GANIL/SPIRAL facility
- Recent highlights
- Future SPIRAL 2 facility
- Layout of the facility
- Scientific opportunities
- Letters of Intent for SPIRAL 2

See also talks of: Y. Blumenfeld, G. Georgiev and J.M. Daugas
STABLE BEAMS
• from C to U
• energies up to 95 A.MeV
• intensities up to 2×10^{13} pps (6 kW)

RIB production schemes
• in-flight method: SISSI, LISE
• ISOL method: SPIRAL (SIRA)
 • Use of this two techniques in the same lab is a unique feature

Up to 10000 hours of stable and radioactive beams per year
Available and possible RIBs at SPIRAL

7 elements, about 40 isotopes

- Available
- Available, to be controlled
- Possible, to be controlled
- R&D possible
- Seen with the Shypie source

Used for experiments

<table>
<thead>
<tr>
<th>Ion</th>
<th>I (pps) and E</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^6\text{He}^{1+}$</td>
<td>3×10^7</td>
</tr>
<tr>
<td></td>
<td>5 AMeV</td>
</tr>
<tr>
<td>$^8\text{He}^{1+}, ^8\text{He}^{2+}$</td>
<td>$6 \times 10^5, 3 \times 10^4$</td>
</tr>
<tr>
<td></td>
<td>3.4, 15.4 AMeV</td>
</tr>
<tr>
<td>$^{18}\text{Ne}^{4+}$</td>
<td>2×10^6</td>
</tr>
<tr>
<td></td>
<td>7 AMeV</td>
</tr>
<tr>
<td>$^{76}\text{Kr}^{11+}, ^{74}\text{Kr}^{11}$</td>
<td>$5 \times 10^5, 1 \times 10^4$</td>
</tr>
<tr>
<td></td>
<td>4.3 AMeV</td>
</tr>
</tbody>
</table>

...and recently $^{15}\text{O}, ^{24,26}\text{Ne}, ^{44,46}\text{Ar}$

About 17 different RIB used in exp.

200 RIB shifts/year

PURE RI BEAMS!
Experimental study of 16F

Elastic scattering

E_x, Γ_x, J^π

$H(^{15}\text{O}, p)^{15}\text{O}$

16F

Polypropylene target (H_6C_3)
thickness 2.7 mg/cm2

15O Spiral beam
2 10^7 pps
1.2 MeV/A

14N detector

16F structure
(Ex, J^π, Γ)

$H(^{14}\text{N}, p)^{14}\text{N}$

$H(^{15}\text{N}, p)^{15}\text{N}$

Si detector

FWHM=13.4 keV for
5.486 MeV α

protons scattered from the target

Best resolution at 0°

Experimental study of 16F

14/06/06

L. Stefan
Measured excitation functions

\[H(14N, p)14N \]

\[15O \]

\[E_x, \Gamma, J^\pi \]

R-matrix

\[S_p = 7.297 \text{ MeV} \]

\[H(15N, p)15N \]

\[16O \]

\[E_x, \Gamma, J^\pi \]

R-matrix

\[S_p = 12.127 \text{ MeV} \]

\[H(15O, p)15O \]

\[16F \]

\[E_x, \Gamma, J^\pi \]

R-matrix

\[S_p = -0.536 \text{ MeV} \]
What about the $^{15}\text{O}(p,\gamma)^{16}\text{F}_\text{gs}(\beta^+)$?

