EXCYT, Louvain, REX/ISOLDE, SPIRAL

• Construction of intermediate generation facilities: MAFF, REX upgrade, SPES, SPIRAL2

• Design and prototyping of the most specific and challenging parts of EURISOL in the framework of EURISOL_DS.
The EURISOL_DS proposal in the 6th framework

- Detailed engineering oriented studies and technical prototyping work
- 21 participants from 14 countries
- 21 contributors from Europe, Asia and North America (including SOREQ)
- Total Cost : 33 M€
- Requested contribution from EU : 9.16 M€
The EURISOL Concept

One possible schematic layout for a EURISOL facility