$1/2^- + p \rightarrow ^{15}\text{O}$

$E_1 = 0.734 \text{ MeV}$
$E_0 = 0.536 \text{ MeV}$

$15\text{O} + p$
16F
β^+

$Q_\beta = 13.3 \text{ MeV}$

1ps

$M1$
γ

$E_0 = 0.536 \text{ MeV}$

$E_1 = 0.734 \text{ MeV}$

$^{15}\text{O} + p \rightarrow ^{16}\text{F}$
β^+

$^{15}\text{O}(p,\gamma)^{16}\text{F}$

$E_\text{CM} (\text{keV})$
$E_x (\text{keV})$
$E_x (\text{keV})^a$
J^π
$\Gamma_p (\text{keV})^b$
$\Gamma_p (\text{keV})$

534 ± 5
0
0
40 ± 20
25 ± 5

732 ± 10
193 ± 6
198 ± 16
< 40
70 ± 5

958 ± 2
424 ± 5
495 ± 2
< 40
6 ± 3

aRecommended values
bThis work.

$E_0 = 0.536 \text{ MeV}$

$E_1 = 0.734 \text{ MeV}$

$1/2^- \rightarrow 1^- \rightarrow 0^-$

γ

$M1$
$\tau_\gamma = 1 \text{ ps}$

β^+

$Q_\beta = 13.3 \text{ MeV}$

MeV

$\log_{10} N_{(\alpha,\gamma)}$

$\log_{10} N_{(p,\gamma)(\beta^+)}$

$\log_{10} N_{(p,\beta^+)}$

$T (\text{K})$
10^0
10^9
10^7

10^0
10^9
10^7

$14/06/06$

I. Stefan
Collapse of the N=28 shell closure in 42Si

Experimental set-up

- In-beam γ Spectroscopy:
 - GANIL-Caen
 - SISSI+ALPHA
 - SPEG

![Diagram showing the experimental setup with isotopes and labels](image)

PRELIMINARY

Collapse of the N=28 shell closure in 42Si - Beyhan Bastin
Collapse of the N=28 shell closure in 42Si

Results: 38Si

$2^+ \rightarrow 0^+ : 1081 \pm 8 \text{ keV}$

ref: $1084 \pm 20 \text{ keV}$

$1185 \pm 10 \text{ keV}$ [NEW]

Z=14

37Si 38Si 39Si 40Si 41Si 42Si

N=28
Collapse of the N=28 shell closure in 42Si

Results: 40Si

- $E(2^+ - 0^+) = 624 \pm 10$ keV
- Ref: 990 ± 20 keV
- $E(2^+ - 0^+) = 991 \pm 10$ keV

37Si, 38Si, 39Si, 40Si, 41Si, 42Si					
$Z=14$	$N=28$				
Collapse of the $N=28$ shell closure in ^{42}Si

Results: ^{42}Si

$2^+ \rightarrow 0^+ : 770 \pm 15$ keV

NEW

To be published

PRELIMINARY
Collapse of the N=28 shell closure in ^{42}Si

- LOW energy observed for the first 2^+ state in ^{42}Si

$^{42}\text{Si} = \text{deformed nucleus}$

Loss of magicity at N=28 for Si isotopes

In contradiction with J. Fridmann et al. [Nature vol.435(2005)03619]
Shapes of atomic nuclei

- Oblate ground states predicted for $A \sim 70$ near $N=Z$
- Prolate and oblate states within small energy range
 \[\Rightarrow \text{shape coexistence} \]
Systematics of the light krypton isotopes

- Inversion of ground state shape for 72Kr
- Coulomb excitation to determine the nuclear shapes directly
- Energy of excited 0^+
- $E0$ strengths $\rho^2(E0)$
- Configuration mixing

$\rho^2(E0)$:
- 72Kr: $72 \cdot 10^{-3}$
- 74Kr: $85 \cdot 10^{-3}$
- 76Kr: $79 \cdot 10^{-3}$
- 78Kr: $47 \cdot 10^{-3}$

Coulomb excitation of 74Kr and 76Kr

SPIRAL beams
76Kr 5×10^5 pps
74Kr 10^4 pps

4.7 MeV/u

Quadrupole moments Q_0 in ^{74}Kr and ^{76}Kr

- Direct confirmation of the prolate–oblate shape coexistence
- First reorientation measurement with radioactive beam

E. Clément et al., to be published
Study of the N=28 shell closure in Ar chain through (d,p) reaction

First experiment with radioactive beam of 46Ar @ 10 MeV.A

SPIRAL/GANIL

MUST array

Transfer reaction (d,p)

$d + p \rightarrow ^{28}f_{7/2} + ^{29}p_{1/2}$

46Ar $\rightarrow ^{47}$Ar

See talk of Y. Blumenfeld tomorrow

Count / 100 MeV

GS

FWHM : 175 keV

1.13 3.33 5.50
GANIL discoveries

Exotic nuclei

- Proton drip-line
- Light nuclei

Results at GANIL
- new nuclei
- mass measurements
- half-life measurements
- ΣR measurements
CIME Cyclotron
Acceleration of RI Beams
E < 25 AMeV,
1 - 8 AMeV for FF

Production Cave
C converter+UC_\text{x} target
\leq 10^{14} fissions/s

CIME Cyclotron
Acceleration of RI Beams
E < 25 AMeV,
1 - 8 AMeV for FF

Production Cave
C converter+UC_\text{x} target
\leq 10^{14} fissions/s

Low energy RNB
(DESIR)

Stable Heavy-Ion Exp.
Hall

Superconducting LINAC
E \leq 14.5 AMeV for heavy Ions A/q=3
E \leq 20 A MeV for deuterons (A/q=2 ions)
E \leq 33 MeV for protons

Heavy-Ion ECR
source (A/q=3), 1mA

Deuteron source
5mA

Existing GANIL Accelerators

Existing GANIL Exp. Area

Direct beam line CIME-G1/G2 caves

RFQ

Spiral2
E ≤ 20 A MeV, 5mA, deuterons (A/q=2 ions)
E ≤ 33 MeV 5mA, protons
E ≤ 14.5 AMeV , 1mA, heavy Ions A/q=3
(extension possible for A/q=6)

MOU with SARAF
LINAG Heavy-Ion Beam Challenge

Choice of the HI source:

• Phoenix V2 - competitive for A<50
• A-Phoenix - competitive for A<70 (but not included in the construction budget)
• A/Q=6 extension (4 times more expensive than A-Phoenix)
Fast neutron induced fission

Goal: Up to 10^{14} fissions/s

- 5 mA
- Deuterons 40 MeV
- UCx 2000°C diffusion/effusion
- Source
- Neutrons
- 1+ n+ C
- Neutrons
- Fast neutron induced fission
SPIRAL 2 yields of fission fragment after acceleration compared to other RNB facilities (best numbers for all)
Light and N=Z RIB at SPIRAL 2

Rough Estimation of Yields (Examples)

<table>
<thead>
<tr>
<th>RI Beam</th>
<th>Reaction</th>
<th>Production method</th>
<th>Yield (min. - max.) in pps</th>
</tr>
</thead>
<tbody>
<tr>
<td>^6He</td>
<td>$^9\text{Be} (n,\alpha)^6\text{He}$</td>
<td>ISOL</td>
<td>$5 \times 10^7 - 10^{12}$</td>
</tr>
<tr>
<td>^{11}C</td>
<td>$^{14}\text{N} (p,\alpha)^{11}\text{C}$</td>
<td>ISOL</td>
<td>$10^7 - 3 \times 10^{11}$</td>
</tr>
<tr>
<td>^{15}O</td>
<td>$^{15}\text{N} (d,2n)^{15}\text{O}$</td>
<td>ISOL</td>
<td>$3 \times 10^7 - 10^{10}$</td>
</tr>
<tr>
<td>^{18}Ne</td>
<td>$^{19}f (p,2n)^{18}\text{Ne}$</td>
<td>ISOL</td>
<td>$6 \times 10^6 - 7 \times 10^9$</td>
</tr>
<tr>
<td>^{34}Ar</td>
<td>$^{35}\text{Cl} (p,2n)^{34}\text{Ar}$</td>
<td>ISOL</td>
<td>$2 \times 10^6 - 2 \times 10^8$</td>
</tr>
<tr>
<td>^{56}Ni</td>
<td>$^{58}\text{Ni} (p,p2n)^{56}\text{Ni}$</td>
<td>Batch mode</td>
<td>$2 \times 10^4 - 10^8$</td>
</tr>
<tr>
<td>^{58}Cu</td>
<td>$^{58}\text{Ni} (p,n)^{58}\text{Cu}$</td>
<td>Batch mode</td>
<td>$10^4 - 10^8$</td>
</tr>
<tr>
<td>^{80}Zn</td>
<td>$^{24}\text{Mg} + ^{58}\text{Ni}$</td>
<td>In-flight</td>
<td>$< 3 \times 10^4$</td>
</tr>
</tbody>
</table>

Reactions to be used: transfer, fusion-evaporation, deep-inelastic
Regions of the Chart of Nuclei Accessible with SPIRAL 2 Beams

- Light beams
- Heavy ions
- RIB induced reactions

Production of radioactive beams/targets: (n,α), (p,n) etc.

N=Z Isol+In-flight

Transfermium A
Fission products (with converter)

Fission products (without converter)

Fusion reaction with n-rich beams

Deep Inelastic Reactions with RIB

High Intensity Light RIB

SHE
Operation of the accelerators:
66 weeks today (3 beams)
120 weeks with SPIRAL 2
(5 simultaneous beams)

Marek Lewitowicz, GANIL
14/06/06
Stable ion beams from LINAG

RIB from non-fissile targets
RIB of fission fragments > 10^{12} fiss./s

Phase 1
>10^{12} fiss./s

Phase 2
Goal: 10^{14} fiss./s
RIB of fission fragments 10^{14} fiss./s

Reference planning and phases

Reference Planning

Cost of the facility: 130M€

Reference Project Def.

Safety authorisation

Buildings construction

Construction of LINAG

Possible scenario

Cost of the facility: 130M€
SPIRAL2 « Scientific Objectives »

- Final Version on Web
 www.ganil.fr
- to be printed soon

Thanks to all (>110) contributors
The scientific case of SPIRAL 2

- **Position of drip-lines**
- **N=Z**
- **rp-process**
- **Spins & Shapes**
- **Heavy and Super Heavy Elements**
- **Equation of State**
- **Role of Isospin**
- **Haloes & Structures in the Continuum**
- **r-process path**
- **Shell structure far from stability**
- **Neutrons for science**
- **Atomic & solid state physics**
- **Isotope production**

Neutrons for science

Equation of State

Role of Isospin

Haloes & Structures in the Continuum

Spins & Shapes

r-process path

N=Z

rp-process

Position of drip-lines

Heavy and Super Heavy Elements
Neutrons For Science at SPIRAL 2: "nTOF - like" facility

- Fission
 - Minor actinides, main isotopes
 - Cross section
 - Neutron spectrum, multiplicity
 - Prompt fission gammas
 - Detailed A and Z distributions
 - Delayed neutron yields and precursor characteristics

- Scattering
 - Secondary neutron energy and angle differential cross sections
 - Inelastic scattering

- Fusion reactors
- Astrophysics
SPIRAL 2 - Letters of intent

Goals:

- Assess the technical feasibility, space, infrastructure requirements and cost for experiments
- Identify new equipment to be constructed
- Formalise collaborations of the SPIRAL 2 users
- Form a basis allowing to define priorities for the scientific programme of SPIRAL 2

Procedure and schedule:

1. Call for LoI - May 26th 2006 - \textbf{Dead-line for LoI: October 2nd 2006}
2. Evaluation of LoI by SAC + additional experts (if necessary) - \textbf{October 19 & 20th 2006} will include oral presentations of all LoI
3. Call for proposals aiming in construction of new detectors - 2007
4. Signature of MoU by collaborations constructing detectors in 2007-2008